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Abstract This paper tackles the H∞ filtering problem for
2-D discrete systems. The approach is based on the Roesser
model. The objective is to propose a new design with suf-
ficient condition via LMI formulations. Less conservative
results are obtained by introducing additional free parame-
ters by using the Finsler’s Lemma. This method provides
extra degree of freedom in optimization of the H∞ perfor-
mance. The efficiency of the proposed approach is shown by
several examples.

Keywords 2-D discrete systems · Roesser models · H∞
filtering · Uncertain systems · Linear matrix inequalities
(LMIs) · Slack matrices

1 Introduction

Two-dimensional (2-D) system theory has attracted consid-
erable attention due to its extensive applications of many
physical systems, such as those in state-space digital filter,
image data processing and transmission, thermal processes,
biomedical imaging, gas absorbtion, water stream heating,
etc. So they are being extensively studied. To mention a few
of the results obtained so far, modeling has been studied
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in Fornasini and Marchisini (1976, 1978), Roesser (1975)
and Takagi (1985); the stability has been investigated in Xia
and Jia (2002), Hmamed et al. (2008), Dey et al. (2012)
and Kokil et al. (2012); H∞ stabilization and control were
solved in Du et al. (2001, 2002), Benhayoun et al. (2013),
Hmamed et al. (2010), Xu et al. (2008), Wang et al. (2015),
Qiu et al. (2015a, b, c); H∞ filtering for 2-D linear, delayed
and Takagi–Sugeno systems have been studied, respectively,
in Gao and Li (2014), Ying and Rui (2011), Gao et al. (2008),
El-Kasri et al. (2012, 2013a, b), Du et al. (2000), Xu et al.
(2005), Wu et al. (2008), Boukili et al. (2014b), Qiu et al.
(2013), Hmamed et al. (2013), Gao and Wang (2004), Chen
and Fong (2006), Boukili et al. (2013, 2014a) and Meng and
Chen (2014); finally, Li and Gao (2012), Gao and Li (2011)
and Li et al. (2012) has addressed the finite frequency H∞
filtering for 2-D systems.

This paper concentrates on filtering, as it is an important
problem in signal processing.More precisely, this paper con-
centrates on H∞ filtering: H∞ filtering for 2-D systems with
parameter uncertainties has been studied in Xu et al. (2005),
Hmamed et al. (2013), El-Kasri et al. (2013a, b), Boukili et al.
(2013), Chen and Fong (2006) and Wu et al. (2008). These
previous results on robust H∞ filtering are mostly based on
quadratic stability conditions and are hence inevitably con-
servative, as the sameLyapunov function is used for the entire
uncertainty domain.

To overcome this conservatism, this paper considers
parameter-dependent Lyapunov functions, to reduce the
overdesign inherent to a quadratic framework Gao and Li
(2014), Ying and Rui (2011), Gao et al. (2008) and El-Kasri
et al. (2012). In addition, in order to decouple the product
terms between the Lyapunov matrix and system matrices
and provide extra degrees of freedom, slack matrices are
introduced. The key in our approach is then the use of four
independent slack matrices and some homogenous polyno-
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mially parameter-dependent matrices of arbitrary degree: as
their degree grows, increasing precision is obtained, provid-
ing less conservative filter designs. The filters are designed
for systems with parameter uncertainties that belong to a
polytope, where only the vertices are known. The proposed
condition include as special cases the previous quadratic
formulations, and also the linearly parameter-dependent
approaches (that use linear convex combinations of matri-
ces).

It must be emphasized that the theoretical results are given
in the form of linear matrix inequalities (LMIs), which can
be solved by standard numerical software, thus providing a
simple methodology. An example shows the effectiveness of
the proposed approach.

The organization of this paper is as follows: Sect. 2 states
the problem to be solved and present some preliminary
results. Then the analysis of robust asymptotical stability
with H∞ performance is given in Sect. 3. The H∞ filter
design scheme is then developed in Sect. 4, followed by
an example to illustrate the effectiveness of the proposed
approach. Finally, some conclusions are given.

Notations: The notation used throughout the paper is
standard. The superscript T stands for matrix transposition.
P > 0means that thematrix P is real symmetric and positive
definite. I is the identity matrix with appropriate dimension.
In symmetric block matrices or long matrix expressions, we
use an asterisk ∗ to represent terms induced by symmetry.
diag{. . .} stands for a block-diagonal matrix. The l2 norm for
a 2-D signal w(i, j) is given by

‖ w ‖2=
√
√
√
√

∞
∑

i=0

∞
∑

j=0

wT(i, j)w(i, j)

where w(i, j) is said to be in the space l2{[0,∞), [0,∞)} or
l2, for simplicity, if ‖ w ‖2< ∞. A 2-D signal w(i, j) in the
l2 space is an energy-bounded signal.

2 Problem Description

Consider a 2-D discrete system described by the following
Roesser model:

[

xh(i + 1, j)
xv(i, j + 1)

]

= Aτ

[

xh(i, j)
xv(i, j)

]

+ Bτw(i, j)

y(i, j) = Cτ

[

xh(i, j)
xv(i, j)

]

+ Dτw(i, j) (1)

z(i, j) = Hτ

[

xh(i, j)
xv(i, j)

]

xh(0, k) = ϕ(k), xv(0, k) = φ(k), ∀k,

where xh(i, j) ∈ Rn1 is the state vector in the horizontal
direction, xv(i, j) ∈ Rn2 the state vector in the vertical direc-
tion, y(i, j) ∈ Rm is themeasured signal vector, z(i, j) ∈ Rv

the signal to be estimated, and w(i, j) ∈ Rq is the distur-
bance signal vector. It is assumed that w(i, j) belongs to
L2{[0,∞), [0,∞)}. The system matrices are decomposed
in blocks as follows:

Aτ =
[

A11τ A12τ

A21τ A22τ

]

, Bτ =
[

B1τ

B2τ

]

,

Cτ = [

C1τ C2τ
]

, Hτ = [

H1τ H2τ
]

(2)

where the dimensions of each block are compatible with the
vectors.

The system matrices are assumed to be uncertain and
bounded in a polyhedral domain

Ωτ � (Aτ , Bτ ,Cτ , Dτ , Hτ ) ∈ R (3)

where R denotes a polytope defined as

R �
{

Ωτ |Ωτ =
s

∑

i=1

τiΩi ; τ ∈ Γ

}

(4)

with Ωi � (Ai , Bi ,Ci , Di , Hi ) denoting the vertices of R
and

Γ �
{

(τ1, τ2, . . . , τs) :
s

∑

i=1

τi = 1, τi > 0

}

(5)

is the unit simplex.
The boundary condition of the system fulfills

lim
n �→∞

n
∑

k=1

(|xh(0, k)|2 + |xv(0, k)|2) < ∞ (6)

In this paper, we consider a 2-D filter represented by the
following Roesser model:

[

x̂ h(i + 1, j)
x̂v(i, j + 1)

]

= A f

[

x̂ h(i, j)
x̂v(i, j)

]

+ B f y(i, j)

ẑ(i, j) = C f

[

x̂ h(i, j)
x̂v(i, j)

]

(7)

x̂ h(0, k) = 0, x̂v(0, k) = 0, ∀k,

where x̂ h(i, j) ∈ Rn1 is the filter state vector in the hori-
zontal direction, x̂v(i, j) ∈ Rn2 is the filter state vector in
the vertical direction and ẑ(i, j) ∈ Rp is the estimation of
z(i, j). The matrices are real valued and are decomposed in
the following block form
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A f =
[

A f 11 A f 12

A f 21 A f 22

]

, B f =
[

B f 1

B f 2

]

,

C f = [

C f 1 C f 2
]

. (8)

Defining the augmented state vectors

ζ h(i, j) = [

xh(i, j)T x̂ h(i, j)T
]T

,

ζ v(i, j) = [

xv(i, j)T x̂v(i, j)T
]T

(9)

and the estimation error

e(i, j) = z(i, j) − ẑ(i, j) (10)

gives the following filtering error system:

[

ζ h(i + 1, j)
ζ v(i, j + 1)

]

= Āτ

[

ζ h(i, j)
ζ v(i, j)

]

+ B̄τw(i, j)

e(i, j) = C̄τ

[

ζ h(i, j)
ζ v(i, j)

]

(11)

where

Āτ = Υ T
[

Aτ 0
B f Cτ A f

]

Υ, B̄τ = Υ T
[

Bτ

B f Dτ

]

,

C̄τ = [

Hτ −C f
]

Υ, (12)

Υ =
[

Υ1

Υ2

]

=
[

Υ11 Υ12

Υ21 Υ22

]

=

⎡

⎢
⎢
⎣

In1 0 0 0
0 0 In2 0
0 In1 0 0
0 0 0 In2

⎤

⎥
⎥
⎦

The transfer function of the filtering error system is then

Tew(z1, z2, τ ) = C̄τ [diag{z1 I2×n1 , z2 I2×n2 } − Āτ ]−1 B̄τ (13)

Thus, the robust H∞ filtering error problem can be stated as
follows:

Problem description: Given the Roesser system (1) with
parameter uncertainty (3), find a filter (7), such that the filter
error system (11) is robustly asymptotically stable for all
τ ∈ Γ and satisfies the following robust H∞ performance:

‖Tew(z1, z2, τ )‖∞ < γ, ∀τ ∈ Γ (14)

where γ is a given positive scalar.

Remark 2.1 The parameter uncertainties considered in this
paper are assumed to be of polytopic type, entering into all
the matrices of the system model. This description has been
widely used for robust control and filtering (see, Gao and
Wang 2004; Xia and Jia 2002), as many practical systems
present parameter uncertainties which can be exactly mod-
eled by a polytopic uncertainty, or at least bounded.

To derive our main results, we use Finsler’s Lemma:

Lemma 2.2 (Lacerda et al. 2011) Let ζ ∈ R
n,Q ∈ R

n×n

and B ∈ R
m×n with rank (B) = r < n and B⊥ ∈ R

n×(n−r)

be full-column-rank matrix satisfying BB⊥ = 0. Then, the
following conditions are equivalent:

1. ζTQζ < 0,∀ζ 
= 0 : Bζ = 0
2. B⊥TQB⊥ < 0
3. ∃μ ∈ R : Q − μBTB < 0
4. ∃X ∈ R

n×m : Q + XB + BTX T < 0

3 H∞ Filtering Analysis

In this section, the filtering analysis problem is considered.
More specifically, we assume that the filter matrices in (8)
are known, and we will study the condition under which the
filtering error system (11) is asymptotically stable with H∞-
norm bounded γ . To solve the robust H∞ filtering problem,
we first recall the following result (Gao et al. 2008; Du et al.
2002).

Lemma 3.1 Given a positive scalar γ , if (Aτ , Bτ ,Cτ , Dτ ,

Hτ ) ∈ Ω are arbitrary but fixed, then the filtering error
system (11) is asymptotically stable and satisfies the H∞
performance γ for any fixed τ ∈ Γ , if there exists a block-
diagonal matrix Pτ = diag{Ph

τ , Pv
τ } > 0, where Ph

τ ∈
R

(2×n1)×(2×n1) and Pv
τ ∈ R

(2×n2)×(2×n2), such that

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−Pτ Pτ Āτ Pτ B̄τ 0

ĀT
τ Pτ −Pτ 0 C̄T

τ

B̄T
τ Pτ 0 −γ 2 I 0

0 C̄τ 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (15)

Proposition 3.2 Given a positive scalar γ , if (Aτ , Bτ ,Cτ ,

Dτ , Hτ ) ∈ Ω are arbitrary but fixed, the filtering error sys-
tem (11) is asymptotically stable with H∞-norm bounded γ if
there exist parameter-dependent symmetric positive definite
matrices Pτ = diag{Ph

τ , Pv
τ }, and parameter-dependent

matrices Mτ , Sτ , Rτ and Fτ such that:

Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Γ1 MT
τ Āτ − Sτ MT

τ B̄τ − Rτ −Fτ

∗ Γ2 Γ3 Γ4

∗ ∗ Γ5 B̄T
τ Fτ

∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (16)

where

Γ1 = Pτ − Mτ − MT
τ , Γ2 = STτ Āτ + ĀT

τ Sτ − Pτ

Γ3 = STτ B̄τ + ĀT
τ Rτ , Γ4 = ĀT

τ Fτ + C̄T
τ

Γ5 = B̄T
τ Rτ + RT

τ B̄τ − γ 2 I.
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Proof Toprove the theoremabove,we consider the following
matrices

Q =

⎡

⎢
⎢
⎣

Pτ 0 0 0
0 −Pτ 0 C̄T

τ

0 0 −γ 2 I 0
0 C̄τ 0 −I

⎤

⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎣

−I
ĀT

τ

B̄T
τ

0

⎤

⎥
⎥
⎦

T

,

B⊥T =

⎡

⎢
⎢
⎣

ĀT
τ I 0 0

B̄T
τ 0 I 0

0 0 0 I

⎤

⎥
⎥
⎦

, X = [

Mτ , Sτ , Rτ , Fτ

]T

Therefore, the condition (2) of Lemma 2.2 is equivalent to

⎡

⎢
⎢
⎣

−Pτ + ĀT
τ Pτ Āτ ĀT

τ Pτ B̄τ C̄T
τ

∗ B̄T
τ Pτ B̄τ − γ 2 I 0

∗ 0 −I

⎤

⎥
⎥
⎦

< 0 (17)

By Schur complement argument, it can be seen that the
inequality (17) is equivalent to condition (15), which com-
pletes the proof.

Remark 3.3 Mτ , Sτ , Rτ and Fτ act as slack variables to
provide extra degrees of freedom in the solution space of
the robust H∞ filtering problem. By setting Rτ = 0 and
Fτ = 0, Proposition 3.2 coincides with the results of The-
orem 1 in Ying and Rui (2011). Thanks to lack variable
matrices, we obtain an LMI in which the Lyapunov matrix
Pτ is not involved in any product with the system matrices.
This enables us to derive a robust H∞ filtering condition
that is less conservative than previous results due to the extra
degrees of freedom (see the numerical example at the end of
the paper).

4 H∞ Filter Design

In this section, amethodology is established for designing the
H∞ filter (7), that is, to determine the filter matrices (8) such
that the filtering error system (11) is asymptotically stable
with an H∞-norm bounded by γ .

Based on Proposition 3.2, we select for variables Pτ and
Mτ the following structures (Gao et al. 2008):

Pτ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Ph
1τ Ph

2τ 0 0

(Ph
2τ )

T Ph
3τ 0 0

0 0 Pv
1τ Pv

2τ

0 0 (Pv
2τ )

T Pv
3τ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Mτ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Mh
1τ Mh

4 0 0

Mh
2τ Mh

3 0 0

0 0 Mv
1τ Mv

4

0 0 Mv
2τ Mv

3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(18)

Then, let the slack variables Sτ , Fτ and Rτ take the following
structure (Lacerda et al. 2011)

Sτ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Sh1τ λ1Mh
4 0 0

Sh2τ λ2Mh
3 0 0

0 0 Sv
1τ λ3Mv

4

0 0 Sv
2τ λ4Mv

3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Rτ = [

Rh
τ , 0 , Rv

τ , 0
]

,

Fτ = [

Fh
τ , 0 , Fv

τ , 0
]

(19)

where Pτ , Mh
1τ , M

h
2τ , M

v
1τ , M

v
2τ , S

h
1τ , S

h
2τ , S

v
1τ , S

v
2τ , R

h
τ , Rv

τ ,

Fh
τ , Fv

τ depend on the parameter τ , while Mh
3 , Mh

4 , Mv
3 , and

Mv
4 are fixed for the entire uncertainty domain and, without

loss of generality, invertible; the scalar parameters λ1, λ2, λ3
and λ4 will be used as optimization parameters.

Remark 4.1 The structure of Sτ in (19) is different than the
one proposed in Ying and Rui (2011), in which S = δM , so
it depended on M . It is important to note that Sh1τ , S

h
2τ , S

v
1τ

and Sv
2τ of S in the new structure (19) are free slack variables

completely independent of M . This provides extra degrees
of freedom in the solution space for the LMI optimization
problems derived from Theorem 4.3.

Define matrices

Π = diag
{

I, (Mh
3 )−T (Mh

4 )T, I, (Mv
3 )−T (Mv

4 )T
}

,

P̄τ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P̄h
1τ P̄h

2τ 0 0

(P̄h
2τ )

T P̄h
3τ 0 0

0 0 P̄v
1τ P̄v

2τ

0 0 (P̄v
2τ )

T P̄v
3τ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= ΠTPτΠ

Applying congruence transformations to (16) by
diag{Π,Π, I, I } we get

Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ΠTΓ1Π ΠTΓ2Π ΠTΓ3 −ΠTFτ

ΠTΓ T
2 Π ΠTΓ4Π ΠTΓ5 ΠTΓ6

Γ T
3 Π Γ T

5 Π Γ7 B̄T
τ Fτ

−FT
τ Π Γ T

6 Π FT
τ B̄τ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

< 0 (20)

where

Γ1 = Pτ − Mτ − MT
τ , Γ2 = MT

τ Āτ − Sτ ,
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Γ3 = MT
τ B̄τ − Rτ , Γ4 = STτ Āτ + ĀT

τ Sτ − Pτ

Γ5 = STτ B̄τ + ĀT
τ Rτ , Γ6 = ĀT

τ Fτ + C̄T
τ ,

Γ7 = B̄T
τ Rτ + RT

τ B̄τ − γ 2 I.

We define

Nτ =
[

Nh
τ 0

0 Nv
τ

]

=
⎡

⎣

Mh
4 (Mh

3 )−1Mh
2τ 0

0 Mv
4 (Mv

3 )−1Mv
2τ

⎤

⎦ ,

U =
[

Uh 0

0 Uv

]

=
⎡

⎣

Mh
4 (Mh

3 )−T (Mh
4 )T 0

0 Mv
4 (Mv

3 )−T (Mv
4 )T

⎤

⎦ ,

Mτ =
[

Mh
τ 0

0 Mv
τ

]

=
[

Mh
1τ 0

0 Mv
1τ

]

, Rτ =
[

Rh
τ

Rv
τ

]

,

Qτ =
[

Qh
τ 0

0 Qv
τ

]

=
⎡

⎣

Mh
4 (Mh

3 )−1Sh2τ 0

0 Mv
4 (Mv

3 )−1Sv
2τ

⎤

⎦ ,

Sτ =
[

Shτ 0

0 Sv
τ

]

=
[

Sh1τ 0

0 Sv
1τ

]

, Fτ =
[

Fh
τ

Fv
τ

]

,

B̄ f =
[
B̄ f 1

B̄ f 2

]

=
⎡

⎣

(Mh
4 )TB f 1

(Mv
4 )TB f 2

⎤

⎦

C̄ f = [

C̄ f 1 C̄ f 2
]

= [

C f 1(M
h
3 )−T (Mh

4 )T C f 2(M
v
3 )−T (Mv

4 )T
]

,

Ā f =
[
Ā f 11 Ā f 12

Ā f 21 Ā f 22

]

=
⎡

⎣

Mh
4 A f 11(M

h
3 )−T (Mh

4 )T Mh
4 A f 12(M

v
3 )−T (Mv

4 )T

Mv
4 A f 21(M

h
3 )−T (Mh

4 )T Mv
4 A f 22(M

v
3 )−T (Mv

4 )T

⎤

⎦

[
Ā f B̄ f

C̄ f 0

]

=
⎡

⎢
⎣

Mh
4 0 0

0 Mv
4 0

0 0 I

⎤

⎥
⎦

[
A f B f
C f 0

]

×

⎡

⎢
⎢
⎣

(Mh
3 )−T (Mh

4 )T 0 0

0 (Mv
3 )−T (Mv

4 )T 0
0 0 I

⎤

⎥
⎥
⎦

(21)

With a new change of variables in inequality (16) by the
above matrices, we obtain the following result.

Proposition 4.2 Given the 2-D system in (1), for the fil-
ter in (7), an any fixed τ ∈ Γ , there exist a matrix Pτ =
diag{Ph

τ , Pv
τ } and filter matrices A f , B f ,C f satisfying (15)

if there exist matrices
P̄τ = diag

{

P̄h
τ P̄v

τ

}

> 0, Mτ = diag
{

Mh
τ Mv

τ

}

,
Sτ = diag

{

Shτ Sv
τ

}

, Nτ = diag
{

Nh
τ N v

τ

}

,
U = diag

{

Uh U v
}

, Qτ = diag
{

Qh
τ Qv

τ

}

,

Rτ = [

(Rh
τ )T (Rv

τ )T
]T

, Fτ = [

(Fh
τ )T (Fv

τ )T
]T
,

Ā f , B̄ f , C̄ f ,Λ1 = diag{λ1, λ3},Λ2 = diag{λ2, λ4} with
λ1, λ2, λ3 and λ4 real scalars satisfying:

�τ =

⎡

⎢
⎢
⎣

P̄τ − Ψ1τ Ψ2τ Ψ3τ −Υ T
1 FT

τ

∗ Ψ4τ Ψ5τ Ψ6τ

∗ ∗ Ψ7τ BT
τ F

T
τ

∗ ∗ ∗ −I

⎤

⎥
⎥
⎦

< 0 (22)

where

Ψ1τ = Υ T
1 [MT

τ + Mτ ]Υ1 + Υ T
1 NT

τ Υ2 + Υ T
2 NτΥ1

+Υ T
2 U

T[Υ1 + Υ2] + [Υ T
1 + Υ T

2 ]UΥ2.

Ψ2τ = Υ T
1 [Mτ Aτ + B̄ f Cτ ]Υ1 + Υ T

1 Ā f Υ2 + Υ T
2 Ā f Υ2

+Υ T
2 [Nτ Aτ + B̄ f Cτ ]Υ1 − Υ T

1 STτ Υ1 − Υ T
1 QT

τ Υ2

−Υ T
2 [Λ1U

TΥ1 + Λ2U
TΥ2].

Ψ3τ = Υ T
1 [Mτ Bτ + B̄ f Dτ ] + Υ T

2 [Nτ Bτ + B̄ f Dτ ]
−Υ T

1 RT
τ .

Ψ4τ = −P̄τ + Υ T
1 [Sτ Aτ + AT

τ S
T
τ ]Υ1 + Υ T

1 [Λ1 B̄ f Cτ

+CT
τ B̄

T
f Λ1]Υ1 + Υ T

2 [Qτ Aτ + Λ2 B̄ f Cτ ]Υ1

+[Υ T
2 Λ2 + Υ T

1 Λ1] Ā f Υ2 + Υ T
1 [AT

τ Q
T
τ

+CT
τ B̄

T
f Λ2]Υ2 + Υ T

2 ĀT
f [Λ2Υ2 + Λ1Υ1].

Ψ5τ = Υ T
1 Sτ Bτ + [Υ T

1 Λ1 + Υ T
2 Λ2]B̄ f Dτ + Υ T

2 Qτ Bτ

+Υ T
1 AT

τ R
T
τ .

Ψ6τ = Υ T
1 HT

τ − Υ T
2 C̄

T
f + Υ T

1 AT
τ F

T
τ .

Ψ7τ = Rτ Bτ + BT
τ R

T
τ − γ 2 I.

Moreover, under the above condition, the matrices for an
admissible robust H∞ filter are given by

[

A f B f

C f 0

]

=
[

U−1 0
0 I

] [

Ā f B̄ f

C̄ f 0

]

(23)

Proof We know the transfer function of the filter (7) from
y(i, j) to z̄(i, j) is given by

Tz̄y(z1, z2) = C f [diag{z1 In1 , z2 In2} − A f ]−1B f (24)

Substituting (21) into this transfer function and considering

Uh = Mh
4 (Mh

3 )−T (Mh
4 )T,Uv = Mv

4 (Mv
3 )−T (Mv

4 )T, (25)

we get

Tz̄y(z1, z2) = C̄ f [diag{z1 In1 , z2 In2 } −U−1 Ā f ]−1S−1 B̄ f . (26)

Therefore, the desired filter is given by (23) and the proof is
completed.

Before presenting the formulation of Proposition 4.2 using
homogeneous polynomially parameter-dependent matrices,
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some definitions and preliminaries are needed to represent
and handle products and sums of homogeneous polynomials.
First, we define the homogeneous polynomially parameter-
dependent matrices of degree g by

P̄τ =
J (g)
∑

j=1

τ
k1
1 τ

k2
2 . . . τ kss P̄k j (g), [k1, k2, . . . , ks] = K j (g)

(27)

Similarly,matricesMτ , Nτ , Rτ , Qτ , Sτ and Fτ take the same
form.

The notations in the above are explained as follows.Define
K (g) as the set of s-tuples obtained as all possible combina-
tion of [k1, k2, . . . , ks], with ki being nonnegative integers,
such that k1 + k2 +· · ·+ ks = g. K j (g) is the j-th s-tuples of
K (g) which is lexically ordered, j = 1, . . . , J (g). Since the
number of vertices in the polytope Γ is equal to s, the num-
ber of elements in K (g) as given by J (g) = (s+g−1)!

g!(s−1)! . These
elements define the subscripts k1, k2, . . . , ks of the constant
matrices
P̄k1,k2,...ks � P̄k j (g), Mk1,k2,...ks � Mk j (g),

Nk1,k2,...ks � Nk j (g), Rk1,k2,...ks � Rk j (g),

Qk1,k2,...ks � Qk j (g), Sk1,k2,...ks � Sk j (g),

Fk1,k2,...ks � Fk j (g), which are used to construct the homoge-
neous polynomial-dependent matrices P̄τ , Mτ , Nτ , Rτ Qτ ,

Sτ , Fτ in (27).
For each set K (g), define also the set I (g) with ele-

ments I j (g) given by subsets of i, i ∈ {1, 2, . . . , s},
associated with s-tuples K j (g) whose ki ’s are nonzero.
For each i, i=1,ldots,s, define the s-tuples Ki

j (g) as being
equal to K j (g) but with ki > 0 replaced by ki − 1.
Note that the s-tuples Ki

j (g) are defined only in the cases
where the corresponding ki is positive. Note also that,
when applied to the elements of K (g + 1), the s-tuples
Ki

j (g + 1) define subscripts k1, k2, . . . , ks of matrices

P̄k1,k2,...,ks , Mk1,k2,...,ks , Nk1,k2,...,ks , Qk1,k2,...,ks , Sk1,k2,...,ks ,
Fk1,k2,...,ks , Rk1,k2,...,ks , associated with homogeneous poly-
nomially parameter-dependent matrices of degree g. Finally,
define the scalar constant coefficientsβ i

j (g+1) = g!
(k1!k2!...ks !) ,

with [k1, k2, . . . , ks] ∈ Ki
j (g + 1).

The main result in this section is given in the following
Theorem 4.3.

Theorem 4.3 Given a stable 2-D system (1) and a scalar
γ > 0, a filter (7) exists such that the filtering error system
(11) is robustly asymptotically stable and satisfies (14). If
there exist matrices

P̄K j (g) = diag{P̄h
K j (g)

, P̄v
K j (g)} > 0,

MK j (g) = diag{Mh
K j (g)

, Mv
K j (g)},

RK j (g) = diag{Rh
K j (g)

, Rv
K j (g)},

NK j (g) = diag{Nh
K j (g)

, N v
K j (g)},

QK j (g) = diag{Qh
K j (g)

, Qv
K j (g)},

SK j (g) =
[

(ShK j (g)
)T (Sv

K j (g)
)T

]T
,

FK j (g) =
[

(Fh
K j (g)

)T (Fv
K j (g)

)T
]T

,

K j (g) ∈ K (g), j = 1, 2, ldots, J (g),

Ā f , B̄ f , C̄ f ,Λ1 = diag{λ1, λ3},Λ2 = diag{λ2, λ4}with
λ1, λ2, λ3 and λ4 real scalars such that the following LMIs
hold for all Kl(g + 1) ∈ K (g + 1), l=1,ldots,J(g+1):

�k =
∑

i∈Il (g+1)

⎡

⎢
⎢
⎢
⎣

Ψ1 Ψ2 Ψ3 −Υ T
1 FT

K j (g)

∗ Ψ4 Ψ5 Ψ6

∗ ∗ Ψ7 BT
i F

T
K j (g)

∗ ∗ ∗ −β i
j (g + 1)I

⎤

⎥
⎥
⎥
⎦

< 0 (28)

where

Ψ1 = P̄K j (g) − Υ T
1 [MT

K j (g) + MK j (g)]Υ1 − Υ T
1 NT

K j (g)Υ2

− Υ T
2 NK j (g)Υ1 − β i

j (g + 1)Υ T
2 U

T[Υ1 + Υ2]
− β i

j (g + 1)[Υ T
1 + Υ T

2 ]UΥ2.

Ψ2 = Υ T
1 [MK j (g)Ai + β i

j (g + 1)B̄ f Ci ]Υ1 − Υ T
1 STK j (g)Υ1

− Υ T
1 QT

K j (g)Υ2 + β i
j (g + 1)[Υ T

1 Ā f Υ2 + Υ T
2 Ā f Υ2]

+ Υ T
2 [NK j (g)Ai + β i

j (g + 1)B̄ f Ci ]Υ1

− β i
j (g + 1)Υ T

2 [Λ1U
TΥ1 + Λ2U

TΥ2].
Ψ3 = Υ T

1 [MK j (g)Bi + β i
j (g + 1)B̄ f Di ] + Υ T

2 [NK j (g)Bi

+ β i
j (g + 1)B̄ f Di ] − Υ T

1 RT
K j (g).

Ψ4 = −P̄K j (g) + Υ T
1 [SK j (g)Ai + AT

i S
T
K j (g)]Υ1

+ β i
j (g + 1)Υ T

1 [Λ1 B̄ f Ci + CT
i B̄

T
f Λ1]Υ1

+ Υ T
2 [QK j (g)Ai + β i

j (g + 1)Λ2 B̄ f Ci ]Υ1

+ β i
j (g + 1)[Υ T

2 Λ2 + Υ T
1 Λ1] Ā f Υ2 + Υ T

1 [AT
i Q

T
K j (g)

+ β i
j (g + 1)CT

i B̄
T
f Λ2]Υ2 + β i

j (g + 1)Υ T
2 ĀT

f [Λ2Υ2

+ Λ1Υ1].
Ψ5 = Υ T

1 SK j (g)Bi + β i
j (g + 1)[Υ T

1 Λ1 + Υ T
2 Λ2]B̄ f Di

+ Υ T
2 QK j (g)Bi + Υ T

1 AT
i R

T
K j (g).

Ψ6 = β i
j (g + 1)[Υ T

1 HT
i − Υ T

2 C̄
T
f ] + Υ T

1 AT
i F

T
K j (g).

Ψ7 = RK j (g)Bi + BT
i R

T
K j (g) − β i

j (g + 1)γ 2 I.

Then, the homogeneous polynomial matrices P̄τ , Mτ , Nτ ,

Rτ , Qτ , Sτ and Fτ assure (22) for all τ ∈ Γ .
Moreover, if theLMIs of (28) are fulfilled for agivendegree

ḡ, then the LMIs corresponding to any degree g > ḡ are also
satisfied.

Proof First part: Since P̄K j (g) > 0, K j (g) ∈ K (g), j =
1, ldots, J (g), we know that P̄τ defined in (27) is posi-
tive definite for all τ ∈ Γ . Now, note that � ∈ (22) for

123



J Control Autom Electr Syst (2016) 27:497–505 503

(Aτ , Bτ ,Cτ , Dτ , Hτ ) ∈ Ω and Pτ , Mτ , Nτ , Tτ , Rτ and Sτ

given by (27) are homogeneous polynomial matrix equations
of degree g + 1 that can be written as

�(τ) =
J (g+1)
∑

l=1

τ
k1
1 τ

k2
2 . . . τ kss �k (29)

Condition (28) imposed for all l, l = 1, ldots, J (g + 1)
assure that �τ < 0 for all τ ∈ Γ , and thus the first part is
proved.

Second part: Suppose that (28) are fulfilled for a certain
degree ĝ, that is, there exit J (ĝ) symmetric positive definite
matrix P̄K j (ĝ) and matrices MK j (ĝ) , NK j (ĝ) , QK j (ĝ) , SK j (ĝ) ,

RK j (ĝ) , FK j (ĝ) , j = 1, ldots, J (ĝ) such that P̄τ , Mτ , Nτ ,
Qτ , Sτ , Fτ and Rτ defined in (27) are homogeneous poly-
nomially parameter-dependent Lyapunov matrices assuring
�τ < 0. Then, the terms of the polynomial matrices
˜̄Pτ = (τ1, τ2, . . . , τs)P̄τ , M̃τ = (τ1, τ2, . . . , τs)Mτ , Ñτ =

(τ1, τ2, . . . , τs)Nτ , Q̃τ = (τ1, τ2, . . . , τs)Qτ , S̃τ =
(τ1, τ2, . . . , τs)Sτ , F̃τ = (τ1, τ2, . . . , τs)Fτ and R̃τ =
(τ1, τ2, . . . , τs)Rτ also satisfy the inequalities of Theo-
rem 4.3 corresponding to the degree ĝ + 1, which can be
obtained in this case by linear combination of the inequali-
ties of Theorem 4.3 for ĝ

Remark 4.4 When the scalars λ1, λ2, λ3 and λ4 of Theo-
rem 4.3 are fixed to be constants, then (28) is an LMIwhich is
effectively linear in the variables. To select values for these
scalars, optimization can be used (for example fminsearch
in MATLAB) to optimize some performance measure (for
example γ , the disturbance attenuation level).

Remark 4.5 As the degree g of the polynomial increases, the
conditions become less conservative since new free variables
are added to the LMIs. Although the number of LMIs is
also increased, each LMI becomes easier to be fulfilled due
to the extra degrees of freedom provided by the new free
variables; as a consequence, better H∞ guaranteed costs can
be obtained.

5 Numerical Example

Consider the following 2-D static field model described by
differential equation (El-Kasri et al. 2012):

η(i + 1, j + 1) = τ1η(i, j + 1) + τ2η(i + 1, j)

− τ1τ2η(i, j) + ω1(i, j) (30)

where η(i, j) is the state of the random field of spacial coor-
dinate (i, j), ω1(i, j) is a noise input, τ1,τ2 are the vertical
and horizontal correlative coefficients of the random field,

Table 1 H∞ norms at the vertices (g = 0)

τ1 0.15 0.15 0.45 0.45

τ2 0.35 0.85 0.35 0.85

γ 1.6622 1.3850 1.9632 1.4972

respectively, satisfying τ 21 < 1 and τ 22 < 1. The output is
then:

y(i, j) = τ1η(i, j + 1) + (1 − τ1τ2)η(i + 1, j)

+ω2(i, j) (31)

where ω2(i, j) is the measurement noise. The signal to be
estimated is

z(i, j) = ηi, j (32)

As in Du et al. (2002), define xh(i, j) = η(i, j + 1) −
τ2η(i, j), xv(i, j) = η(i, j) and ω(i, j) = [ωT

1 (i, j)
ω2(i, j)T]T. It is easy to see (30)–(32) can be converted into
a 2D Roesser model as follows:

[

xh(i + 1, j)
xv(i, j + 1)

]

=
[

τ1 0
1 τ2

] [

xh(i, j)
xv(i, j)

]

+
[

1 0
0 0

]

w(i, j)

y(i, j) = [

τ1 1
]
[

xh(i, j)
xv(i, j)

]

+ [

0 1
]

w(i, j)

z(i, j) = [

0 1
]
[

xh(i, j)
xv(i, j)

]

(33)

where 0.15 ≤ τ1 ≤ 0.45, 0.35 ≤ τ2 ≤ 0.85. The uncertain
2-D system corresponds to a four vertex polytopic system.

The LMIs (28) were solved using Yalmip and SeDuMi in
MATLAB 7.6, for increasing values of the degree g:
For degree g = 0, the proposed optimization gives λ1 =
−0.1064, λ2 = 0.0228, λ3 = 0.0027, and λ4 − 0.0002. For
these scalars γ = 2.4342 and the corresponding filter matri-
ces are:

A f =
[

0.3614 0.0000
0.1538 −0.0000

]

, B f =
[−0.0920

−0.8213

]

,

C f = [−0.0605 −0.9868
]

The H∞ norms obtained with this filter at the vertices of the
uncertainties are given in Table 1.

On the other hand, when g = 1, λ1 = −20.3646, λ2 =
0.0662, λ3 = 0.6369 and λ4−0.1645, the disturbance atten-
uation obtained is γ = 1.8043 and the corresponding filter
matrices are:

A f =
[

0.6476 1.9416
−0.0151 0.2548

]

, B f =
[

4.0789
−1.2683

]

,
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Table 2 H∞ norms at the vertices (g = 1)

τ1 0.15 0.15 0.45 0.45

τ2 0.35 0.85 0.35 0.85

γ 1.5099 1.5147 1.7851 1.6459

Table 3 H∞ norms at the vertices (g = 2)

τ1 0.15 0.15 0.45 0.45

τ2 0.35 0.85 0.35 0.85

γ 1.5096 1.5108 1.7838 1.6481

Table 4 Comparison with previous results

Degree g Theorem 4.3 Algo 21
(Gao and
Li 2014)

Th 1
(Ying and
Rui 2011)

Th 3
(Gao et al.
2008)

0 2.4342 2.4356 2.4360 2.4373

1 1.8043 1.8586 1.8621 1.8627

2 1.8042 1.8295 1.8505 1.8290

C f = [

0.0045 −0.4699
]

.

The H∞ norms at the vertices are now given in Table 2.
For degree g = 2, λ1 = −3.3940, λ2 = 0.0696, λ3 =

0.6291 and λ4 = −0.1640, γ = 1.8042 and the correspond-
ing filter matrices are:

A f =
[

0.6360 0.2615
−0.1152 0.2544

]

, B f =
[

0.5458
−1.2617

]

,

C f = [

0.0338 −0.4725
]

For the filter designed with g = 2, the actual H∞ norms
calculated at the four extreme plants are presented in Table 3:
it can be seen that all of them are below the guaranteed bound
1.8042.

In summary, it has been shown that less conservative filter
designs are achieved as g growsby applying the polynomially
parameter-dependent method proposed here.

A comparison with the results obtained with the tech-
niques proposed in Gao and Li (2014), Ying and Rui (2011)
and Gao et al. (2008) is presented in Table 4, showing the
improvement obtained with the methodology proposed in
this paper.

The number of LMIs, the number of scalar variables and
the cpu time to solve the LMIs are compared in the following
Table 5. It must be pointed out that for this example, increas-
ing the polynomial order to g > 2 does not improve the noise
reduction properties.

Table 5 The numerical complexity obtained by Theorem4.3 with L
is the number of LMIs rows, V is the number of scalar variables, N is
number of LMIs and Time(s) is the cpu time to solve the LMIs

Degree g N V L Time(s)

0 4 31 49 0.3420

1 10 91 127 0.4920

2 20 211 261 0.8080

6 Conclusion

This article has investigated the H∞ filtering problem for
2-D discrete systems described by uncertain Roesser mod-
els. A new condition for H∞ performance analysis has been
proposed in the LMI framework, by using a Lyapunov func-
tion approach and adding some slack matrix variables with
specific structures that make possible to reduce the conser-
vatism of previous works. A numerical example illustrate the
effectiveness of the proposed method. As future research, we
will use this technique in nonlinear systems based on fuzzy
dynamic model and the SOS (Sum Of Square) Technique in
this systems.
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