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Abstract At the present time, the amount of data stored in
the sugar and alcohol industries is considered extensive and
continuous. In the production of sugar and alcohol, stored
information is not always analyzed. This is due to the amount
of data, the diversity of sectors in the production process,
alongwith the difficulty in knowingwhether such data can be
considered valid for any kind of analysis. This work proposes
the use of the Knowledge Discovery in Databases (KDD)
as an alternative tool for applying data from manufacturing
process pertinent to the sugar and alcohol industries. The
experiments were conducted with real data obtained from
fermentation process during the harvest period. The contri-
bution of this work is the identification of a KDD based on
a knowledge structure, which can be used for prediction and
simulation activities from the sugar and alcohol production
process.

Keywords KDD · Sugar and alcohol production · Fermen-
tation process · Process optimization

1 Introduction

The biofuel industries have shown interest in adapting their
production processes tomeet increasing requirements of eco-
nomic efficiency, as well as the need to make the most
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sustainable processes. This adaptation occursmainly through
process automation, resulting in an increase in the number
of sensors, actuators and equipment ready at all stages of
production, and correspondingly increase the data generated
in the process. The gain efficiency through data analysis is
not a trivial task. In most cases, the data are stored in ded-
icated repository (data warehouse) for post-analysis (Lydon
2015). Generally, this database hasmany records in its tables;
however, not always are such records considered useful or
provide some kind of knowledge or information relevant to
the process. One way to obtain such knowledge is through
mechanisms that make the activity regarding knowledge dis-
covery both simultaneous and automatic. In this context,
methods using the Knowledge Discovery process in data-
bases (KDD) for data analysis is produced in an intelligent
and automated mode (Choudharya et al. 2009). Thus, vari-
ous tools and methods have been proposed in order to extract
some information concerning such amounts of data.

For the sugar and alcohol sector, research is focused on
production improvements, through the construction of com-
putational decision-making and simulation tools in order to
optimize the production planning, sugarcane crop and manu-
facturing process for sugar and alcohol. Such surveys do not
use KDD.

Thiswork carried out a research investigation to an ethanol
production plant, and an immediate observation made was
the fact that most of the data are not used to optimize the
production process, and such data are simply eliminated.
The rationale behind this practice may be attributed to a
lack of data storage and analysis culture in the sugar and
ethanol industry. In this context, the development of a KDD
method represents the main contribution of this work. The
KDD method provides a production forecast for a sugar and
alcohol production plant. An approximate characterization of
the production is achieved using data from historical oper-
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Fig. 1 Product flow within a
manufacturing plant alcohol

ation and production. The work also includes an analysis
of how feasible it would be to apply a KDD process into
daily production tasks. We are especially interested in sys-
temic modeling and in the prediction future behavior of such
process.

Among the different processes that compose the ethanol
production, this work adopted on the fermentation process as
an implementation challenge and example, due to its com-
plexity, variability, lack of comprehensive and well-accepted
models and tools for prediction and decision-making. Other
processes that may be subject to future investigation include
extraction, destination and evaporation.

Preliminary research have been published in order to
check the acceptance of the research, alongwith the improve-
ments that could be applied (Cunha et al. 2012a, b). It is
important to note that in this article were implemented
improvements which deal with the processing of data and
new statistical analysis of the results.

Following this introduction, Sect. 2 will present a compact
view of the sugar and ethanol production as well as explana-
tion of the KDD basic concepts. This section gives special
attention to data acquisition and preprocessing, completing
the set of methods adopted in this work. In Sect. 3, computer
simulations experiments are described followed by conclu-
sion in Sect. 4.

2 Materials and Methods

This section deals with the description of the materials and
methods used in this article, the industrial process for pro-

duction of ethanol and the KDD process. In Sect. 2.1, the
production flow is described, along with the reasons for hav-
ing chosen such a process. Section 2.2 describes the KDD
process, the processing steps, data mining and the model
validation, as well as a state of the art of its application in
industry and related work.

2.1 Industrial Ethanol Production Process

Ethanol production is an agro-industrial activity. When
restricting our studies to only the industrial part of the ethanol
manufacturing process, the existence of different production
strategies is observed, these being generated from different
countries or production regions. In summary, the indus-
trial ethanol production part comprises the following steps:
receiving and washing cane, cane preparation, juice extrac-
tion, broth transport, the fermentation with the introduction
of yeast, filtration and centrifugation, along with distillation.
For a detailed analysis of each stage, it is recommended that
the interested individual reads (Amorim 2005).

The diagram in Fig. 1 illustrates the flow of products at
each of these steps. Improvements are developed for each
of these areas incessantly, in order to increase productivity,
reduce losses and search for new andmore efficient solutions.
The introduction of new sensors, actuators, controllers and
fieldbus technology has enabled the automation of virtually
all this structure in order to offer a very broad field of the
production activities involved.

From the point of view of control and process automa-
tion, the fermentation process is still a great challenge, not
only technologically, but also scientifically. In this article, we
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will focus attention on the pattern known as fed-batch, the
most adopted strategy in Brazil for the production of ethanol
from sugarcane. This mixture must have fermentation yeast
added as the vat components are being added. It is a very
productive method as the yeast is at a lower risk of becom-
ing inactive, compared to a single batch process. For a more
complete description of the different forms of production,
refer to Amorim (2005).

Whenwe are dealingwith fermentation and process analy-
sis inside an industrial vat, even the process of modeling is
an open problem. First, it is important to emphasize that this
study has its emphasis placed on real industrial processes and
not systems in a small-scale laboratory. Several reasons help
explain the complexity of this challenge:

– The composition is not pure and varies greatly due to the
weather during harvest (dry or rainy season), the trans-
port distance and time spent in transporting cane to the
industry. Crop residues such as land, straw,more increase
this variation

– The Brazilian production standard with centrifuging of
wine post-fermentation and reuse of yeast by introducing
unique features of evolution into the ecosystem within
the fermenter, the domain changes and survival over the
period of a production crop, which has its duration set at
approximately 8months

– The greater or lesser presence of microorganisms that
compete or cooperate with the sugar in the yeast biomass,
CO2 and alcohol

– The variation of the external temperature
– Constructive geometry and dimensions of the fermenta-
tion vat

– Sugar feedback policy
– The fermentation time
– Strategy of adding yeast
– The recent techniques of crop irrigation with treated
vinasse creates a complex dynamic feedback between
agriculture and industry, involving microorganisms pre-
vious harvests

– Difficulty in measuring
– Difficult to measure reliably and accurately the funda-
mental quantities such as the effective volume of vinasse
inside the vat

– Difficulty of measuring expeditiously levels of alcohol,
sugars and other analytically

This whole scenario creates a unique multidisciplinary
opportunity for scientific cooperation in different areas, in the
search for solutions that enhance the understanding of this
short-term and long-term process for creating new forms of
control that eliminate the ad hoc feature control processes,
performance evaluation and consumption of raw materials
that currently dominate the industry.

2.2 The KDD Process

The KDD process is described through a sequence of steps,
interdependent, applied to find new patterns of knowledge in
a database, previously unknown (Fayyad and Shapiro 1996).
The knowledge is evident when new patterns identified are
used in further analysis (Donauera et al. 2015). Figure 2
shows the KDD process, where the dashed lines indicate the
KDD interaction. As observed in the Fig. 2, if it is necessary
to run a step again, it can be executed, independent of its
execution order. This operation can be performed until the
pattern, identified by KDD, is considered as a valid standard.

2.2.1 The Identification of Patterns by KDD

The description of the KDD process is defined as:

– Data selection: The process starts from the choice of
the dataset that will be analyzed by the KDD. After this
choice, a dedicated database is created (data warehouse).
This dedicated database is created for the data at the plant
containing information related to different sectors, such
as the administrative sector, sales and others

– Preprocessing: This step is applied with the aim of
detecting and eliminating possible noise found in the
data, outliers and the values that have records with
zero information. These irregularities in the data can
occur due to several factors, such as operational fail-
ures relating to data manipulation operations, physical
failures, such as power outages at the time the data
was being requested. According to Fayyad and Shapiro
(1996), well-performed treatment and preprocessing
reduce processing costs in future steps, such as data min-
ing

– Transformation: This step is dedicated to the treatment
of data so that they are suitable for the processing of the
KDD core, which is the data mining step

– Data Mining: This step uses mining techniques, such as
neural networks, decision trees and genetic algorithms,
to identify patterns that describe the behavior of a process
under analysis

– Validation: This step is based on mathematical and sta-
tistical criteria andverifieswhether the pattern discovered
by KDD is assessed and validated.

2.2.2 KDD Applied to Industrial Process and Related Work

The KDD application is indicated for various industry seg-
ment applications, for example, segments that target quality
and production control, engineering applications and equip-
ment maintenance.

Some processes involving quality improvement and pro-
duction require data collection and analysis to solve problems
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Fig. 2 The KDD process
adopted by Fayyad and Shapiro
(1996)

in the manufacturing of products/services. Generally, the
manufacturing process involves several input and output vari-
ables, which produce the modeling and optimization actions
(Koksal et al. 2011). To resolve this problem, the KDD
process can be used with problems involving multivariable
processes, and be applied in various stages of the process
cycle of a product (Bingru et al. 2009). In related searches
for this kind of application, it was observed that KDD is
used as an auxiliary tool for standardizing the quality and
production of products preventing, for example, additional
production costs (Harding et al. 2006; Browne et al. 2006).

Still further into the application of quality and production
control, surveys were identified related to fault diagnosis,
analysis of defects inherent to the production processes, iden-
tification of functional parameters and forecast production,
production quality (Donauera et al. 2015; Choudharya et al.
2009; Koksal et al. 2011).

In the segment of engineering applications, the KDD is
used in the creation of new computational tools used by
engineers and technicians. Such tools have in their design
the prior knowledge of the projects developed by the engi-
neering sector and are constantly updated from new projects
that run. This produces agility, reliability and lower hours of
engineering costs (Harding et al. 2006).

There are related searches for specific application areas,
such as in power generation industries. In one of the studies
found, KDD is applied to the identification of patterns that
are used in pooling analysis of electrical networks, and also in
situations where monitoring of power generation conditions
is needed (McDonald and Steele 2006).

In sugar and alcohol environments, the research is focused
on improvements in the production of sugar and alco-
hol, proposing the construction of computational decision-
making and simulation tools aimed at optimizing the pro-
duction planning, sugarcane crop and in the manufacturing
process of sugar and alcohol. These surveys do not use KDD.

In Agudelo (2012), a sensor software used for controlling
fermentation processes was developed, using information
relating to biomass concentration, substrate and other sec-
ondary measures (turbidity, pH, CO2, flow). This model was
designed using a hybrid neural responsible for describing the
fermentation kinetics.

In other papers, the use of bagasse from sugarcane sur-
plus was evaluated for the production of electricity, or used in
ethanol production, with possible applications in the conven-
tional sugar and alcohol production process (Albarelli 2013).
In Batista (2008), a computational simulation tool for the
procedures used in beverage production processes distilled
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drinks in continuous processes is highlighted. Composition
profiles were surveyed such as, temperature, pressure, flow
and collecting information for creating equipment used in the
distillation process. From this tool, the new beverage produc-
tion patterns were found, with the goal being to have a better
quality standard manufacturing process of distilled drinks.

In Dias (2008), simulation tools were developed that ana-
lyze production processes, from information obtained from
the sugar cane harvest and processed bagasse, in order to ana-
lyze the energy consumption at each part of the plant process.
Some points were investigated for possible improvements
that could be deployed. For this study, the authors consid-
ered both the conventional process of producing ethanol
from sugarcane, as the bagasse hydrolysis process. In ethanol
simulation situations, Marquini et al. (2007) purposed an
industrial system of distillation columns for the production
of hydrous ethanol fuel, where they optimized the steam
consumption that was used by the system, through a binary
mixture of ethanol-water. In Decloux and Coustel (2005),
simulations were performed by way of a speaker system for
producing neutral alcohol, whichwas considered awine con-
taining ethanol, water and four contaminants. This mixture
increases the complexity of the simulation and the speaker
system. In this work, the authors simulated the production
of an intermediate alcohol, and also simulated the steps of
purification, by the addition of three columns used in the
production of neutral alcohol.

In Batista (2012), a simulation tool responsible for
hydrous and neutral alcohol production systems was devel-
oped in order to optimize the alcohol and cachaça manufac-
turing process in a continuous system.

In other works, research was developed that identified
models that represent the dynamic behavior of processes. In
Bergamasco (2003), a computational tool based on a math-
ematical model, which used that information concerning
nitrogen management used in fertilizer applied to sugarcane
crops, was developed. These models simulate different sce-
narios in which the fertilizer could be applied, in order to
be have a maximum crop yield, improving the allocation of
resources and varieties of inputs. In Hahn (1994), a simu-
lation system that improved daily decisions making process
was developed, which was related to the operational plan-
ning of transport of raw materials for the sugar and alcohol
industries.

Other research is inserted into the decision-making
process in planning cases related to the harvest (Bocca et al.
2015) earnings forecast of agricultural systems, crop plan-
ning (Grunow et al. 2007; Higgins 2002) and in planning
the harvest schedule. A well-executed harvest plan opti-
mizes the supply of raw materials, as well as other benefits
such as increasing the amount of sugarcane available for
crushing.

2.3 Data Acquisition

Initially, an analysis was performed on how to access the
information contained in the fermentation process.What was
found is that, currently, the ethanol production plants have a
communication structure responsible for providing the infor-
mation in the process for the various sectors of the industry. In
the process, there is a variety of field devices (sensors, actu-
ators and positioners) interconnected by a fieldbus. In most
Brazilian mills, the network protocol used is the Profibus
and its extensions (Profibus DP, Profibus PA, PROFINET)
(Profibus 2015).

In the above network protocol, there is a layer of software
responsible for providing equipment with data, for computer
applications of existing control in the plant (supervisory sys-
tems, historians and setters). This standard is theOPCClassic
(OLE forProcessControlClassic) (OPC2015). TheOPChas
in its design, the client–server information exchange archi-
tecture.

Access and storage of processed information occurs at
this point of the structure. By means of an ODBC (Open
DataBase Connectivity) connection provided by the super-
visory system, data is stored in a dedicated database (data
warehouse) of the fermentation process. The schematic of
the data acquisition process used in this work is shown in
Fig. 3.

The acquisition module, that was developed in C#, is
responsible for acquiring information used in this work.
The information was obtained from an industrial alcoholic
fermentation tank of a sugar and alcohol industry, under
typical operating conditions. Traditionally, the tank informa-
tion was stored in a central database, containing operational
information of the ethanol manufacturing process. The data
acquisition module retrieves the data and stores it in an exter-
nal database belonging to the central bank of the plant. The
DBMS (Database Management System) used in this work
was the SQL Server 2012 Community Edition. Each variable
used in KDDwas recorded in a table of the data warehouse of
the fermentation process with the information regarding the
time of purchase and the present value. The example of the
structure of wort temperature table created to data warehouse
is shown in Table 1. In the data warehouse, the database was
divided according to their acquisition year.

Traditionally, the harvest period for most of the sugar
and alcohol production plants in Brazil begins between the
months of March and April, and extends into the middle of
October and November. This period is related to the natural
cultivation of sugarcane. In this period, however, there may
be situations in which the production process can be para-
lyzed, due to the thunderstorms and other related weather
conditions. An example of these conditions are prolonged
seasonal rains, which cause the sugarcane cutting areas to
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Fig. 3 Communication
architecture of a typical plant of
ethanol production

become inaccessible to trucks responsible for transporting
sugar cane to the sugarcane industry. Another factor that can
cause stoppages is technical issues, which appear generally
when technical adjustments need to be made, or that there is
a point status of failure, be it human or generated by equip-
ment. At end of the harvest, the sugar and alcohol goes into
a period of preventive maintenance, which ensures that the
plant has a new production cycle (Amorim 2005). Consider-
ing the information for the period of the season and the fact
that the plants take on average 2months to be considered
ready for operation, in this work, information regarding the
harvest period of a plant located in Brazil, during the months
of May–September, for the production during the years 2008
and 2009.

2.4 Preprocessing

The preprocessing data module is responsible for perform-
ing the necessary treatment of the fermentation process data
in order to minimize the influence of possible invalid data
(with noise, zero data) in the subsequent data mining step.
This module was developed in MATLAB and is divided into
three parts: data filtering, data interpolation and data normal-
ization.

Data Filtering

In this step, the data are subjected to the filtering stage, where
only the values that are within a range of + or −10% of the
average value are considered valid. However, following this
criterion, the values that were outside this range, for exam-
ple, those values well above the range, would be discarded.
In order to evaluate the contribution of these values in the
description of the fermentation process, the following rule
was adopted: The values over 10% of the average have their
value changed to the upper limit operation, and those that are
10% below the average have their value changed to the lower
limit.

Data Transformation

In the data transformation step, modules were developed that
are responsible for the scale of variation variables values
across a specific operating range and filter them, so as to
obtain a better computational performance during the data
mining step (Fayyad and Shapiro 1996). Normalization fol-
lows the following equation:

yi = ymin(xi − xmax) + ymax
xi − xmin

xmax − xmin
i = 1 . . . N

(1)
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where

– N : size of the dataset
– x : the dataset to be normalized
– xmax: the maximum dataset value to be normalized
– xmin: the minimum dataset value to be normalized
– y: the desired value to be normalized
– ymax: the maximum desired value to be normalized
– ymin: the minimum desired value to be normalized

This is can be more observed in Figs. 9 and 10. Figure 9
shows the raw data, where it is possible to see some anom-
alies, like noise. After execution of the module, the data were
normalized to desired values and filtered, as shown in Fig. 10.
The desired values can be configured in a holistic manner,
i.e., the desired values can be configured according to the
situation and analysis.

Data Interpolation

The tables in the data warehouse fermentation process have
different amounts of stored records, due to the behavioral
characteristics of the process variables, so that each variable
sampling rate is different from each other. Thus, it is nec-
essary to possess an equal amount of records without the
behavioral properties of variables being affected. To meet
this requirement, this work applied linear interpolation data
rules, so that all data had the same amount of points (Stephens
1998). The Fig. 11 shows the wort temperature filtered and
interpolated.

2.4.1 Data Mining

The choice of data mining tool following criteria relating to
the operational characteristics of the fermentation process,
for example, the fermentation process has characteristic of
being a multivariable system and being a nonlinear system,
as well as having some kind of application in simulation
and prediction cases. The chosen data mining tool is the
NARX neural network. This type of network is based on
an important class of discrete-time and nonlinear system,
the NARXmodel (Nonlinear autoregressive with exogenous
inputs). This model is described by Eq. 2:

y(n + 1) = f (y(t − 1), y(t − 2), . . . , y(t − ny),

u(t − 1), u(t − 2), . . . , u(t − nu)) (2)

where u(t) and y(t) are the experimental data and input out-
put system, and is responsible for representing the amount
of necessary information (memory) for processing.

The function f is a nonlinear function, and mapping of
their nonlinearity is unknown. When this mapping can be

represented by a network type structure multilayer percep-
tron (MLP), the resulting network structure is aNARXneural
network. The network training can be conducted in twoways,
the serial-parallel and parallel. In the serial-parallel, the out-
put covariates are formed only by collected values of the real
system, according to Eq. 3:

ŷ(n + 1) = f̂
[
ysp(n); u(n)

]

→ f̂ [y(t − 1), y(t − 2), . . . , y(t − ny),

u(t − 1), u(t − 2), . . . , u(t − nu)] (3)

In the parallel mode, the generated outputs by the network
are supplied and included in the output vector of the regressor,
as shown in Eq. 4:

ŷ(n + 1) = f̂
[
yp(n); u(n)

]

→ f̂ [ŷ(t − 1), ŷ(t − 2), · · · , ŷ(t − ny),

u(t − 1), u(t − 2), · · · , u(t − nu)] (4)

Thus, with the NARX neural network, one can predict
situations where the experimental data are used at the end of
the process for calculating subsequent values of interaction,
and can also be simulated situations where the experimental
data are used in a specific set of interactions, and the new
calculated interactions are used for the calculation process of
subsequent values (Menezes and Barreto 2008; Ljung 2002).

According to Menezes and Barreto (2008), the NARX
neural network has many applications in real problems, such
as water treatment plants, investments in oil refineries and
the prediction of time series.

2.4.2 Model Validation

To evaluate and validate the performance of the KDDmodel,
the following statistical criteria were calculated (Stephens
1998; Fayyad and Shapiro 1996; Han and Kamber 2006):

– Coefficient of determination (R2): This criteria indi-
cates how much the observed output can be explained by
the output generated by the KDD model, according to
Eq. 5:

R2 =

n∑

i=1
(Pi − P̄)2

n∑

i=1
(Pi − P̄)2 +

n∑

i=1
(Oi − Pi )2

(5)

where

– Pi : the ethanol concentration degree predicted by the
KDD model
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– P̄: square error calculated by the prediction and the
observed ethanol degree

– Oi : the observed ethanol degree
– n: number of samples

– Coefficient of correlation (R): This criteria quantifies
the model global description. For a high value of R, there
is a significant correlation between the observed values
and the values generated by the KDD model. The calcu-
lation is performed according to Eq. 6:

R =
1

n

n∑

i=1
(Oi − Ō)(Pi − P̄)

(σo)(σp)
(6)

where

– Pi : the ethanol concentration degree predicted by the
KDD model

– P̄: square error calculated by the prediction and the
observed ethanol degree

– Oi : the observed ethanol degree
– Ō: the average value of the concentration ethanol

degree observed
– σo: standard deviation of the observed ethanol con-
centration degree

– σp: standard deviation of the predicted ethanol con-
centration degree

– n: number of samples

– Mean square error (MSE): This value is the sum of the
differences between the values generated by the model
and the observed values being weighed by the number of
terms as shown in Eq. 7:

MSE = 1

n

n∑

i=1

(Pi − Oi )
2 (%) (7)

where

– Pi : the ethanol concentration degree predicted by the
KDD model

– Oi : the observed ethanol degreen: number of samples

– Mean percentage error (MPE): This value represents
the percentage of error between the sumof the differences
between the value generated by KDD and the observed
and weighed value by the number of terms. Equation 8
shows how the MPE is calculated:

MSE = 1

n

n∑

i=1

(Pi − Oi )
2 × 100 (8)

where

Table 1 Structure of wort temperature table corresponding to 2008

Variable name Data type Is primary key

Date and time Datetime Yes

Process value Float No

– Pi : the ethanol concentration degree predicted by the
KDD model

– Oi : the observed ethanol degreen: number of samples

The validation routines and the indicatives shown in Eqs.
5, 6, 7, and 8 were implemented in Matlab.

3 Experimental Results

This section shows the experimental results obtained in this
paper. Here, some analyses of the KDD application are per-
formed on the sugar and alcohol production, that justify its
application.

3.1 Preprocessing Data

Considering the information for the period of the season,
cited in Sect. 2.3. Data were classified in input and output
quantities (variables), according to themapping realized dur-
ing the fermentation process. Quantities under consideration
in this work are: total reducing sugar concentration (TRS)
[%(w/w)], pH, total soluble solids concentration [◦Brix],
alcohol degree by volume [%], yeast growth rate [%], yeast
viability [%], cane must temperature [◦C] and tank level [%].
The output variable is the behavior of the ethanol concentra-
tion [%]. Figures 4 and 5 show the typical behavior of these
variables under regular fermentation conditions in the month
of May.

In a fermentation process, yeasts extract energy fromsugar
and releases ethanol andCO2.Therefore, sugar concentration
measure (TRS) is commonly used to evaluate the must qual-
ity for ethanol production. Usually in industrial processes,
sugar concentration is given in percentage of weight (mass)
of all available sugars (sucrose, fructose andglucose) per total
weight (mass) of the solution [% (w/w)]. In the literature, it is
usual to find values ranging from 18 to 22%. In Table 2, real
data usage for this work is observed, which may assume val-
ues in the interval between 7 and 27 %. Total soluble solids
concentrationmeasured in degrees Brix is an alternative form
of assessing sugar concentration in the cane must. The ◦Brix
corresponds to the percentage in mass of sucrose in a specific
solution. The ◦Brix is a standard well-established measure in
the sugar and ethanol industrial.
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Fig. 4 Representative behavior
of the chosen input variables
adopted to describe the
fermentation process. For
visualization purposes, the data
were interpolated but not
filtered, which explains the
appearance of some outliers,
particularly in the temperature
values. The data correspond to
May 2008. The axis x
corresponds to the sampled
interpolated points and the axis
y corresponds to the behavior of
the variables

Fig. 5 Representative behavior
of the chosen output variable,
the ethanol degree, adopted to
describe the fermentation
process. The data correspond to
May 2008. The x-axis
corresponds to the sampled
interpolated points, and the
y-axis corresponds to the
behavior of the variables

As any biological agent yeasts may be active (alive) or
dead cells. The ratio of active cells in percentage is called
yeast viability. In Brazil, the majority of industries adopt
Melle–Boinot process. In this kind of process, up to 90–95%
of the yeasts are recycled after every fed-batch fermentation
cycle. Therefore, it is important that the yeasts reproduce (5–
10%) during fermentation cycle to compensate cell loss due
to the cell centrifugation process. Yeast growth rate gives a
measure of this reproductive capacity. Nevertheless, in indus-
trial processes yeast is stressed to limit cell growth to the
minimal necessary amount, since biomass production com-
petes with ethanol production.

Following the steps of the KDD preprocessing process,
the data were passed through appropriate treatment. After
being filtered, the data are subjected to the linear interpola-
tion process, which considered an average of 20 points per
day for all variables used, resulting in a set of 600 dots per
month. Continuing the analysis of the number of records,
only records of the must temperature variable showed blank
records. A total of 37 records obtained in 2008, and 70 in
2009. The possible cause of this failure is related to spe-
cific communication problems between filed devices and the
supervisory systems.

Recorded data corresponding to the quantities are dis-
cussed over the last three paragraphs, and which is used in
the experiments are presented in a compact form in Table 2.
Numeric values in the table cells corresponding to the pro-

duction of the years 2008 and 2009 are separated by a “/”
symbol. For each quantity, the number of available registries,
maximal and minimal values, average (AVG) and standard
deviation (SD) are presented in separated columns.

To evaluate the effects of the data processing and the inter-
polation step, the mean relative error between the data was
calculated as shown in Table 3. One notes that there are sit-
uations where the percentage error is high, as observed in
the third item on the table. This high error occurs due to
the distance of experimental data collected from its normal
operating range. According to these errors, we can identify
whether these distances are above (positive errors) or below
(negative errors) the variable average value.

3.2 Identification and Analyses of the KDD Performance

At this stage, five different topologies were analyzed and
implemented on the NARX neural networks for data mining,
from the definition of subsets: N1: 2–10 (two input regressors
and two output regressors, and ten neurons in the hidden
layer), N2: 5–10, N3 5–5, N4: 3–5, N5: 10–5. The learning
algorithm was the gradient descent back-propagation with
the tangent sigmoid activation function at the hidden layer
and a linear transfer function at the output layer (Matlab) and
the maximum training epochs were 800.

In total, 600 points in May 2008 were analyzed. These
data were divided into a training set containing 420 records
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Table 2 General information of the raw data concerning the fermentation kernel variables over the period of May–September 2008/2009

Variable Number of registers Max Min AVG SD

TRS [% w/w] 589/468 27.0/23.4 12.0/7.1 19.2/17.6 0.8/1.7

Soluble solids [◦ Brix] 1763a/186098b 26.6/31.6 12.9/0 19.8/14.8 0.8/9.5

pH 1756/1435 5.3/5.1 3.8/3.8 4.5/4.6 0.1/0.1

Broth temperature [◦C] 61646/37927 74.3/72.4 −∗/10.7 32.4/29.9 4.1/4.5

Yeast viability [%] 295/246 98.0/99.0 67.3/68.5 90.9/90.3 4.8/4.4

Yeast budding rate [%] 295/246 30.4/26.3 0.6/4.3 13.0/13.1 4.9/4.4

Cane juice flow [ton/h] 1757/1434 14.3/19.0 3.0/1.0 8.4/9.7 1.7/2.5

Tank level [%] 43443/37942 64.4/59.7 0∗∗/0∗∗ 32.8/32.0 7.4/9.3

Ethanol concentration [% v/v] 1756/1435 10.8/10.8 6.5/4.8 9.2/9.0 0.3/0.6

Subtitle:
a Data from manual acquisition
b Data from supervisory system
∗ Blank data
∗∗ Minimum tank level corresponds to the beginning of the fermentation

Table 3 Error calculated on the raw and processed data. Data concern
May to September 2008/2009

Variable Error on the average (%)

TRS [% w/w] +1.0/ − 3.4

Soluble solids [◦Brix] +0.5/ − 7.4

pH +0.0/ + 13.0

Broth temperature [◦C] +1.2/ − 0.6

Yeast viability [%] +1.6/ + 2.2

Yeast budding rate [%] −2.3/ − 6.1

Cane juice flow [ton/h] −3.5/ + 6.1

Tank level [%] +0.6/ − 5

Ethanol concentration [% v/v] −1.0/ + 1.1

(70%) selected at random and a set of 180 records (30%). The
values of the input and output variables were normalized to
a mean value distributed on the [−1,1] range. During the
training phase, the MSE for predicting the concentration of
ethanol was used as a stop criterion (Table 4).

According to the results, the NARX N3:5–5 model was
the best in the ethanol prediction task, with an average error

of 0.08%, obtained during the validation step. Thus, this net-
work structure was incorporated into the KDD model and
validated. Figure 6 shows the ethanol concentration values
that were predicted by the KDD model for August 2008.

The KDD values predicted by the model relate satisfacto-
rily with data from experimental testing of the concentration
of ethanol, due to grouping of data. In order to simplify
the analysis of the predicted values for subsequent months,
Fig. 7 shows the correlation of the subsequent months with
the concentration of ethanol for the months of May, June,
July, August and September 2008, and of May by September
2009.

In another analysis, the predictive values for the KDD
model under specific fermentation conditions were verified.
Tests were conducted to predict the behavior of ethanol con-
centration in specific situations and random operations. The
KDD were presented to the data model for the first 4h of
fermentation, data for the first 8h of fermentation, first hour
fermentation data and data relating to the first and fourth
hours of fermentation.

Table 5 shows the average percentage error between the
estimated degree of concentration predicted by the model

Table 4 Mean square error for
the testing data

Tr Val Top 2008 2009

Jun Jul Aug Sep May Jun Jul Aug Sep

0.04 0.04 N1:2–10 0.72 0.64 0.71 0.50 0.51 0.87 0.91 0.62 0.65

0.03 0.04 N2:5–10 0.19 0.22 0.45 0.38 0.25 0.19 0.10 0.35 0.50

0.01 0.03 N3:5–5 0.06 0.09 0.11 0.10 0.06 0.05 0.05 0.10 0.07

0.03 0.04 N4:3–5 0.06 0.08 0.09 0.21 0.08 0.06 0.09 0.28 0.36

0.02 0.04 N5:10–5 0.12 0.14 0.17 0.23 0.17 0.12 0.07 0.21 0.28

Subtitle:
Tr Training, Val validation, Top topology
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Fig. 6 Comparison between
the ethanol concentration
predicted by the KDD model
and the actual value for the
month of August of 2008. The
x-axis corresponds to the
sampled interpolated points and
the y-axis corresponds to the
behavior of the variable

Fig. 7 Scatter plot on test data for the best KDD model with the selected NARX topology (5 regressors and 5 hidden neurons), as evaluated by
the best MSE
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Table 5 Mean square error for
the specific situation of
fermentation

Instant of fermentation (h) 2008 2009

Jun Jul Aug Sep May Jun Jul Aug Sep

1st − 4th 0.02 0.03 0.02 0.01 0.05 0.04 0.06 0.04 0.05

1st − 8th 0.01 0.01 0.03 0.02 0.03 0.02 0.05 0.04 0.05

1st 0.05 0.07 0.09 0.07 0.07 0.03 0.03 0.09 0.03

1st and 4th 0.08 0.08 0.09 0.10 0.07 0.06 0.06 0.07 0.07

Fig. 8 Comparison between
the ethanol degree of simulation
obtained by KDD model and the
observed data. The data
corresponds to the month of
August 2008. The x-axis
corresponds to the sampled
interpolated points and the
y-axis corresponds to the
behavior of the variable
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Fig. 9 Observed raw data for must temperature corresponds to the August of 2008

and KDD-grade ethanol observed under specific fermenta-
tion conditions.

Simulation tests analyzed the ability of the model to sim-
ulate possible KDD behavior of ethanol concentration in
a given month, based on prior knowledge (the first 4h of
fermentation) of the process. The result of this test can be
observed in Fig. 8, where the dashed line indicates the change
in the value simulated by the KDDmodel and the continuous
line the sampled values of the fermentation process (Fig. 9).

The analysis of the performance values, shown in Table 6,
shows that the results are interesting and differ from expected
behavior for the KDD model in simulation situations. The
expectationwas to obtain results that degradewith time; how-
ever, the error remains in a substantially acceptable range.
Considerations regarding the error significance should take
into consideration two respects: Firstly, the adopted sensors
provide values accurately, which means that the model has a
large standard deviation for this type of process, a sufficient
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Table 6 Mean percentage error calculated by the difference between the ethanol concentration and the simulated output generated by the KDD
model

2008 2009

Jun Jul Aug Sep May Jun Jul Aug Sep

Mean percentage error (%) 6.00 6.00 5.30 4.12 7.10 6.62 6.72 4.80 8.61
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Fig. 10 Observed filtered data for must temperature corresponds to the August of 2008
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Fig. 11 Observed filtered and interpolated data for must temperature corresponding to the August of 2008

limit can be achieved accurately. Another aspect is that amis-
calculation in the concentration of ethanol may represent an
error in a certain amount of liters of alcohol per batch. Thus,
this quantity of liters can represent a loss in the production
of ethanol during the harvest (Figs. 10, 11).

4 Conclusion

In this paper, the authors present a structured roadmap to
transform data into knowledge from the monitoring of the
alcoholic fermentation process in sugar and alcohol. The pro-
posed approach uses a methodology based on the extraction

of knowledge in databases, KDD. To illustrate the feasibility
of the proposal, actual data extracted from a production of a
plant processwere used. It implemented an intelligent system
based on NARX neural network, which was able to perform
both simulations, as estimates of ethanol production from
input signals and preprocessed output. The experiments tried
to reproduce logistical limitations by capturing similar data
to that under actual operating conditions. In this context, it
seems relevant and not trivial the fact that the errors observed
in the system outputs during the simulations with the sys-
tem over the following months did not degrade, and increase
value. These results deserve more attention and deeper study
with new data collections and the use of larger data vol-
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umes. It is important to emphasize that the application of
the method in other production units would require adjust-
ment parameters and a new network of learning steps. In this
context, even the network architecture should be tested. In
this study, the network with a two hidden layer architecture
with 5 neurons in the hidden layer proved to be more effec-
tive. The authors hope that further work will test whether this
architecture itself is the most appropriate for the problem in
question or whether the architecture will also be only a local
production feature function. The characterization and map-
ping of the fermentation process will be applied, to provide a
better understanding of the fermentation process operation,
where it will be possible to analyze the influence and behav-
ior of each variable process. This mapping will be applied in
over the whole sugar and alcohol process, such as the energy
generation, destilation sector and others.
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