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Abstract The problem of H∞ filter design for a class of 2D
systems is solved here in the presence of intermittent mea-
surements. Data dropouts are characterized using a stochastic
variable satisfying the Bernoulli random binary distribution.
Our attention is focused on the design of reduced-order H∞
filters such that the filtering error 2D stochastic system is
robust mean-square asymptotically stable and fulfills a given
H∞ disturbance attenuation level. We use a new formulation
for a class of 2D system Fornasini–Marchesini (FM)models.
A sufficient condition is established by means of the linear
matrix inequalities (LMI) technique. The efficiency and via-
bility of the proposed techniques and tools are demonstrated
through a set of numerical examples.

Keywords Robust filtering · 2D systems · H∞ filtering ·
Intermittent measurements · Data dropouts · Linear matrix
inequalities (LMIs)

1 Introduction

Design problems concerning multi-dimensional signals are
currently being extensively studied in the scientific litera-
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ture. In particular, two-dimensional (2D) signals and systems
(Benzaouia et al. 2016) have been studied in many engi-
neering fields, such as image processing, seismographic
data processing, biomedical imaging processing, thermal
processes, process control, and iterative learning control.
This paper deals with general 2D signal processing: The
investigation of 2D systems in signal processing applications
has attracted considerable attention, and many important
results have been reported to the literature. Among these
results, the problem of the H∞ filtering for 2D linear sys-
tems, described by the Roesser and Fornasini–Marchesini
(FM) models, has been investigated in Benzaouia et al.
(2016), Boukili et al. (2014b, 2016a), Souza et al. (2010)
and Hmamed et al. (2013) and references there in Du andXie
(2002), El-Kasri et al. (2012, 2013a), Kririm et al. (2015),
Wang and Liu (2013), Tuan et al. (2002) and Li and Gao
(2014, 2013), the H∞ filtering problem for 2D Takagi–
Sugeno systems is addressed in Boukili et al. (2014a), the
H∞ filtering problems for 2D systems with delays are stud-
ied in El-Kasri et al. (2013b), and stability and stabilization
of 2D systems is studied in Benhayoun et al. (2015), Li and
Gao (2012a), Duan et al. (2013) and Duan and Xiang (2014).

For the 2D systems with stochastic perturbation, the H∞
filtering problem is given in Gao et al. (2004) and Boukili
et al. (2016b), the state estimation and of 2D stochastic sys-
tems is solved in Cui and Hu (2010), the Refs. Boukili et al.
(2015) and Li et al. (2013) investigate the H∞ control for
TS fuzzy with stochastic perturbation, and the problems of
stability and robust H∞ control for 2D stochastic systems are
given in Cui et al. (2011), Dai et al. (2013) and Duan et al.
(2014).

In this context, we consider the problem of the H∞ filter
for a class of 2D systems with intermittent measurements.
This H∞ filtering and the related H∞ control problems have
already been studied in Liu et al. (2009), Bu et al. (2014a, b),
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Shi et al. (2012) and Gao et al. (2009). Following the litera-
ture, the phenomenon of missing measurements is assumed
here to satisfy a Bernoulli random binary distribution. Our
attention is focused on the design of reduced-order H∞ filters
that make the filter error system robustly stable and pro-
vide a guaranteed H∞ performance. Some slack variables are
included in the design, to provide extra degrees of freedom
thatmakes it possible to optimize the filter, byminimizing the
guaranteed H∞ performance. A sufficient condition is then
established bymeans of an LMI technique, with formulas for
the filter law design derived in parallel. Numerical examples
are also given to illustrate the effectiveness of the proposed
approach.

The remainder of this paper is organized as follows. In
Sect. 2, the system description and the design objectives
are presented. In Sect. 3, a sufficient condition guaranteeing
robust mean-square asymptotic stability with H∞ perfor-
mance for such 2D stochastic systems is derived by means
of LMI technique. Using this result, the filter design prob-
lem is solved in Sect. 4. Examples are given in Sect. 5, and
conclusions are drawn in Sect. 6.

Notations The superscript T stands for matrix transpo-
sition; the asterisk ∗ represents a term that is induced by
symmetry; diag{. . .} stands for a block-diagonal matrix;
E{.} denotes the mathematical expectation. Matrices, if their
dimensions are not explicitly stated, are assumed to be com-
patible for algebraic operations.

The l2 norm for a 2D signal w(i, j) is given by

‖ w ‖2=
√
√
√
√

∞
∑

i=0

∞
∑

j=0

wT (i, j)w(i, j)

where w(i, j) is said to be in the space l2{[0,∞), [0,∞)} or
l2, for simplicity, if ‖ w ‖2< ∞. we define ‖ e ‖E as

‖ e ‖E=

√
√
√
√
√E

⎧

⎨

⎩

∞
∑

i=0

∞
∑

j=0

eT (i, j)e(i, j)

⎫

⎬

⎭
.

2 Problem Formulation

Consider the uncertain 2D stochastic system described by
the following Fornasini–Marchesini (FM) model (Liu et al.
2009):

xi+1, j+1 = A1(α)xi, j+1 + A2(α)xi+1, j

+ B1(α)wi, j+1 + B2(α)wi+1, j

yi, j = C(α)xi, j + D(α)wi, j

zi, j = L(α)xi, j i, j = 0, 1, 2, . . . ,

x0, j = ϕ( j) ∀ j ≥ 0 and xi,0 = φ(i) ∀i ≥ 0 (1)

where xi, j ∈ R
n is the state vector, zi, j ∈ R

p is the sig-
nal to be estimated, yi, j ∈ R

m is the measured output,
and wi, j ∈ R

q is the disturbance input that belongs to
l2{[0,∞), [0,∞)}. The system matrices

Ω(α) = {A1(α), A2(α), B1(α), B2(α), C(α), D(α),

L(α)} ∈ Γ (2)

have partially unknown parameters. Ω(α) is a given convex-
bounded polyhedral domain, described by its s vertices as
follows:

Γ =
{

Ω(α)|Ω(α) =
s

∑

i=1

αiΩi ;
s

∑

i=1

αi = 1, αi ≥ 0

}

(3)

where

Ωi := (A1i , A2i , B1i , B2i , Ci , Di , Li ) (4)

denotes the i th vertex of the polytope.
Throughout the paper, we make the following assumption

on the boundary condition:

Assumption 2.1 Cui et al. (2011) The boundary condition
is assumed to satisfy

limk �→∞E{‖ x0,k ‖2} = 0, limk �→∞E{‖ xk,0 ‖2} = 0

‖ x0,k ‖2< ∞, ‖ xk,0 ‖2< ∞ for any k ≥ 1. (5)

In this paper, we consider the following H∞ filter to estimate
zi, j :

x̂i+1, j+1 = A f 1 x̂i, j+1 + A f 2 x̂i+1, j + B f 1 ỹi, j+1

+ B f 2 ỹi+1, j

ẑi, j = L f x̂i, j

x̂0, j = 0 ∀ j ≥ 0 and x̂i,0 = 0 ∀i ≥ 0 (6)

where x̂i, j ∈ R
n f (n f ≤ n) is the filter state vector (for

reduced-order case n f < n), ỹi, j ∈ R
m is the input of the

filter, and ẑi, j ∈ R
q is the output of the filter. The matrices

A f 1, A f 2, B f 1, B f 2 and L f are the filter matrices to be
determined.

It is assumed that measurements are intermittent, that is,
the data may be lost during their transmission. In this case,
the input ỹi, j of the filter is no longer equivalent to the output
yi, j of the system (that is, ỹi, j �= θi, j yi, j ). In this paper, the
data loss phenomenon is modeled via a stochastic approach:

ỹi, j = θi, j yi, j (7)
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where the stochastic variable {θi, j } is a Bernoulli distributed
white sequence taking the values of 0 and 1 with

Prob{θi, j = 1} = E{θi, j } = θ

Prob{θi, j = 0} = 1 − E{θi, j } = 1 − θ

and θ is a known positive scalar.

Based on this, we have

x̂i+1, j+1 = A f 1 x̂i, j+1 + A f 2 x̂i+1, j + B f 1θi, j+1yi, j+1

+ B f 2θi+1, j yi+1, j

ẑi, j = L f x̂i, j (8)

From (1) and (8), the filtering error system can be expressed
as follows is given by:

ξi+1, j+1 = Ā1(α)ξi, j+1 + Ā2(α)ξi+1, j + B̄1(α)wi, j+1

+ B̄2(α)wi+1, j + θ̄i, j+1 Ā3(α)ξi, j+1

+ θ̄i+1, j Ā4(α)ξi+1, j + θ̄i, j+1 B̄3(α)wi, j+1

+ θ̄i+1, j B̄4(α)wi+1, j

ei, j = L̄(α)ξi, j

ξ0, j = [ϕ( j)T , 0T ]T , ξi,0 = [φ(i)T , 0T ]T , ∀ j, i ≥ 0

(9)

where

Ā1(α) =
[

A1(α) 0
θB f 1C(α) A f 1

]

, Ā2(α) =
[

A2(α) 0
θB f 2C(α) A f 2

]

Ā3(α) =
[

0 0
B f 1C(α) 0

]

, Ā4(α) =
[

0 0
B f 2C(α) 0

]

,

B̄1(α) =
[

B1(α)

θB f 1D(α)

]

, B̄2(α) =
[

B2(α)

θB f 2D(α)

]

,

B̄3(α) =
[

0
B f 1D(α)

]

, B̄4(α) =
[

0
B f 2D(α)

]

,

L̄(α) = [

L(α) −L f
]

, θ̄i, j = θi, j − θ.

ξi, j = [xTi, j , x̂ Ti, j ]T and ei, j = zi, j − ẑi, j . It is clear that

E{θ̄i, j } = 0, E{θ̄i, j θ̄i, j } = θ(1 − θ) (10)

Before giving the main results, it is necessary to introduce
some lemmas that will be used for our derivations.

Lemma 2.2 (Theorem 1 in Liu et al. (2009)): Consider sys-
tem in (1) and suppose the filter matrices (A f 1, A f 2, B f 1,
B f 2, L f ) in (6) are given. Then, the filtering error systems
in (9) for any α ∈ Γ is mean-square asymptotically stable
with an H∞ disturbance attenuation level bound γ if there
exist matrices P(α) > 0 and Q(α) > 0 satisfying

Ψ � Ξ T
1 P(α)Ξ1 + β2Ξ T

2 P(α)Ξ2 + Ξ T
3 Ξ3 + Ξ T

4 Ξ4

+Ξ5 < 0 (11)

where

Ξ1 = [

Ā1(α) Ā2(α) B̄1(α) B̄2(α)
]

,

Ξ2 = [

Ā3(α) Ā4(α) B̄3(α) B̄4(α)
]

,

Ξ3 = [

L̄(α) 0 0 0
]

,

Ξ4 = [

0 L̄(α) 0 0
]

,

Ξ5 = diag
{

Q(α) − P(α), −Q(α), −γ 2 I, −γ 2 I
}

,

β = √

θ(1 − θ)

Lemma 2.3 (Lemma2.1 inQiu et al. (2010))Givenmatrices
W = WT ∈ Rn×n, U ∈ Rk×n, V ∈ Rm×n, the following LMI
problem:

W + UTX TV + VTXU < 0 (12)

is solvable with respect to the variable X if and only if

UT⊥WU⊥ < 0, when U⊥ �= 0, V⊥ = 0 (13)

VT⊥WV⊥ < 0, when U⊥ = 0, V⊥ �= 0 (14)

UT⊥WU⊥ < 0,VT⊥WV⊥ < 0, when U⊥,V⊥ �= 0 (15)

where U⊥ and V⊥ denote the right null spaces of U and V ,
respectively.

Problem Description The filtering error system (9) is said
to mean-square asymptotically stable with H∞ performance
γ , if the following requirements are satisfied:

1. The filtering error system (9) with wi, j ≡ 0 is mean-
square asymptotically stable.

2. Under zero boundary condition, ‖ ēi, j ‖E< γ ‖ w̄i, j ‖2
is guaranteed for all non-zero w ∈ l2 and a prescribed
γ > 0, where ēi, j = [eTi, j eTi, j ]T and w̄i, j =
[wT

i, j wT
i, j ]T .

3 H∞ Filtering Analysis

In this section, the analysis of stability and performance of the
H∞ filter is carried out. Thus, we temporarily assume that
the filter matrices are known, to study the condition under
which the filter error system is mean-square asymptotically
stable with H∞-norm bounded. For this, Lemma 2.2 can be
rewritten as follows:

Lemma 3.1 Consider the system in (1) and suppose that
the filter matrices (A f 1, A f 2, B f 1, B f 2, L f ) in (6) are
given. Then, the filtering error systems in (9) for any α ∈ Γ

is mean-square asymptotically stable and guarantees an
H∞ disturbance attenuation level γ if there exist matrices
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P(α) > 0 and Q(α) > 0 satisfying

⎡

⎢
⎢
⎣

−P̄(α) 0 P̄(α)A(α) P̄(α)B(α)

∗ −I L̃(α) 0
∗ ∗ −R(α) 0
∗ ∗ ∗ −γ 2 I

⎤

⎥
⎥
⎦

< 0 (16)

where

P̄(α) =
[

P(α) 0
0 P(α)

]

, R(α) =
[

P(α) − Q(α) 0
0 Q(α)

]

,

A(α) =
[

Ā1(α) Ā2(α)

β Ā3(α) β Ā4(α)

]

= Υ T
[

Ă(α) 0
ΛB f C̆(α) A f

]

Υ,

B(α) =
[

B̄1(α) B̄2(α)

β B̄3(α) β B̄4(α)

]

= Υ T
[

B̆(α)

ΛB f D̆(α)

]

, (17)

L̃(α) =
[

L̄(α) 0
0 L̄(α)

]

= [

L̆(α) −L̆ f
]

Υ.

and

Ă(α) =
[

A1(α) A2(α)

0 0

]

, B̆(α) =
[

B1(α) B2(α)

0 0

]

,

D̆(α) =
[

D(α) 0
0 D(α)

]

, L̆(α) =
[

L(α) 0
0 L(α)

]

, (18)

A f =
[

A f 1 A f 2
0 0

]

, B f =
[

B f 1 B f 2
B f 1 B f 2

]

,Λ =
[

θ 0
0 β

]

,

L̆ f =
[

L f 0
0 L f

]

, C̆(α) =
[

C(α) 0
0 C(α)

]

.

P(α) =
[

P1(α) P2(α)

PT
2 (α) P3(α)

]

, Q(α) =
[

Q1(α) Q2(α)

QT
2 (α) Q3(α)

]

,

Υ =

⎡

⎢
⎢
⎣

I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

⎤

⎥
⎥
⎦

(19)

Proof 3.2 By the Schur complement, the relation (16) is
equivalent to the relation (18) given inLiu et al. (2009),which
is equivalent to the relation (11). Consequently, (16) and (11)
are equivalent, completing the proof. ��
Based on this, we present the following new result.

Theorem 3.3 Consider the system in (1) and suppose that
the filter matrices (A f 1, A f 2, B f 1, B f 2, L f ) in (6) are given.
Then, the filtering error system in (9) for any α ∈ Γ is
mean-square asymptotically stable and guarantee an H∞
disturbance attenuation level γ if there exist matrices K (α),
E(α), F(α), S(α) and symmetric positive definite matrices
P̄(α) and R(α) satisfying

Ξ =

⎡

⎢
⎢
⎣

Θ1(α) Θ2(α) Θ3(α) −FT (α)

∗ Θ4(α) Θ5(α) Θ6(α)

∗ ∗ Θ7(α) BT (α)FT (α)

∗ ∗ ∗ −I

⎤

⎥
⎥
⎦

< 0, (20)

where

Θ1(α) = P̄(α) − E(α) − ET (α);
Θ2(α) = E(α)A(α) − KT (α);
Θ3(α) = E(α)B(α) − ST (α);
Θ4(α) = −R(α) + K (α)A(α) + AT (α)KT (α);
Θ5(α) = K (α)B(α) + AT (α)ST (α);
Θ6(α) = AT (α)FT (α) + L̃T (α);
Θ7(α) = BT (α)ST (α) + S(α)B(α) − γ 2 I.

In addition, P̄(α), R(α), A(α), B(α) and L̃(α) are given in
(17).

Proof 3.4 To show the equivalence between Theorem 3.3
and Lemma 3.1, define the following matrices:

U = [−I A(α) B(α) 0
] ; V = I ; (21)

W =

⎡

⎢
⎢
⎣

P̄(α) 0 0 0
0 −R(α) 0 L̃T (α)

0 0 −γ 2 I 0
0 L̃(α) 0 −I

⎤

⎥
⎥
⎦

; X =

⎡

⎢
⎢
⎣

E(α)

K (α)

S(α)

F(α)

⎤

⎥
⎥
⎦
(22)

and

U⊥ =

⎡

⎢
⎢
⎣

A(α) B(α) 0
I 0 0
0 I 0
0 0 I

⎤

⎥
⎥
⎦

; V⊥ = 0. (23)

Using the projection Lemma 2.3 and the Schur complement,
(16) is equivalent to (20). Thus, Theorem 3.3 is equivalent to
Lemma 3.1. This completes the proof. ��

Remark 3.5 In the derivation of Theorem 3.3, four slack
variables E , K , S and F are introduced. By setting E =
diag{V T , V T }, K = 0, S = 0 and F = 0, Theorem 3.3
coincides with the results of Propostion 1 in Liu et al. (2009),
so Theorem 3.3 would generally render a less conservative
evaluation of the upper bound of the H∞ norm, as will be
seen in the examples at the end of the paper.

Remark 3.6 Theorem 3.3 provides a sufficient condition of
the mean-square asymptotic stability and H∞ disturbance
attenuation level for 2D systems with intermittent measure-
ments. If the communication link between the plant and the
filter is perfect (that is, there is no packet dropout during
transmission), then θ = 1 and β = 0. In this case, the con-
dition in Theorem 3.3 collapses to the condition obtained in
the deterministic case.
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4 H∞ Filtering Design

In this section, we propose a sufficient condition for the exis-
tence of an H∞ filter and characterize the filter matrices that
provide the required robust stability and disturbance attenu-
ation requirements. Using the previous result and choosing
an appropriate linearizing transformation, we obtain a strict
LMI condition for the filter design.

Theorem 4.1 Consider the system in (1) and suppose that
the filter matrices A f 1, A f 2, B f 1, B f 2, L f in (8) are
given. Then, the filtering error system in (9) for any
α ∈ Γ is mean-square asymptotically stable and guar-
antees an H∞ disturbance attenuation level γ if there
exist matrices K1(α), K2(α), E1(α), E2(α), F1(α), S1(α),
B̆ f , Ă f , L̆ f , U , P̃2(α) = diag{P2(α), P2(α)}, R̃2(α) =
diag{P2(α) − Q2(α), Q2(α)} symmetric matrices P̃k(α) =
diag{Pk(α), Pk(α)} > 0, the scalars λi , i = 1, . . . , 3 and
R̃k(α) = diag{Pk(α) − Qk(α), Qk(α)} > 0, k = 1, 3 satis-
fying

Δ(α) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

T11 T12 T13 T14 T15 −F1(α)T

∗ T22 T23 T24 T25 0
∗ ∗ T33 T34 T35 T36
∗ ∗ ∗ T44 T45 −L̆T

f
∗ ∗ ∗ ∗ T55 T56
∗ ∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (24)

T11 = P̃1(α) − E1(α) − ET
1 (α);

T12 = P̃2(α) − V1U − ET
2 (α);

T13 = E1(α) Ă(α) + V1ΛB̆ f C̆(α) − KT
1 (α);

T14 = V1 Ă f − KT
2 (α);

T15 = E1(α)B̆(α) + V1ΛB̆ f D̆(α) − ST1 (α);
T22 = P̃3(α) − λ1(U +UT );
T23 = E2(α) Ă(α) + λ1ΛB̆ f C̆(α) − λ2U

TVT
1 ;

T24 = λ1 Ă f − λ3U
T ;

T25 = E2(α)B̆(α) + λ1ΛB̆ f D̆(α);
T56 = B̆T (α)FT

1 (α);
T33 = −R̃1(α) + K1(α) Ă(α) + ĂT (α)KT

1 (α)

+ λ2(V1ΛB̆ f C̆(α) + C̆T (α)B̆T
f Λ

TVT
1 );

T34 = −R̃2(α) + λ2V1 Ă f + ĂT (α)KT
2 (α)

+ λ3C̆
T (α)B̆T

f Λ
T ;

T35 = K1(α)B̆(α) + λ2V1ΛB̆ f D̆(α) + ĂT (α)ST1 (α);
T36 = ĂT (α)FT

1 (α) + L̆T (α);
T44 = −R̃3(α) + λ3( Ă f + ĂT

f );
T45 = K2(α)B̆(α) + λ3ΛB̆ f D̆(α);
T55 = S1(α)B̆(α) + B̆T (α)ST1 (α) − γ 2 I ;

The filter parameter obtained by

A f = U−1 Ă f ; B f = U−1 B̆ f ; L f = L̆ f .

Proof 4.2 For the slack matrices in (20), we first structurize
them as the following block form (Feng and Han 2015; Li
and Gao 2012b):

E(α) = Υ

[

E1(α) V1U
E2(α) λ1U

]

Υ T , (25)

K (α) = Υ

[

K1(α) λ2V1U
K2(α) λ3U

]

Υ T ,

S(α) = [

S1(α) 0
]

Υ T , F(α) = [

F1(α) 0
]

. (26)

where

U =
[

U1 0
0 U1

]

, V1 =
[

I2n f ×2n f

0(2n−2n f )×2n f

]

(27)

with Υ in (18). Moreover, for matrix variables P̄ and R in
(20), we introduce the following definitions:

P̄(α) = Υ

[

P̃1(α) P̃2(α)

P̃2(α) P̃3(α)

]

Υ T ,

R(α) = Υ

[

R̃1(α) R̃2(α)

R̃2(α) R̃3(α)

]

Υ T (28)

where P̃k(α), R̃k(α) are from Theorem 4.1.
AsΥ TΥ = I , by substituting (9)–(18) into (20) and com-

bining (25)–(28), we have that

Φ = J TΞ J (29)

where Ξ is in (20) and

J = diag{Υ, Υ, Ip, Iq},
Ă f = U A f , B̆ f = UB f , L̆ f = L f . (30)

This completes the proof. ��
One way to facilitate the use of Theorem 4.1 for the con-

struction of a filter is to convert (24) into a finite set of
LMI constraints. The following results give a methodology
to achieve this.

Theorem 4.3 Consider the system in (1) and suppose that
the filter matrices A f 1, A f 2, B f 1, B f 2, L f in (8) are given.
Then, the filtering error system in (9) for any α ∈ Γ

is mean-square asymptotically stable and guarantees an
H∞ disturbance attenuation level γ if there exist matri-
ces K1i , K2i , E1i , E2i , F1i , S1i , B̆ f , Ă f , L̆ f , U , P̃2i =
diag{P2i , P2i }, R̃2i = diag{P2i − Q2i , Q2i }, symmetric
matrices P̃ki = diag{Pki , Pki } > 0, R̃ki = diag{Pki −
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Qki , Qki } > 0, k = 1, 3 and scalars λt , t = 1, 2, 3 satisfy-
ing

Δi j + Δ j i < 0, 1 ≤ i ≤ j ≤ s, (31)

where

Δi j =
[

Ω11 Ω12

∗ Ω22

]

(32)

and

Ω11 =
⎡

⎢
⎣

T i j
11 P̃2i − V1U − ET

2i T i j
13

∗ P̃3i − λ1(U +UT ) T i j
23

∗ ∗ T i j
33

⎤

⎥
⎦ (33)

Ω12 =
⎡

⎢
⎣

T i j
14 T i j

15 −FT
1i

T24 T i j
25 0

T i j
34 T i j

35 ĂT
j F

T
1i + L̆T

j

⎤

⎥
⎦ (34)

Ω22 =
⎡

⎢
⎣

T ii
44 T i j

45 −L̆T
f

∗ T i j
55 − γ 2 I B̆T

j F
T
1i

∗ ∗ −I

⎤

⎥
⎦ (35)

and

T ii
11 = P̃1i − E1i − ET

1i ;
T i j
13 = E1i Ă j + V1ΛB̆ f C̆ j − KT

1i ;
T ii
14 = V1 Ă f − KT

2i ;
T i j
15 = E1i B̆ j + V1ΛB̆ f D̆ j − ST1i ;

T i j
23 = E2i Ă j + λ1ΛB̆ f C̆ j − λ2U

TVT
1 ;

T24 = λ1 Ă f − λ3U
T ;

T i j
25 = E2i B̆ j + λ1ΛB̆ f D̆ j ;

T i j
33 = −R̃1i + K1i Ă j + ĂT

j K
T
1i + λ2(V1ΛB̆ f C̆ j

+ C̆T
j B̆

T
f Λ

TVT
1 );

T i j
34 = −R̃2i + λ2V1 Ă f + ĂT

j K
T
2i + λ3C̆

T
j B̆

T
f Λ

T ;
T i j
35 = K1i B̆ j + λ2V1ΛB̆ f D̆ j + ĂT

j S
T
1i ;

T ii
44 = −R̃3i + λ3( Ă f + ĂT

f );
T i j
45 = K2i B̆ j + λ3ΛB̆ f D̆ j ;

T i j
55 = S1i B̆ j + B̆T

j S
T
1i .

The filter parameter obtained by

A f = U−1 Ă f .; B f = U−1 B̆ f ; L f = L̆ f .

Proof 4.4 Suppose that there exist matrices K1(α), K2(α),
E1(α), E2(α), F1(α), S1(α), B̆ f , Ă f , L̆ f , U , P̃2(α) =
diag{P2(α), P2(α)},R̃2(α) = diag{P2(α)−Q2(α), Q2(α)}
and symmetric matrices P̃k(α) = diag{Pk(α), Pk(α)} > 0,
R̃k(α) = diag{Pk(α) − Qk(α), Qk(α)} > 0, k = 1, 3 satis-
fying (24), then a filter in the form of (6) exists. Now, we use
these matrices and α in the unit simplex Γ to fix the matrices
as follows:

K1(α) =
s

∑

i=1

αi K1i ; K2(α) =
s

∑

i=1

αi K2i ;

E1(α) =
s

∑

i=1

αi E1i ; E2(α) =
s

∑

i=1

αi E2i ;

F1(α) =
s

∑

i=1

αi F1i ; S1(α) =
s

∑

i=1

αi S1i ;

P̃2(α) =
s

∑

i=1

αi P̃2i ; R̃2(α) =
s

∑

i=1

αi R̃2i ;

P̃k(α) =
s

∑

i=1

αi P̃ki ; R̃k(α) =
s

∑

i=1

αi R̃ki ;

k = 1, 3.

By (36), it is easy to rewrite Δ(α) in (24) as

Δ(α) =
s

∑

j=1

s
∑

i=1

αiα jΔi j

=
s

∑

i=1

α2
i Δi i +

s
∑

i=1

s
∑

j=i+1

αiα j (Δi j + Δi j ) (36)

where Δi j takes the form of (32). On the other hand, from
(31), we have

Δi i < 0, i = 1, . . . , s, and Δi j + Δ j i < 0, 1 ≤ i < j ≤ s. (37)

Considering
∑s

j=1 αi = 1, αi ≥ 0, then from (36)–(37),
we have Δ(α) < 0. Based on Theorem 4.1, there exists a
filter in the form of (6) such that the filtering error system
in (9) is stochastically stable with a given H∞ performance.
This completes the proof. ��

Remark 4.5 When the scalars λ1, λ2 and λ3 of Theorem 4.3
are fixed to be constants, then (31) is an LMI linear in the
variables. To select values for these scalars, optimization can
be used (for instance, fminsearch in MATLAB) to obtain
the scalars that improve some measure of performance (for
instance, the value of the bound on the disturbance attenua-
tion level γ ).
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5 Numerical Examples

In this section, simulation examples are provided to illustrate
the effectiveness of the proposed filtering design approach.

5.1 Example 1

Consider the 2D static field model presented in Liu et al.
(2009), which is described by the following equation:

ηi+1, j+1 = α1ηi, j+1 + α2ηi+1, j − α1α2ηi, j + ω1(i, j) (38)

where ηi, j is the state vector at coordinates (i, j) and α1,
α2 are the vertical and horizontal correlative coefficients,
respectively, satisfying: α2

1 < 1 and α2
2 < 1. Defining the

augmented state vector xi, j = [ηTi, j+1 − α2η
T
i, jη

T
i, j ]T , and

supposing that the measurement equation and the signal to
be estimated are, respectively,

yi, j = α1ηi, j+1 + (1 − α1α2)ηi+1, j + ω2,

zi, j = ηi, j , (39)

It is not difficult to transform these equations into a 2D FM
model in the form of (1), with the system matrices given by

A1(α) =
[

α1 0
0 0

]

, A2(α) =
[

0 0
1 α2

]

, B1(α) =
[

1 0
0 0

]

,

B2(α) =
[

0 0
0 0

]

, C(α) = [

α1 1
]

, D(α) = [

0 1
]

,

L(α) = [

0 1
]

. (40)

The uncertain parameters α1 and α2 are now assumed to
be 0.15 ≤ α1 ≤ 0.45, and 0.35 ≤ α2 ≤ 0.85, so the
above system is represented by a four-vertex polytope. It
is assumed that measurements transmitted between the plant
and the filter are imperfect, that is, data may be lost during
their transmission. Based on this, our aim is to design a filter
in the form of (6) such that the resulting filtering error system
in (9) ismean-square asymptotically stable with a guaranteed
H∞ disturbance attenuation level.

5.1.1 The Measurements Transmitted Between the Plant
and Filter are Perfect (θ=1)

First, the stochastic variable is assumed to be θi, j = 1(θ =
1), which means that the measurements always reach the
filter. Applying the filter design method in Theorem (4.3),
for this particular case, the minimum H∞ performance γ ∗ =
2.4924 is obtained, with the associated filter matrices given
by equation (41).
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Fig. 1 Disturbance input w(i, j) for example 1

⎡

⎣

A f 1 B f 1

A f 2 B f 2

L f

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

0.5456 −0.1778 −0.0908
0.0510 −0.0171 −0.0089

−0.0910 0.0035 0.0205
0.2213 0.2792 −0.2664
0.0313 −2.1730

⎤

⎥
⎥
⎥
⎥
⎦

(41)

It is noticeable that the value of γ obtained in this case (γ =
2.4924) is smaller than the one found in Liu et al. (2009) and
Gao et al. (2008).

5.1.2 The Measurements Transmitted Between the Plant
and Filter are Imperfect (θ=0.8)

We assume that data may be lost during their transmission:
θ = 0.8, so the probability of a data packet going missing is
20%.With this assumption, applying the filter designmethod
in Theorem (4.3), the achieved H∞ disturbance attenuation
level is γ ∗ = 4.6287, and the corresponding filter matrices
are

⎡

⎣

A f 1 B f 1

A f 2 B f 2

L f

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

0.3503 −0.0663 −0.0327
0.1648 −0.0315 −0.0190
0.0328 0.0043 −0.0328
0.5952 0.5458 −0.1737
0.5107 −2.2695

⎤

⎥
⎥
⎥
⎥
⎦

(42)

For simulation, the disturbance inputw(i, j), depicted in Fig.
1, is

w(i, j) =
{ [0.1 0.1]T , 3 ≤ i, j ≤ 19
0 otherwise

(43)

The filtering error signal e(i, j) obtained with the designed
filter matrices is shown in Figs. 2, 3, 4 and 5 for the random
data packet dropouts presented in Fig. 6: we can confirm that
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Fig. 2 Filtering error e(i, j) for w(i, j) �= 0 and (α1 = 0.15, α2 =
0.35)
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Fig. 3 Filtering error e(i, j) for w(i, j) �= 0 and (α1 = 0.15, α2 =
0.85)
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Fig. 4 Filtering error e(i, j) for w(i, j) �= 0 and (α1 = 0.45, α2 =
0.35)

0

20

40

60

0102030405060
−0.5

0

0.5

1

i

(α1=0.45 , α2=0.85)

j

e(
i.j

)

Fig. 5 Filtering error e(i, j) for w(i, j) �= 0 and (α1 = 0.45, α2 =
0.85)
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Fig. 6 Data packet dropout

e(i, j) converges to zero despite the data dropouts and the
disturbance.

Theminimumguaranteed performance γ for different val-
ues of θ are given in Table 1.

5.2 Example 2

Consider systems (1) and (2)with s = 4 andwith the following
data:

A11 = A12 =
[

0.4 −0.5;
0.5 0.2

]

, A13 = A14 =
[

0 −0.5;
0.5 0.2

]

,

A21 =
[

0.1 0
0 0.3

]

, A22 = A23 = A24 =
[

0.25 0.1;
0 0.3

]

,

B1 j =
[

0.2
0.5

]

, B2 j =
[

0
0.5

]

, L j = [−2 1
]

,
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Table 1 Minimum γ for
different values of θ for example
1

θ 1 0.95 0.90 0.85 0.80 0.75

Theorem 3 (Gao et al. 2008) 2.5450 – – – – –

Theorem 3 (Liu et al. 2009) 2.5438 3.0312 3.7465 4.3128 4.8041 5.2533

Theorem 4.3 2.4924 2.8045 3. 5358 4.1194 4.6287 5.0950

λ1 0.3597 8.9507 0.1146 0.4632 2.2419 0.1042

λ2 0.0069 0.0189 0.0013 0.0243 0.0185 0.0009

λ3 0.0016 0.0727 −0.0021 0.0032 0.0096 −0.0009

Table 2 Minimum γ for
different values of θ for example
2

θ 1 0.95 0.90 0.85 0.80 0.75

Theorem 3 (Liu et al. 2009) (n f = 2) 5.6101 5.6298 5.6429 5.6543 5.6649 5.6725

Theorem 4.3 (n f = 2) 5.4933 5.5096 5.5227 5.5346 5.5459 5.5568

Theorem 4.3 (n f = 1) 6.1740 6.1867 6.1981 6.2111 6.2240 6.2372

C1 = C3 = [

0.5 −3
]

, C2 = C4 = [

0.5 3
]

.

Dj = [

0.1
]

, j = 1, 2, 3, 4.

With these data, the optimal values γ of problem (31) are
given in Table 2.

5.2.1 The Measurements Transmitted Between the Plant
and Filter are Perfect (θ=1)

Full Order (n f = n) Case In this case , for λ1 = 2.0433,
λ2 = −0.0002 and λ3 = 0.0130, the minimum H∞ perfor-
mance is γ ∗ = 5.4933 and the filter gains obtained are:

⎡

⎣

A f 1 B f 1

A f 2 B f 2

L f

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

0.1140 −0.5007 −0.0040
0.0147 −0.0496 −0.0425
0.1120 0.1363 −0.0095

−0.1501 0.3178 0.0026
4.1101 −2.0349

⎤

⎥
⎥
⎥
⎥
⎦

(44)

We can notice that the value of γ = 5.4933 is smaller than
the one found in Liu et al. (2009).

For simulation, the disturbance input w(i, j), is

w(i, j) =
⎧

⎨

⎩

0.4, 3 ≤ i, j ≤ 19

0 otherwise
(45)

The filtering error signal e(i, j) obtained with the designed
filter matrices is shown in Figs. 7, 8, 9 and 10 for the random
data packet dropouts presented in Fig. 6: we can confirm that
e(i, j) converges to zero despite the disturbance.

Reduced Order (n f < n) Case In this case, for λ1 =
1.9797, λ2 = −0.6339 and λ3 = 0.0038, the minimum H∞
performance is γ ∗ = 6.1731 and the filter gains obtained
are:
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Fig. 7 Filtering error e(i, j) for w(i, j) �= 0
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Fig. 8 Filtering error e(i, j) for w(i, j) �= 0
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Fig. 9 Filtering error e(i, j) for w(i, j) �= 0
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Fig. 10 Filtering error e(i, j) for w(i, j) �= 0

⎡

⎣

A f 1 B f 1

A f 2 B f 2

L f

⎤

⎦ =
⎡

⎣

0.0458 0.2365
−0.3481 −0.0369
0.4996

⎤

⎦ . (46)

5.2.2 The Measurements Transmitted Between the Plant
and Filter are Imperfect (θ=0.8)

Full Order (n f = n) Case In this case , for λ1 = 2.0302,
λ2 = −0.0014 and λ3 = 0.0131, the minimum H∞ perfor-
mance is γ ∗ = 6.2240 and the filter gains obtained are:

⎡

⎣

A f 1 B f 1

A f 2 B f 2

L f

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎣

0.1322 −0.5416 −0.0035
0.1262 −0.0340 −0.0344

−0.0186 0.1318 −0.0185
−0.2338 0.3796 −0.0085
4.0910 −2.0220

⎤

⎥
⎥
⎥
⎥
⎦

(47)

It is noticeable that the value of γ = 5.5459 is better than
the one found in Liu et al. (2009).

Reduced order (n f < n) case In this case, for λ1 =
1.3162, λ2 = −0.7450 and λ3 = 0.0108, the minimum H∞
performance is γ ∗ = 6.2240 and the filter gains obtained
are:

⎡

⎣

A f 1 B f 1

A f 2 B f 2

L f

⎤

⎦ =
⎡

⎣

0.0050 0.3631
−0.1949 −0.1403
0.3352

⎤

⎦ . (48)

6 Conclusions

This paper has investigated the H∞ filtering problem for
a class of two-dimensional systems with intermittent mea-
surements. These measurements are characterized using a
stochastic variable that follows a Bernoulli random binary
distribution, which makes it possible to derive a sufficient
condition guaranteeingmean-square asymptotic stability and
a certain level of H∞ disturbance attenuation by means of an
LMI technique. Numerical examples are provided to illus-
trate the effectiveness of the proposed approach. It must be
pointed out that the methodology presented here can be used
to solve parallel problems, such as H∞ control and H∞ filter-
ing for other multi-dimensional systems, maybe with delays.
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