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Abstract This paper examines the problem of designing a
nonlinear state feedback controller (SFC) for Takagi–Sugeno
discrete-time parametric uncertain systems via an iterative
linear matrix inequalities (LMIs). The objective of this paper
is to establish a novel framework of the SFC with conser-
vatism reduction (less restrictive) results by introducing slack
variables. These reduced conservative results are demon-
strated by a larger feasible areas of stabilization (stabilization
domain). Nevertheless, this paper shows that by changing the
initial nonquadratic Lyapunov function, a better solution can
be reached (less restrictive results). By using simulations, we
verify the new condition robustness and a comparison with
another approach existing in the literature to demonstrate the
effectiveness of this new approach.

Keywords Discrete-time Takagi–Sugeno fuzzy systems ·
Lyapunov function · Linear Matrix Inequality LMI ·
Parametric uncertain system · Non-PDC

1 Introduction

In recent years, there has been growing interest in the study
of stability and stabilization Takagi–Sugeno (T–S) fuzzy sys-
tem Ding (2009), Fang et al. (2006), Liu and Zhang (2003),
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Lee et al. (2001), Takagi and Sugeno (1985), Tanaka and
Wang (2001) due to the fact that it provides a general frame-
work to represent a nonlinear plant by using a set of local
linear models which are smoothly connected through non-
linear fuzzy membership functions (MFs). One of the most
important issues in the study of T–S fuzzy systems is the
analysis of the stability with Lyapunov functions Lee et al.
(2013). Via various approaches, a great number of stabil-
ity/stabilization results for T–S fuzzy systems in both the
continuous and discrete time contexts have been reported in
the literature Cao and Frank (2001), Mozelli et al. (2009),
Latrach et al. (2015).

Two classes of Lyapunov functions are used to analyze
these systems: quadratic Lyapunov and nonquadratic Lya-
punov functions, the second being less conservative than
the first class. Many researches were investigated with non-
quadratic Lyapunov functions with T–S nonlinear systems
Lin et al. (2006), Tanaka et al. (2003), Manai and Benrejeb
(2012), Hui et al. (2015).

Conservatism comes from different sources: the type of
T–S fuzzy model, the way the membership functions (MFs)
are dropped off to obtain LMI expressions Lin et al. (2006),
Tanaka et al. (2003), the integration of MFs information
Manai and Benrejeb (2012), Koo et al. (2011), Fang et al.
(2006), and the choice of Lyapunov function Tanaka and
Wang (2001), Lee and Kim (2009), Manai and Benrejeb
(2012), Kruszewski et al. (2008).

In this paper, we deal with the problem of the reduction of
conservatism for the discrete-time nonlinear systems based
on the choice of the Lyapunov function. Generally, if this
conservatism problem cannot be solved by one type of Lya-
punov function, it can be solved by another. The conclusion
is: If we choose the best Lyapunov function for the appropri-
ate nonlinear systems, then the problem of the conservatism
can be solved and better solutions are obtained.
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Several alternative classes of Lyapunov candidates func-
tion have been proposed in the literature for this problem,
and some approaches have been based on a single Lyapunov
function. These methods were basically reduced to the prob-
lem of finding a common Lyapunov function for a set of
stability conditions. Since a common Lyapunov function is
used for all subsystems, they can be quite conservative in
some situations. Therefore, piecewise Lyapunov functions
are applied to fuzzy control systems to obtain less conserv-
ative results and have received increasing attention as they
attempt to relax the conservativeness of stability and sta-
bilization problems Ke et al. (2011), Feng (2004), Zhang
and Feng (2008), Qiu et al. (2010), Feng (2006), Johans-
son et al. (1999), Manaa et al. (2015). Others introduce
decisions variables (slack variables) in order to provide addi-
tional degrees of freedom to the LMI problem Manai and
Benrejeb (2012), Manai and Benrejeb (2012), Fang et al.
(2006), Sala and Ariño (2007). Some recent works investi-
gate a delayed nonquadratic Lyapunov function. They proved
that a little modification in the Lyapunov function gives
a huge feasible area of stabilization Manai and Benrejeb
(2012), Kruszewski et al. (2008), Daafouz and Bernussou
(2001), Lendek et al. (2015), Guerra et al. (2012), Xie et al.
(2014).

In this paper, a new stabilization condition for Takagi–
Sugeno discrete-time parametric uncertain system with the
use of a non-PDC controller and new Lyapunov function
is discussed. This condition was reformulated with the lin-
ear matrix inequality (LMI) technique Teixeira et al. (2003),
Du and Yang (2010) which can be efficiently solved by
using the convex optimization algorithms. The goal of the
proposed approach is to reduce the conservatism of a pre-
vious result. The reduction of the conservatism in this
field can be shown graphically by increasing the sets of
solutions of LMIs or the fast convergence of the systems
states variables to their stable equilibrium points during
the time, in some cases the reduction of the amplitudes
of the control signals. The only way to reduce the conser-
vatism in our study is by increasing the sets of solutions
as we treat the asymptotic stabilization conditions where
is not important for the fast convergence of the state vari-
ables.

The outline of this paper is as follows. First, the
T–S system description is discussed. In Sect. 2, materi-
als and mathematics tools are presented. In Sects. 3 and
4, the proposed approach is given, and the main result
is proposed in LMI formulation. Robustness conditions
to design the feedback controller for parametric uncertain
T–S fuzzy models are given using strict LMI constraints. In
Section V, examples to show the effectiveness of the pro-
posed approach are proposed. Conclusion completes this
paper.

2 System Description and Preliminaries

The discrete-time T–S fuzzy model is described by fuzzy IF–
THEN rules, whose collection represents the approximation
of the nonlinear system. The i th rule of the T–S fuzzy model
is of the following form

If z1(k) is Mi1 and . . . and z p (k) is Mip

then

{
x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

i = 1, . . . , r

where Mi j (i = 1, 2, . . . , r, j = 1, 2, . . . , p) is the fuzzy set
and r is the number of model rules, x (k) ∈ �n is the states
vector, u (k) ∈ �m is the input vector, Ai ∈ �n×n is the states
matrix, Bi ∈ �n×m is the control, and z1 (k) , . . . , z p (k) are
known premise variables.

The T–S discrete-time parametric uncertain model for a
nonlinear system is described under the following form.

If z1(t) is Mi1 and . . . and z p (t) is Mip

then

{
x(k + 1) = (A + �A)x(k) + (B + �B)u(k)
y(k + 1) = (C + �C)x(k)

i = 1, . . . , r

(1)

where �Ai ,�Bi are time-varying matrices representing
parametric uncertainties in the model. These uncertainties
are norm-bounded and structured.

The final outputs of the fuzzy systems are written under
the following form.

x(k + 1) =
r∑

i=1

hi (z (k)) {(Ai + �Ai )x(k)

+ (Bi + �Bi )u(k)} (2)

where

z (k) = [
z1 (k) z2 (k) , . . . , z p (k)

]
(3)

hi (z (k)) = wi (z (k))
r∑

i=1
wi (z (k))

(4)

wi (z (k)) =
p∏

j=1

Mi j
(
z j (k)

)

f or all k. (5)

The term Mi1
(
z j (k)

)
is the membership degree of z j (k) in

Mi j

Since
⎧⎨
⎩

r∑
i=1

wi (z (k)) � 0

wi (z (k)) ≥ 0 i = 1, . . . , r
(6)
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We have

⎧⎨
⎩

r∑
i=1

hi (z (k)) = 1

hi (z (k)) ≥ 0 i = 1, 2, . . . , r
(7)

for all k
Assumption 1, lemma 1, 2 and 3 present the techniques

and tools used through the development of the next theorems.
Assumption 1 is a processing technique of the uncertainty

function to a matrix function. Lemmas 1, 2 represent a sim-
plification technique of the quadratic form for some matrix
representation, and lemma 3 represents one of some tech-
niques of relaxation (complexity’s reduction) for the stability
and stabilization form.

Assumption 1 The matrices of the uncertainties in the sys-
tem are represented in the following form:

[�Ai �Bi ] = DF (k) [EAi EBi ] (8)

where D, EBi and EAi are known constant matrices and
F (k) is an unknown function satisfying :

FT (k) F (k) ≤ I (9)

where I is the identity matrix.

Lemma 1 Wang and Mendel (1992) Considering X and
Y, Q = QT > 0 matrices of appropriate dimensions, the
following inequality holds

XY T + Y XT ≤ XQXT + Y Q−1Y T (10)

Lemma 2 (SchurComplément)Boydet al. (1994)Whether
P ∈ �m×m definite positive matrix, X ∈ �m×n full-rank
matrix in line, and Q ∈ �n×n

any matrix both following inequalities are equivalent

1. Q (s) − XT (s) P−1 (s) X (s) > 0, P (s) > 0 (11)

2.
[
Q (s) (∗)

X (s) P (s)

]
> 0 (12)

Relaxation: Whatever the choice of the Lyapunov Functions,
the analysis of the stability and stabilization problem is to
find the best conditions of the inequality (13).

r∑
i=1

r∑
i< j

hi h j x
Tϒi j x < 0 (13)

Lemma 3 (Tanaka and Sano 1994) Equation (13) is fulfilled
if the following conditions hold:

ϒi i ≺ 0 ∀i ∈ {1, . . . , r} (14)

ϒi j + ϒ j i ≺ 0 ∀i, j ∈ {1, . . . , r}2i ≺ j (15)

The use of these lemmas use is very important for the devel-
opment of the proposed theorems, and it will appear in the
next sections.

3 Stabilization with Non-PDC Controller

This section recalls the technique of stabilization analysis for
discrete T–S model based on a nonquadratic Lyapunov func-
tion in the discrete case, and the variation of the Lyapunov
function is considered for one sample variation. If the final
equation of this variation is negative, we obtain a sufficient
condition of theT–S stabilizationwith the state feedback con-
troller. This approach is developed by Guerra et al. (2009).

The following Lyapunov function is used by Guerra and
Vermeiren (2004).

V (x(k)) = xT (k)

(
r∑

i=1

hi (z (k))Gi

)−T

(
r∑

i=1

hi (z (k)) (Pi + μR)

)

∗
(

r∑
i=1

hi (z (k))Gi

)−1

x(k) (16)

where Pz is symmetric and definite positive matrix, and Gz

is full-rank matrix.
The nonlinearities are expressed by the terms hi (z (k)) ≥

0 with the convex sum property
∑r

i=1 hi (z (k)) = 1. In this
paper, we consider the pairs (Ai , Bi ) , i = {1, . . . , r} are
controllable.

The non-PDC is a state feedback controller, which can be
written under the following form in Eq. (17):

u(k) = −FzG
−1
z x (k) (17)

Using Eqs. (16) and (17), the variation of Lyapunov function
leads us to the following inequality

γ k
i j =

⎡
⎢⎢⎢⎣

−Pi (∗) (∗) (∗)

EaiG j −λI 0 0

Ebi Fj 0 −τ I 0

AiG j − Bi Fj 0 0 −GT
k − Gk + Pk + λHaHT

a + τHbHT
b

⎤
⎥⎥⎥⎦

≤ 0 (18)

(Guerra et al. 2009) proposes the following theorem
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Theorem 1 Guerra et al. (2009) Consider the parametric
uncertain system (2) and the controller (17) and γ k

i j defined
in (18) such that i, j, k ∈ {1, . . . , r}. If there exists definite
positives matrices Pi , scalars τ , λ and matrices Fi ,Gi such
as conditions (14) and (15) are satisfied, then the closed-loop
fuzzy model is globally asymptotically stable.

Another condition of stabilization for continuous Takagi–
Sugeno uncertain systems was investigated by Manai and
Benrejeb (2012), Manai and Benrejeb (2012) with the use of
nonquadratic Lyapunov function based on additional con-
stant and matrix variables (slack variables).

The Lyapunov function used by Manai and Benrejeb
(2012), Manai and Benrejeb (2012) is written under the fol-
lowing form:

V (x(t)) =
r∑

k=1

hk(z(t))Vk(x(t)) (19)

Vk(x(t)) = xT (t)(Pk + μR)x(t) (20)

The authors in Manai and Benrejeb (2012) propose the next
theorem for the stabilization of T–S continuous parametric
uncertain systems.

Theorem 2 Manai and Benrejeb (2012) The T–S continuous
uncertain parametric system is stable in closed loop if there
exists positive definite symmetric matrices Pk, k = 1, . . . , r,
and R, matrices F1, . . . , Fr such that the following LMIs
holds:

Pk + R � 0, k ∈ {1, . . . , r} (21)

Pj + μR ≥ 0, s j = 1, 2, . . . , r (22)⎡
⎣�1 (Pk + μR)Dai (Pk + μR)Dbi

∗ −λI 0
∗ ∗ −λI

⎤
⎦ < 0

i, k ∈ {1, . . . , r} and 0 < μ < 1 (23)

with

�1 = Pφ + GT
ii (Pk + μR) + (Pk + μR)Gii

+λ (Pk + μR)
[
Eai E

T
ai + (Ebi Fi )

T Ebi Fi
]

(24)⎡
⎣�2 (Pk + μR)

(
Dai + Daj

)
(Pk + μR)

(
Dbi + Dbj

)
∗ −λI 0
∗ ∗ −λI

⎤
⎦

< 0

f ori, j, k = 1, . . . , r such that i < j (25){
Gi j + G ji

2

}T

(Pk + μR) + (Pk + μR)

{
Gi j + G ji

2

}
≺0

(26)

�1 = Pφ +
{
Gi j + G ji

2

}T

(Pk + μR)

+ (Pk + μR)

{
Gi j + G ji

2

}

+λ (Pk + μR)
[(
Eai + Eaj

)T (
Eai + Eaj

)

+ (
Ebi Fj + Ebj Fi

)T (
Ebi Fj + Ebj Fi

)]
Gii = Ai − Bi Fi , Gi j = Ai − Bi Fj , 0 ≤ μ ≤ 1

(27)

In the following section, we propose a new Lyapunov
function based on the Lyapunov function in Eqs. (16) and
(19), by adding to the Lyapunov matrices another matrix
multiplied by a scalar. The goal from the proposed Lyapunov
function is to reduce the conservatism of the theorem 1 by
improving the sets of solutions domain.

4 Proposed Approach

Under the condition expressed in theorem 1 and 2, and the
Lyapunov function represented by Eqs. (16) and (19), we
propose a new nonquadratic Lyapunov function under the
following form in Eq. (28). It is considered as an extension
of the two last functions in Eqs. (16) and (19).

V (x(k)) = xT (k)G−T
z (Pz + μR)G−1

z x(k) (28)

The variation of the Lyapunov function �(V (x(k))) is neg-
ative if the following inequality is negative:

(
Az − BzFzG

−1
z

)T
G−T

z (Pz + μR)G−1
z

(
Az − BzFzG

−1
z

)
(29)

−G−T
z (Pz + μR)G−1

z < 0{
Az = Az + �Az

Bz = Bz + �Bz

By multiplying in the left by GT
z and the right by Gz , Eq.

(29) can be written in the next form

(
GT

z A
T
z − FT

z BT
z

)
G−T

z (Pz + μR)G−1
z

(
AzGz − BzFz

)
−(Pz + μR) < 0 (30)

using complement Schur, Eq. (30) becomes
[ −Pz − μR) (∗)

(Az + �Az)Gz − (Bz + �Bz)Fz −GT
z − Gz + Pz + μR

]

< 0 (31)

A superior bound was obtained when we use this lemma 1
(Wang et al 1992)
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‖�az‖2 ≤ 1, ‖�bz‖2 ≤ 1 (32)[
0 (∗)

�azGz − �bz Fz 0

]

≤
[

λ−1GT
z E

T
az EazGz + τ−1FT

z ET
bz Ebz Fz 0

0 λHaHT
a + τHbHT

b

]

(33)

Considering this inequality, Eq. (31) will be in the next form.

[−Pz − μR + 	1 + 	2 (∗)

AzGz − BzFz −GT
z − Gz + Pz + μR + 	a + 	b

]

≤ 0 (34)

With

	1 = λ−1GT
z E

T
az EazGz

	2 = τ−1FT
z ET

bz Ebz Fz

	a = λHaH
T
a

	b = τHbH
T
b

After the use of complement, Schur equation (34) becomes:
⎡
⎢⎢⎣

−Pz − μR (∗) (∗) (∗)

EazGz −λI 0 0
Ebz Fz 0 −τ I 0

AzGz − Bz Fz 0 0 −GT
z − Gz + Pz + μR + λHaHT

a + τHbHT
b

⎤
⎥⎥⎦

≤ 0 (35)

The final equation of stabilization of T–S parametric uncer-
tain systems with the use of the new form of Lyapunov
function becomes

γ k
i j =

⎡
⎢⎢⎣

−Pi − μR (∗) (∗) (∗)

EaiG j −λI 0 0
Ebi Fj 0 −τ I 0
AiG j − Bi Fj 0 0 −GT

k − Gk + Pk + μR + 
b + 
a

⎤
⎥⎥⎦

≤ 0


b = τHbH
T
b


a = λHaH
T
a (36)

where 0 < μ < 1
Therefore, the new condition of stabilization of discrete-

time Takagi–Sugeno parametric uncertain system is intro-
duced by the next theorem.

Theorem 3 Consider the parametric uncertain system (2)
and the control law (17) and γ k

i j defined in (36) such that
i, j, k ∈ {1, . . . , r}. If there exists symmetric definite pos-
itives matrices Pi , scalars τ, λ, 0 ≤ μ ≤ 1 and matrices
R, Fi ,Gi such as conditions (14) et (15) are satisfied, then
the closed-loop fuzzymodel is globally asymptotically stable.

A new Lyapunov function is proposed in this paper, and
it represents an extension from two others existing in the
literature. In the next section, we present their robustness by
showing their influence on the stabilization region.

5 Simulation and Validation of Results

Consider the T–S discrete-time uncertain system with unsta-
ble open loop model (System 1). This system is modelled in
two sub-systems r = 2.

A1 =
[−0.5 1

−0.1 0.5

]
, A2 =

[−0.9 0.5
−0.1 −0.7

]

B1 =
[
3
4

]
, B2 =

[
3
0.1

]
, Ha =

[
1 0
0 1

]

Hb =
[
1 0
0 1

]
, Ea1 = [

a 0
]
, Ea2 = [

0 b
]

Eb1 = Eb2 =
[
3b
0

]

wi th a, b ∈ [0, 1]

For the simulation, we choose the membership functions
under the following form.

{
h1(x1) = 0.8216

(
1 − sin(x1)

x1

)
h2 (x1) = 1 − h1(x1)

(37)

By applying the theorem 1, with (a = 1, b = 1), the results
of LMIs give the next definite positive matrices P1,P2 and
matrices G1,G2, F1, F2

P1 =
(
0.1799 0.0693
0.0693 0.1285

)
,P2 =

(
0.1352 0.0442
0.0442 0.0914

)

G1 =
(
0.5054 0.1805
0.1474 0.4228

)
,G2 =

(
0.4228 0.1810
0.1075 0.3506

)

F1 = (0.49053.1262) ,F2 = (−2.55341.3403)

Figures 1, 2, 3 and 4 illustrate the convergence to the equilib-
rium point zero of the states variables of subsystems 1 and 2,

Fig. 1 Non-PDC control signal
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Fig. 2 Evolution of states variables of subsystem 1

Fig. 3 Evolution of states variables of subsystem 2

the control signal and the final outputs x (k + 1) by using the
previous matrices. The initial conditions for the simulation
are x (0)T = [

0.5 −0.5
]

In the next, we apply theorem 3 with the nonlinear con-
trol law (17) and stabilization conditions of Theorem 3,
we choose (μ = 0.5), and the results of LMIs give
the next definite positive matrices P1, P2 and matrices
G1,G2, F1, F2, R:

Fig. 4 Evolution of final outputs

Fig. 5 Non-PDC control law

P1 =
(
12.3764 −0.0057
−0.0057 12.3737

)
, P2 =

(
12.3732 −0.0032
−0.0032 12.37132

)

G1 =
(
0.1863 0.0895
0.0539 0.2205

)
,G2 =

(
0.0756 0.0756
0.0302 0.1332

)

R =
(−26.5969 0.0265

0.1963 −26.5400

)

F1 = [0.6392 0.9413] , F2 = [0.3253 0.5623]

Figures 5, 6 and 7 illustrate the convergences of control sig-
nal and the states variables of sub-systems 1 and 2 to the
equilibrium point zero by using the previous matrices. The
initial conditions for the simulation are

x (0)T = [
0.5 −0.5

]

Figures 8 and 9 present the feasible area of stabilization or
the sets of solutions of LMI for the theorem 1, 3 with system
1. The mark (o) represents the feasible area of stabilization
of theorem 3 and mark (*) represents that of theorem 1.
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Fig. 6 Evolution of states variables of subsystem 1

Fig. 7 Evolution of states variables of subsystem 2

For theorem 3, the value μ = 0.5 is selected. The
subsequent figures demonstrate the robustness of the pro-
posed approach and then the first condition of stabilization
in theorem 1. Our approach gives a full feasible area of
stabilization between [a, b] = [−1, 1]. This area is con-
sidered as reduction of conservatism. The more we find a
larger area of solutions, the more we reduce the conser-
vatism.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

a

b

Feasible Area

theorem 1
theorem 3

Fig. 8 Comparison between theorems 1 and 3

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Feasible area

a

b

theorem 3
theorem 1

Fig. 9 Comparison between theorems 1 and 3

Consider another model with r = 2 (System 2)

A1 =
[
a −0.5
0 −0.86

]
, A2 =

[
0.87 0
−0.5 b

]
, B1 =

[
3
4

]

B2 =
[

3
0.1

]

Ea2 = [
0 b

]
, Eb1 = Eb2 =

[
3
0

]

Ha =
[
1 0
0 1

]
, Hb =

[
1 0
0 1

]
, Ea1 = [

a 0
]

The next figure gives the feasible area of stabilization that
belongs to System 2 by applying theorem 1 and 3 with
[a, b] = [−1, 1].

123



178 J Control Autom Electr Syst (2017) 28:171–179

Figures 8 and 9 present a comparison between the pro-
posed condition of stabilization presented in theorem 3 and
the condition of stabilization in theorem1. The proposed con-
dition gives larger sets of solution in terms of linear matrix
inequalities; with the addition of new matrix variable mul-
tiplied by positive constant in the Lyapunov function, the
proposed Lyapunov function and the new condition of stabi-
lization give less conservative results than the ones given by
theorem 1. This result demonstrate the interest of approach.

6 Conclusion

This paper develops a new condition of stabilization for
Takagi–Sugeno discrete-time parametric uncertain systems
in terms of combination of the LMI techniques and new non-
quadratic Lyapunov function, which permits a reduction of
the conservatismof someprevious results existing in the liter-
ature and significant increase the solution sets for non-linear
models which represent the goal of this work.

The main feature of our contribution is the increase in
the solutions sets into one sample variation of the Lyapunov
function. In the case of k-samples variation, it has no signifi-
cant effect to consider. The interest of the proposed approach
has been shown through examples and simulations.

Further works include the development of designmethods
for nonlinear discrete-time nonparametric, and mixed uncer-
tain systems include the generalization of these results to
k-sample variation investing another form of nonquadratic
Lyapunov functions.
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