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Abstract Adaptive sliding mode control schemes are pro-
posed for the control problemof amagnetic levitation system.
Two control laws based on sliding mode concepts are devel-
oped to deal with this problem. For the first controller, an
adaptive slidingmode controller is designed to control amag-
netic levitation system. The other controller is also developed
by combining a fast terminal sliding mode control method
with an adaptive technique. Both controllers can guarantee
finite-time reachability of a given desired position of a mag-
netic levitation system. The stability of the controlled system
under presented controllers is proved by using the Lyapunov
stability theorem. An example of a magnetic levitation sys-
tem is given and simulation results are included to verify the
performance of the proposed controllers.

Keywords Sliding mode control · Adaptive control · Fast
terminal sliding mode · Magnetic levitation system

1 Introduction

Magnetic levitation systems have practical significance in
many engineering applications such as high-speed maglev
passenger trains, frictionless bearings, levitation of wind tun-
nel models, vibration isolation of sensitive machinery and
levitation of molten metal in induction furnaces. The maglev
systems are usually open-loop unstable and are modeled by
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highly nonlinear differential equations which present dif-
ficulties in controlling these systems. Therefore, it is an
important task to construct high-performance feedback con-
trollers for regulating the position of the levitated object.

In recent years, many techniques have been reported in the
literature for controlling magnetic levitation systems. The
feedback linearization technique has been used to design
controllers for magnetic levitation systems (Barie and Chias-
son 1996; Hajjaji and Ouladsine 2001; Trumper et al. 1997).
Other types of nonlinear control approaches have been pro-
posed (see, e.g., Green and Craig 1998; Huang et al. 2000;
Yang and Tateishi 1998; Zhao and Thornton 1992). Robust
control methods have also been applied to control magnetic
levitation systems Fujita et al. (1990), Fujita et al. (1995).
Control laws based on phase space Zhao et al. (1999), lin-
ear controller design El Rifai and Youcef-Toumi (1998), the
gain scheduling approach Kim and Kim (1994) and natural
network techniques Lairi and Bloch (1999) have also been
used to control magnetic levitation systems.

Sliding mode control (SMC) Hung et al. (1993), Yong
et al. (1999), Zinober (1994) is a powerful nonlinear control
method that is well known for its robustness. Sliding mode
control gets attention owing to its ability to eliminate uncer-
tainties and external disturbances. The SMC design consists
of two parts, the continuous equivalent control and discontin-
uous switching control. To satisfy the reachability conditions
the switching gain should be larger than the upper bounds of
the model uncertainty and disturbance.

Recently, terminal sliding mode control (TSMC) has been
developed Tang (1998),Wu et al. (1998). Compared with lin-
ear hyperplane-based sliding modes, terminal sliding mode
offers some superior properties such as fast, finite-time con-
vergence. TheTSMC is particularly useful for high-precision
control as it speeds up the convergence rate near an equilib-
rium point. ASMC and AFTSMC have been successfully
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applied to many practical control systems (see. e.g, Wu et al.
1998; Man et al. 1999; Keleher and Stonier 2001; Feng et al.
2001; Keleher and Stonier 2001; Li et al. 2013; Yu and Man
2002). Adaptive terminal sliding mode control (ATSMC) is
proposed in Man et al. (1999), Keleher and Stonier (2001),
Feng et al. (2001), Keleher and Stonier (2001) to control
a rigid robot manipulator. This control method relaxes the
need of the known upper bound of parameter uncertainties
and disturbance. Later, Yu and Man (2002), Almutairi and
Zribi (2006) presented the fast terminal sliding mode control
(FTSMC). Using FTSMC scheme, the system state variables
can converge fast to the equilibrium point in finite time Wu
et al. (1998). Evidently, it is of theoretical importance to
design the FTSMC. Tao and Taur (2004) developed a new
adaptive fuzzy terminal sliding mode controller for linear
systems with mismatched time varying uncertainties. Adap-
tive nonsigular FTSMC has been used in Li et al. (2013)
for application to electromechanical actuator. However, the
AFTSMC law has not been developed for a magnetic levita-
tion system.

The main contributions of this paper are that new ASMC
and AFTSMC laws for a magnetic levitation system are
designed to achieve a fast convergence rate and high accuracy
of results. To the best knowledge of the authors, AFTSMC
has not previously been used to develop a controller for a
magnetic levitation system. In the controller designs, we
assume that the disturbance d is taken into account [(see
Eq. (5)]. A rigorous Lyapunov function is used to ensure
the finite-time stability of the closed-loop system. Moreover,
the proposed control methods have adaptive laws which can
estimate the upper bound of a disturbance.

The paper is organized as follows. In Sect. 2, the model
of the magnetic levitation system is presented. Section 3
presents a sliding mode controller design for the magnetic
levitation system. Section 4 proposes an adaptive sliding
mode control (ASMC) algorithm to solve the same control
problem as in Sect. 3. The sliding manifold is chosen and
the sliding control law is studied and a proof of finite-time
convergence is given by using the Lyapunov stability the-
ory. Section 5 gives the design of AFTSMC. The finite time
reachability to the designed state is also ensured by the Lya-
punov stability theory. In Sect. 6, numerical simulations on a
magnetic levitation system are presented to demonstrate the
usefulness of the proposed controllers. In Sect. 7, we present
conclusions.

2 Model of the Magnetic Levitation System

The model of a magnetic levitation system considered in
this paper consists of a ferromagnetic ball suspended in a
voltage-controlled magnetic field. Only the vertical motion
is considered. The objective is to keep the ball at a reference

level. The dynamic model of the system can be written as
Barie and Chiasson (1996), AL-Muthairi and Zribi (2004)

dp

dt
= v, Ri + d(L(p)i)

dt
= e,

m
dv

dt
= mgc − C

(
i

p

)2

, (1)

where p is the ball’s position, v represents the ball’s veloc-
ity, i is the current in the coil of the electromagnet, e denotes
the applied voltage, R denotes the coil’s resistance, L repre-
sent the coil’s inductance, gc is the gravitational constant, C
denotes the magnetic force constant and m is the mass of the
levitated ball.

The inductance L is considered as a nonlinear function of
the ball’s position p. The approximation

L(p) = L1 + 2C

p
(2)

will be used, where L1 is a parameter of the system. Let
us define x1 = p, x2 = v, x3 = i, u = e, and let
x = (x1 x2 x3)T be the state vector. Thus, the state-space
model of the magnetic levitation system is expressed as AL-
Muthairi and Zribi (2004)

ẋ1 = x2,

ẋ2 = gc − C

m

(
x3
x1

)2

, (3)

ẋ3 = − R

L
x3 + 2C

L

(
x2x3
x12

)
+ 1

L
u.

The objective of the proposed control schemes is to drive the
states x1, x2 and x3 to their desired constant values x1d , x2d
and x3d , respectively.

Let z1 = x1− x1d , z2 = x2− x2d and z3 = gc− C
m

(
x3
x1

)2
,

where x1d , x2d , and x3d are the desired position, velocity and
current. Here, we assume that x2d = 0, x3d = √

gcm/Cx1d
and the disturbance d is taken into account.

Therefore, the time derivatives of z1, z3 and z3 can be
obtained as

ż1 = ẋ1 − ẋ1d = z2

ż2 = ẋ2 − ẋ2d = z3

and

ż3 = −2C

m

(
x3
x1

) (
x1 ẋ3 − x3 ẋ1

x21

)
+ d = −2C

m

x3
x31

×
(

− R

L
x1x3 + 2C

L

(
x2x3
x21

)
+ 1

L
x1u − x3x2

)
+ d
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= 2CRx23
mLx21

− 4C2x2x23
mLx41

− 2Cx3
mLx21

u + 2Cx23 x2
mx31

+ d

= −2

Lx1

(
Cx3
mx1

)
u + 2

(
C

m

(
x3
x1

)2
)

×
[
R

L
− 2Cx2

Lx21
+ x2

x1

]
+ d

= −2

L(z1 + x1d)

√
c

m
(gc − z3)u + 2(gc − z3)

×
[(

1 − 2C

L(z1 + x1d)

)
z2

z1 + x1d
+ R

L

]
+ d

= f (z) + g(z)u + d,

where f (z) and g(z) are given by

f (z) = 2(gc − z3)

(
1 − 2C

L(z1 + x1d)

)
z2

(z1 + x1d)
+ R

L
,

g(z) = −2

L(z1 + x1d)

√
C

m
(gc − z3). (4)

Now, suppose that the disturbance d is added into the
system.We consider the following nonlinear change of coor-
dinates AL-Muthairi and Zribi (2004)

ż1 = z2,

ż2 = z3, (5)

ż3 = f (z) + g(z)u + d,

Note that f (z) and g(z) correspond in the original coordinate
to the following functions.

f1(x) = 2C

m

x23
x21

((
1 − 2C

Lx1

)
x2
x1

+ R

L

)

= 2C

m

((
1 − 2C

Lx1

)
x2x23
x31

+ R

L

x23
x21

)

g1(x) = − 2Cx3
Lmx21

where f1(x) = f (z) and g1(x) = g(z). Let the output of the
system be defined as

y = z1 = x1 − x1d . (6)

Note that the equilibrium point for the system (5) is z1 =
z2 = z3 = 0.

The transformation is normally required to change the
equilibrium point from xd to the origin. The stability prop-
erty of the transformed system is the same with the original
system. This is the standard step to analysis the stability of a
nonlinear system by using the Lyapunov stability theory.

The design of SMC schemes for the magnetic levitation
system will be studied in the next sections.

We now present a basic lemma that we will use in the
following sections.

Lemma 1 (Bhat and Berstein 2000) Consider the system

ẋ = F(x), F(0) = 0, x ∈ Rn, x(0) = x0, (7)

where F : D → Rn is continuous on an open neighborhood
D of the origin x = 0. Suppose that there is a continuous
function V (x) : D → R defined on a neighborhood U ⊂ D
of the origin such that the following conditions hold:

1. V (x) is positive definite on D ⊂ Rn;
2. there exist real numbers k > 0 and λ ∈ (0, 1), such that

V̇ (x) + kV λ(x) ≤ 0, x ∈ U/{0}. (8)

Then, system (7) is locally finite-time stable. The settling time,
depending on the initial state x(0) = x0, satisfies

T (x0) ≤ V (x0)1−λ

k(1 − λ)
(9)

for all x0 in someopen neighborhood of the origin. If D = Rn

and V (x) is also unbounded, system (7) is globally finite-time
stable.

3 Design of a Sliding Mode Control

The design of a SMC scheme for the magnetic levitation
system is presented in this section. The first step in designing
anSMCscheme for the system is to design the sliding surface.
Let the sliding surface s be

s = z3 + λ1z2 + λ2z1, (10)

where λ1 and λ2 are positive constants. The sliding mode
controller is designed as

u = − 1

g(z)
( f (z) + λ1z3 + λ2z2 + w sign(s)), (11)

where sign(·) denotes the signum function andw is a positive
constant.

For the original system (3), the sliding surface (10) and
the controller (11), may be written as

s = gc − C

m

(
x3
x1

)2

+ λ1x2 + λ2x1, (12)
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u = − 1

g1(x)

×
(
f1(x)+λ1

(
gc−C

m

(
x3
x1

)2
)

+λ2x2 + wsign(s)

)
,

(13)

Assumption 2 The disturbance d in (5) is unknown but
bounded, i.e., |d| ≤ D where D is a positive constant.

Theorem 3 If Assumption 2 is valid, then the system (5) con-
verges to the origin in finite time under the feedback law (11)
with the sliding surface (10).

Proof Consider the following Lyapunov function

V1 = 1

2
s2. (14)

By applying (5), (10) and (11), we get

V̇1 = sṡ

= s(ż3 + λ1 ż2 + λ2 ż1)

= s( f (z) + g(z)u + d + λ1z3 + λ2z3 + λ2z2). (15)

Substituting (11) into (15), we obtain

V̇1 = s

(
f (z) + g(z)

(
− 1

g(z)
( f (z) + λ1z3 + λ2z2

+ wsign(s) + d)

)
+ λ1z3 + λ2z3 + λ2z2

)

= −s(w sign(s) − d)

= −w|s| + d s

≤ −w|s| + D |s|
= −(w − D)|s|. (16)

Letting γ = w − D and selecting w > D, we obtain that V̇1
is negative definite. Using (14), one has |s| = √

2V1 and it
follows that

V̇1 ≤ −√
2γ V

1
2
1 . (17)

By Lemma 1, the sliding surface s = 0 is achieved in finite
time. Then the system trajectories move toward the sliding
surface (10) to the origin in finite time. ��

4 Design of an Adaptive Sliding Mode Control

To relax the requirement of an upper bound on the uncertain-
ties or disturbance, we design an adaptive SMC law for the
system (5).

The proposed adaptive slidingmode controller is designed
as

u = − 1

g(z)
( f (z) + λ1z3 + λ2z2 + Ω̂ sign(s)), (18)

where Ω̂ is an adjustable gain and s is the sliding surface
defined in (10).

For the original system (3), the controller (18) may be
written as

u = − 1

g1(x)

(
f1(x) + λ1

(
gc − C

m

(
x3
x1

)2
)

+ λ2x2 + Ω̂sign(s)

)
, (19)

Let the adaptive law be given as

˙̂
Ω = 1

α
|s|, (20)

where Ω̂ is the estimated value of Ω̄ , and α > 0 is denoted
as an adaptive gain. The compensated control with adaptive
algorithm is designed as follows

vs = −Ω̂(t)sign(s), (21)

and the estimation error is defined as

Ω̃(t) = Ω̂(t) − Ω̄. (22)

The adaptation speed of Ω̂(t) can be tuned by α. Choosing
a suitable adaptation gain α can also effectively avoid a high
level of control activity in the reaching phase. In the follow-
ing, the validity of the compensated control is confirmed by
using Lyapunov theory.

Theorem 4 Consider the sliding variable dynamics (10)and
the control law (18) with the adaptive law (20); then, the
gain Ω̂(t) has an upper bound; that is, there exists a positive
constant Ωd so that

Ω̂(t) ≤ Ωd , ∀t > 0. (23)

Proof Choose a Lyapunov function cadidate as

V2 = 1

2
s2 + 1

2
αΩ̃2. (24)

By taking the time derivative of V2 , one obtains

V̇2 = sṡ + αΩ̃
˙̃

Ω

= s( f (z) + g(z)u+d+λ1z3+λ2z2)+α(Ω̂ − Ω̄)
1

α
|s|
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= s

(
f (z) + g(z)

(
− 1

g(z)
( f (z) + λ1z3 + λ2z2 +

Ω̂sign(s)

)
+ d + λ1z3 + λ2z2

)
+ α(Ω̂ − Ω̄)

1

α
|s|

= −sΩ̂sign(s) + sd + (Ω̂ − Ω̄)|s|
≤ −Ω̂|s| + sd + Ω̂|s| − Ω̄|s|
≤ |s||d| − Ω̄|s|
= |s|(|d| − Ω̄) ≤ 0. (25)

Using Lyapunov stability theory, the estimated gain Ω̂ is
bounded, that is, there exists a positive constantΩd such that
Ω̂ ≤ Ωd , ∀t > 0 . This completes the proof. ��
Theorem 5 The system (5) converges to the origin in finite
time under the feedback law (18) with the adaptive law (20)
and the sliding surface (10) .

Proof Consider the following Lyapunov function

V3 = 1

2
s2 + 1

2
α1(Ω̂ − Ωd)

2
. (26)

By taking the time derivative of V3, one obtains

V̇3 = sṡ + α1(Ω̂ − Ωd)
˙̂

Ω

= s( f (z) + g(z)u + d + λ1z3 + λ2z2)

+α1(Ω̂ − Ωd)
1

α
|s|. (27)

Substituting (18) into (27), one has

V̇3 = s( f (z)+g(z)

(
− 1

g(z)

(
f (z)+λ1z3+λ2z2+Ω̂sign(s)

))

+ d + λ1z3 + λ2z2) + α1(Ω̂ − Ωd)
1

α
|s|

= s(−Ω̂sign(s) + d + α1

α
|s|(Ω̂ − Ωd)

≤ −|s|Ω̂ + |s|Ω̄ + α1

α
|s|(Ω̂ − Ωd)

= −√
2(Ω̂ − Ω̄)

|s|√
2

+ √
2
α1

α
|s| (Ω̂ − Ωd)√

2

≤ −√
2(Ω̂ − Ω̄)

|s|√
2

− √
2
α1

α
|s| |Ω̂ − Ωd |√

2
, (28)

Let β1 = Ω̂−Ω̄ and β2 =
√

α1

α
|s|. Therefore, (28) becomes

V̇3 ≤ −min(
√
2β1,

√
2β2)

(
|s|√
2

+ √
α1

|Ω̂ − Ωd |√
2

)

≤ −min(
√
2β1,

√
2β2)

√
(
|s|√
2
)2 + (

√
α1

|Ω̂ − Ωd |√
2

)2

= −βV
1
2
3 , (29)

where β = min(
√
2β1,

√
2β2). Therefore, by Lemma 1, the

sliding surface s = 0 is achieved in finite time.

5 Design of an Adaptive Fast Terminal Sliding
Mode Control

In this section, we design a fast terminal slidingmode control
which does not require upper bounds on the uncertainties or
disturbance (5).

Let the new sliding surface be Wu et al. (2014)

σ = Ṡ + k1S
a
b + k2S, (30)

where a, b are positive odd numbers with b > a and

S = z2 + λ1z1 + λ2

∫
z1dt. (31)

The proposed adaptive fast terminal sliding mode control
is

u = − 1

g(z)

[
f (z) + λ1z3 + λ2z2 + k1

a

b
S

a
b −1 Ṡ + k2 Ṡ

+ μ̂σ + λ̂sign(σ)
]
, (32)

where μ̂ and λ̂ are adjustable gain constants and s is the
sliding surface design in (30). For the original system (3),
system (31) and the controller (32) may be written as

S = x2 + λ1(x1 + x1d) + λ2

∫
(x1 + x1d)dt, (33)

u = − 1

g1(x)

[
f1(x) + λ1

(
gc − C

m

(
x3
x1

)2
)

+ λ2x2 + k1
a

b
S

a
b −1 Ṡ + k2 Ṡ + μ̂σ + λ̂sign(σ)

]
. (34)

In most cases of control design, controller gains remain
constant, and they have been selected by using the conser-
vative approach. But, in an uncertain environment, upper
bounds are not known very precisely. Thus, the constant gain
approach may apply excessive gain which may be a reason
for chattering in control input.

Therefore, we consider adaptive laws μ̂(t) and λ̂(t)
defined as follows:

˙̂μ =
⎧⎨
⎩

1

ρ
σ 2, if |σ | ≥ 	

	, if |σ | < 	

(35)

˙̂
λ =

⎧⎨
⎩

1

η
|σ |, if |σ | ≥ 	

	, if |σ | < 	

(36)
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and where the estimation error is defined as

μ̄(t) = μ̂(t) − μ (37)

λ̄(t) = λ̂(t) − λ. (38)

Here μ̂ and λ̂ are the estimates ofμ and λ, respectively, ρ and
η are the adaptation parameters used to control the adaptation
speed and 	 is a design constant used to avoid unbounded
growth of the adaptive gain.

Theorem 6 Consider the sliding surface (30)and the control
law (32) with adaptive gains (35) and (36); then, the gains
μ̂(t) and λ̂(t) have upper bounds; that is, there exist positive
constants μ and λ such that

μ̂(t) ≤ μ, ∀ t > 0. (39)

λ̂(t) ≤ λ, ∀ t > 0. (40)

Proof Choose a Lyapunov function candidate as

V4 = 1

2
σ 2 + 1

2
ρμ̄2 + 1

2
ηλ̄2 (41)

By taking the time derivative of V4, one obtains

V̇4 = σ σ̇ + ρμ̄ ˙̂μ + ηλ̄
˙̂
λ

= σ
(
f (z) + g(z)u + d + λ1z3 + λ2z2 + k1

a

b
S

a
b −1 Ṡ

+ k2σ̇ + μ̂σ
)

+ ρμ̄
1

ρ
s2 + ηλ̄

1

η
|s|

= σ

(
f (z) + g(z)

(
− 1

g(z)

[
f (z) + λ1z3 + λ2z2

+ k1
a

b
S

a
b−1 Ṡ+k2 Ṡ+μ̂σ +λ̂sign(σ )

] )
+d+λ1z3

+ λ2z2 + k1
a

b
S

a
b −1 Ṡ + k2σ̇ + μ̂σ

)

+ ρμ̄
1

ρ
s2 + ηλ̄

1

η
|s|

≤ − μ̂σ 2 − λ̂|σ | + μ̄σ 2 + λ̄|σ | + d|σ |
= − μ̂σ 2 − λ̂|σ | + (μ̂ − μ)σ 2 + (λ̂ − λ)|σ | + d|σ |.

Since μ > 0 and λ > 0, the above equation can be rewritten
as

V̇4 = −μσ 2 − λ|σ | + d|σ | = −μσ 2 − |σ |(λ − d) ≤ 0.

(42)

��
Clearly V̇4 < 0 when σ �= 0 and λ > d. Using Lyapunov
stability theory, the estimated gain μ̂ and λ̂ are bounded; that
is, there exists a positive constant μ and λ such that μ̂ ≤ μ

and λ̂ ≤ λ,∀t > 0. This completes the proof.

Theorem 7 The system (5) converges to the origin in finite
time under the feedback law (32) and adaptive gains defined
in (35), (36) and the sliding surface (30).

Proof Consider the Lyapunov function

V5 = 1

2
σ 2 + 1

2
ω1μ̄

2 + 1

2
ω2λ̄

2, (43)

where μ̄ = μ̂(t) − μ and λ̄ = λ̂(t) − λ represent the adapta-
tion errors,α1 > 0, α2 > 0 andω1, ω2 are positive constants.

Now, finding the first time derivative of the Lyapunov
function, one obtains

V̇5 = σ σ̇ + ω1μ̄ ˙̂μ + ω2λ̄
˙̂
λ (44)

By applying (5) ,(10), (32), (39) and (40), we get

V̇5 − σ
(
f (z)+g(z)u+d+λ1z3+λ2z2+k1

a

b
S

a
b −1 Ṡ+k2 Ṡ

)

+ω1

ρ
σ 2(μ̂ − μ)+ ω2

η
|σ |(λ̂ − λ)

= σ

(
f (z)+g(z)

(
− 1

g(z)

[
f (z)+λ1z3+λ2z2+k1

a

b
S

a
b −1 Ṡ

+ k2 Ṡ+λ̂sign(σ )
])

+d+λ1z3+λ2z2+k1
a

b
S

a
b −1 Ṡ

+ k2 Ṡ+ ω1

ρ
σ 2(μ̂ − μ)+ ω2

η
|σ |(λ̂ − λ)

)

= − μ̂σ 2 − λ̂σ sign(σ )+σd+ ω1

ρ
σ 2(μ̂ − μ)+ ω2

η
|σ |(λ̂ − λ))

≤ − μ̂σ 2 − λ̂|σ |+|σ |d+ ω1

ρ
σ 2(μ̂ − μ)+ ω2

η
|σ |(λ̂ − λ) (45)

With μ > 0, we add μσ 2 to the right hand side of (45).
Now, we obtain

V̇5 ≤ ω1

ρ
σ 2(μ̂ − μ) + ω2

η
|σ |(λ̂ − λ) − λ|σ | + λ|σ | + μσ 2

− μ̂σ 2 − λ̂|σ | + |σ |d
= ω1

ρ
σ 2(μ̂ − μ) + ω2

η
|σ |(λ̂ − λ) − |σ |(λ̂ − λ)

− σ 2(μ̂ − μ) − |σ |λ + |σ |d
≤ −(λ − d)|σ | + μ̄(

ω1

ρ
σ 2 − σ 2) + λ̄(

ω2

η
|σ | − |σ |)

Using Theorem 6, we have μ̄ < 0 and λ̄ < 0 and it follows
that

V̇5 ≤ −(λ − d)|σ | − |μ̄|(ω1

ρ
σ 2 − σ 2) − |λ̄|(ω2

η
|s| − |s|)

≤ −|σ |ζ1 − |μ̄|ζ2 − |λ̄|ζ3
≤ −√

2
|σ |√
2
ζ1 − √

2ω1|μ̄| ζ2√
2ω1

− √
2ω2|λ̄| ζ3√

2ω2
,

(46)
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where ζ1 = λ − d, ζ2 = ω1

ρ
σ 2 − σ 2 and ζ3 = ω2

η
|σ | − |σ |.

Therefore, (46) becomes

V̇5 ≤ −min

(√
2ζ1,

√
2

ω1
ζ2,

√
2

ω2
ζ3)(

|σ |√
2

+
√

ω1

2
|μ̄|

+
√

ω2

2
|λ̄|

)
≤ −ζV

1
2
5 (47)

where ζ = min
(√

2ζ1,
√

2
ω1

ζ2,

√
2
ω2

ζ3

)
> 0, for

1

ω1
<

1

ρ

and
1

ω2
<

1

η
. Therefore, by using Lemma 1, we have proved

that σ(t) = 0 is achieved in finite time.

6 Simulation Result

The parameters of the magnetic levitation system are taken
from AL-Muthairi and Zribi (2004). The coil’s resistance
R = 28.7
, the inductance L1 = 0.65H, the gravita-
tional constant gc = 9.81 ms−2, the magnetic force constant
C = 1.410 × 10−4 and the mass of the ball m = 11.87
g. Numerical simulations are performed to compare the

Fig. 1 Time histories of positions

Fig. 2 Time histories of velocities

ASMC (18) and AFTSMC (32) with the dynamic sliding
mode (DSM) control presented in AL-Muthairi and Zribi
(2004).The method in AL-Muthairi and Zribi (2004) seems
to work well of the magnetic levitation system, so we choose
this method to compare the performance with our proposed
control laws. In the simulations, the disturbance d in (5) is
set as d = 0.2sin(0.2t) V. The control parameters and initial
conditions for all controllers are given in Table 1.

As shown in Fig. 1, for AFTSMC the trajectory of position
converges to the desired position (x1d = 0.009m.) in finite
time, while for ASMC and DSMC, position states are forced
to the desired position with lower accuracy. Similarly, from
Fig. 2 we can see that the trajectory of velocity obtained by
AFTSMC converges to zero with higher accuracy than either
ASMC or DSMC. Figure 3 shows that AFTSMC gives fast
convergence to the sliding surface in finite time. For DSMC,
the sliding surface s = 0 is achievedbutmore slowly andwith
a large error.ASMCgives a lower accuracyof the sliding state
and reaches itmore slowly thanAFTSMC.As shown inFig. 4
the control response obtained by AFTSMC is smooth and
properly reaches zero. In view of this simulation, AFTSMC
gives better results when compared with ASMC and DSMC.

Table 1 Control parameters and
initial conditions

Control scheme Control gains Initial conditions

ASM controller α = 0.015, λ1 = 5, x1(0) = 0.033, x2(0) = 0,

λ2 = 100, w = 50 x3(0) = 0.6818, ˙̂
Ω(0) = 0

AFTSM controller a = 5, b = 7, k1 = 1.05, k2 = 5, x1(0) = 0.033, x2(0) = 0,

λ1 = 21, λ2 = 20, ρ = 0.5, η = 10 x3(0) = 0.6818, ˙̂μ = 0, ˙̂
λ = 0

DSM controller m1 = 20,m2 = 15,m3 = 10, x1(0) = 0.033, x2(0) = 0,

λ1 = 9.1, λ2 = 5.3, Γ = 10, w = 3 x3(0) = 0.6818, x4(0) = 0.1
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Fig. 3 Time histories of sliding surface

Fig. 4 Time histories of control responses

7 Conclusion

New AFTSM and ASM controllers have been developed for
the control of a magnetic levitation system. It is found that
the combination of an adaptive control method and FTSMC
gives good tracking results and achieves fast convergence
to the sliding surface. Using Lyapunov stability theory, we
have proved that the new controllers drive the states of a
magnetic levitation system to desired values in finite time.
Numerical simulations have been presented to demonstrate
the effectiveness of the proposed control methods.
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