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Abstract This paper presents an experimental investiga-
tion concerning the use of robust model predictive control
(RMPC) for a two-mass–spring system. This benchmark sys-
tem has been employed as a numerical simulation example in
several works involving RMPC formulations, but an actual
experimental implementation has never been reported. Par-
ticular care was taken to solve the optimization problemwith
linear matrix inequalities within a small sampling period
(15 ms). A discussion concerning the discretization of the
uncertain model is presented to justify the use of the exact
zero-order hold method. More specifically, the resulting loss
of polytopic structure was found to be negligible with the
adopted sampling period. Three experimental scenarios were
considered, with different ranges for the uncertain spring
stiffness coefficient. In all cases, the control taskwas success-
fully accomplished, with proper satisfaction of constraints on
the input voltage and spring deformation.
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1 Introduction

Model predictive control (MPC) techniques were initially
developed for oil refining applications in the 1970s. In more
recent years, the use of MPC has become disseminated in
several other fields, such as the chemistry, aerospace and
food industries (Qin and Badgwell 2003). Novel applica-
tions have included, for example, the control of oxygen
excess ratio in fuel cells (Gruber et al. 2012), management
of battery/supercapacitor storage systems in hybrid electric
vehicles (Santucci et al. 2014), exhaust emission regulation
in turbocharged diesel engines (Zhao et al. 2014) and load
voltage control of four-leg inverters (Yaramasu et al. 2014).

One of the key reasons for the wide acceptance of MPC
in industrial applications is the possibility of handling con-
straints onmanipulated and controlled variables (Capron and
Odloak 2013), which are usually active at the most profitable
operating conditions (Maciejowski 2002). Nominal stabil-
ity and constraint satisfaction guarantees can be obtained
with adequate formulation of the optimization problem to be
solved at each sampling time (Mayne et al. 2000). However,
such properties may be lost in the presence of a mismatch
between the internal model of the controller and the actual
dynamics of the plant, resulting from modeling approxima-
tions, parametric uncertainties or faults.

In this context, much research has been conducted to
develop robust model predictive control (RMPC) formula-
tions. Early propositions involved uncertainties expressed in
the form of bounds on the impulse response of FIR (finite
impulse response) models (Campo and Morari 1987; All-
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wright and Papavasiliou 1992; Zheng and Morari 1993). A
more elaborate approach introduced by Kothare et al. (1996)
allowed for the use of more general uncertainty structures,
either in polytopic or structured feedback forms. The result-
ing optimization problem could be cast into a semidefinite
programming (SDP) format, with constraints in the form of
linearmatrix inequalities (LMIs). Efficient numerical solvers
(Boyd et al. 1994; Gahinet and Nemirovski 1997) could then
be used to obtain the optimal control to be applied at each
sampling time.

For illustration, Kothare et al. (1996) presented numerical
simulation results using a two-mass–spring system, which
is often employed as a benchmark in robust control stud-
ies (Wie and Bernstein 1992). Several subsequent works
involving LMI-based RMPC strategies derived from the for-
mulation of Kothare et al. (1996) have also employed this
example. Cuzzola et al. (2002) proposed the use of LMIswith
less conservatism, involving a different Lyapunov function
for each vertex of the uncertainty polytope. Less conserv-
ative results were also obtained by Wada et al. (2006) and
Feng et al. (2006) through the use of parameter-dependent
Lyapunov functions. Cao and Lin (2005) developed an
improved approach to handle input constraints, based on a set
invariance condition. Tahir and Jaimoukha (2013) addressed
the problem of external disturbances, in addition to model
uncertainty. Zhang (2013) proposed a method to reduce the
computational workload required for real-time implementa-
tion of the RMPC control law.

It is worth noting that all these papers presented the
two-mass–spring example within the context of numerical
simulations. It may thus be argued that experimental studies
involving this benchmark system would be of much value to
link theory and practice in the LMI-based RMPC literature.
Within this scope, the present work presents an experimental
demonstration of the RMPC formulation originally proposed
by Kothare et al. (1996), using an actual two-mass–spring
system with electromechanical actuation. The control task
involves both input and output constraints, as well as model
uncertainty. Particular care was taken to enable the update of
the control actions with a sampling period of 15 ms, which is
relatively small in comparison with typical industrial appli-
cations of predictive control (Zhang et al. 2014), (Capron and
Odloak 2013).

A preliminary version of this work was presented in a
recent conference (Colombo Junior et al. 2014). The present
paper is a much improved version, with more detailed
descriptions of the theoretical background and experimen-
tal work. In particular, a discussion on the adopted model
discretization procedure (exact zero-order hold method) is
presented, with respect to the possible loss of the polytopic
structure of the uncertainty. Moreover, a more appropriate
initialization procedure for the SDP solver is employed.
Finally, more elaborate scenarios are considered for the

RMPC control task, with different ranges for the model
uncertainty.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the adopted RMPC formulation. Section 3
introduces the case study,with a description of the two-mass–
spring system employed in the experiments, the adopted
state-space model and the RMPC implementation details.
The results are presented in Sect. 4, and final remarks are
given in Sect. 5.

1.1 Notation

I•×• and 0•×• denote an identitymatrix and amatrix of zeros,
with dimensions indicated by subscripts. The pth diagonal
element of a square matrix X is denoted as X pp. The star
symbol � is used to indicate the blocks below the main diag-
onal of a symmetric matrix.

2 Robust Model Predictive Control Formulation

It is assumed that the plant dynamics can be described by an
uncertain discrete-time state-space model of the form:

x(k + 1) = Ax(k) + Bu(k), (A, B) ∈ Ω, (1)

where x(k) ∈ R
nx , u(k) ∈ R

nu denote the state and
control vectors, respectively, and Ω is an uncertainty poly-
tope with known vertices (Ai , Bi ), with Ai ∈ R

nx×nx and
Bi ∈ R

nx×nu , i = 1, 2, . . . , L . It is also assumed that
component-wise amplitude constraints are to be imposed on
the control vector u(k), as well as on a vector of output vari-
ables y(k) ∈ R

ny given by

y(k) = Cx(k) (2)

where C ∈ R
ny×nx is a known matrix.

Thepredictive control formulation adoptedherein involves
an infinite-horizon cost function J∞(k) given by

J∞(k) =
∞∑

j=0

[
x(k + j |k)T Sx(k + j |k)

+ u(k + j |k)T Ru(k + j |k)
]
, (3)

where S ∈ R
nx×nx and R ∈ R

nu×nu are symmetric, positive-
definite weight matrices and x(k + j |k), u(k + j |k) denote
future state and control values, which are related by a pre-
diction equation of the form

x(k + j |k)= Ax(k + j− 1|k)+ Bu(k + j − 1|k), j ≥ 1,

(4)

with x(k|k) = x(k).
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In view of the uncertainty on the A, B matrices, the
optimizationproblemcanbe formulated in amin–max frame-
work as

min
u(k+ j |k), j≥0

max
(A,B)∈Ω

J∞(k), (5)

subject to

|u p(k + j |k)| ≤ u p,max, p = 1, 2, . . . , nu, j ≥ 0 (6)

|yq(k + j |k)| ≤ yq,max, q = 1, 2, . . . , ny, j ≥ 1 (7)

where u p,max and yq,max denote the bounds on the excursion
of the pth control variable and qth output variable, respec-
tively.

As shown by Kothare et al. (1996), this min–max problem
canbe replacedwith the following semidefinite programming
(SDP) problem, which involves theminimization of an upper
bound γ for the cost J∞(k):

min
γ,Q>0,Y,X

γ (8)

subject to

[
Q x(k)
� 1

]
≥ 0, (9)

⎡

⎢⎢⎣

Q QATi + Y T BT
i QS1/2 Y T R1/2

� Q 0nx×nx 0nx×nu
� � γ Inx×nx 0nx×nu
� � � γ Inu×nu

⎤

⎥⎥⎦ ≥ 0, i = 1, 2, . . . , L ,

(10)
[
X Y
� Q

]
≥ 0, (11)

X pp ≤ u2p,max, p = 1, 2, . . . , nu (12)
[
Q (Ai Q + BiY )T CT

q
� y2q,max

]
≥ 0, i=1, 2, . . . , L , q=1, 2, . . . , ny

(13)

where Q = QT ∈ R
nx×nx , X = XT ∈ R

nu×nu and Y ∈
R
nu×nx arematrix variables of the optimization problem. The

constraints on the control and output variables are imposed
through the LMIs (11), (12) and (13), respectively.

It is worth noting that the solution of the SDP problem
(8)–(13) depends on the current state x(k), in view of the
LMI (9). Therefore, this problem will be henceforth denoted
by P(x(k)). To emphasize that P(x(k)) must be solved at
each time k, the solution of the problem will be denoted by
(γk, Qk,Yk, Xk). If P(x(k)) is feasible, the control action
u(k) is obtained as

u(k) = Fkx(k) (14)

Active Cart Passive cartSpring(a)

(b)

Ks
mac mpc

f

xac xpc

Fig. 1 Two-mass–spring system: a photograph and b schematic rep-
resentation

where Fk is a gain matrix given by

Fk = YkQ
−1
k (15)

As demonstrated byKothare et al. (1996), ifP(x(0)) is fea-
sible for the initial condition x(0), then P(x(k)) will remain
feasible for k > 0 and the state x(k) will converge to the ori-
gin asymptotically, with satisfaction of the input and output
constraints.

3 Case Study

3.1 System Description

Figure 1a presents a photograph of the two-mass–spring sys-
tem (Quanser Consulting, model LFJC-E) employed in this
work, with a schematic representation in Fig. 1b. The con-
trol variable is the voltage ϑ applied to the active cart motor,
which results in the generation of a force f through a rack
and pinion transmission system. The masses and positions
of the active and passive carts are denoted by mac, mpc and
xac, xpc, respectively. The stiffness coefficient of the spring
is denoted by Ks. It is worth noting that xac and xpc are the
relative displacements of each cart with respect to an initial
resting condition. The spring will be compressed if xac > xpc
and elongated if xac < xpc.

A continuous-time model for this system can be written
in the form

ẋ(t) = Acx(t) + Bcϑ(t) (16)

where t denotes the continuous-time variable, ϑ is the motor
voltage and x = [xac xpc vac vpc]T is the state vector,
comprising the cart positions xac, xpc and the corresponding
velocities vac = ẋac, vpc = ẋpc. The electrical dynamics of
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Table 1 Model parameters
Parameter Physical meaning Value

Ks Spring stiffness coefficient 142 N/m

mac Active cart mass 1.15 kg

mpc Passive cart mass 0.54 kg

bac Viscous friction coefficient (active cart) 5.4 Ns/m

bpc Viscous friction coefficient (passive cart) 2.2 Ns/m

Kg Gearbox ratio 3.71

Km Counter-electromotive force constant 7.67 × 10−3 Vs/rad

Kt Motor torque constant 7.67 × 10−3 Nm/A

Rm Motor armature resistance 2.6 �

rmp Motor pinion radius 6.35 mm

the motor are not considered in the model because they are
much faster than the mechanical dynamics of the two-mass–
spring system. The Ac, Bc matrices are of the form (Apkarian
et al. 2013):

Ac =

⎡

⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− Ks
mac

Ks
mac

−
bac+ K2

g KmKt

Rmr2mp
mac

0
Ks
mpc

− Ks
mpc

0 − bpc
mpc

⎤

⎥⎥⎥⎥⎥⎦
, (17)

Bc =
[
0 0

KgKt
Rmrmp

0
]T

, (18)

with parameter values given in Table 1, which were taken
from the user manuals (Quanser 2012), (Quanser Document
Number 501) and companion MATLAB code. This model
comprises viscous friction terms, which are a linear approx-
imation to more complex friction effects (both viscous and
dry) that are present in the actual system. It is worth noting
that the active cart parameters mac and bac are linear-motion
equivalent coefficients, which include the rotary parameters
of the motor.

By using the parameter values in Table 1, the resulting
eigenvalues for matrix Ac are −3.1± 19.1 j , −9.3 and 0. As
can be seen, the state-space model has a stable second-order
mode (natural frequency ωn = 19.3 rad/s and damping ratio
ζ = 0.16), a stable first-order mode and an integrator.

For illustration, Fig. 2 presents the results of an open-loop
experiment with an input voltage ϑ = 2 V from t = 0 s to
t = 0.5 s and ϑ = 0 V after t = 0.5 s. The amplitude of this
input excitation is similar to the voltage level observed in the
transient period of the closed-loop experiments, as shown in
the Sect. 4. As can be seen in Fig. 2, the model response is in
good agreement with the experimental results in terms of the
active and passive cart positions, as well as the spring defor-
mation. More details concerning the experimental validation
of the model can be found in (Colombo Junior 2014).

The positions xac and xpc of the active and passive carts are
measured by optical encoders with a resolution equivalent to
0.023 mm of linear displacement. The velocities vac and vpc
are estimated by using the following approximations:

v̂ac(kT ) = xac(kT ) − xac((k − 1)T )

T
, (19)

v̂pc(kT ) = xpc(kT ) − xpc((k − 1)T )

T
, (20)

where T is the sampling period. Henceforth, with a small
abuse of notation, the time indication (kT ) will be stated
simply as (k), in agreement with the discrete-time notation
adopted in Sect. 2.

Remark 1 A state observer could be used for the estima-
tion of the velocities, as an alternative to the finite difference
method adopted herein. However, the design of a suitable
observer for use with the predictive controller may be chal-
lenging in the presence of model uncertainty. It is also worth
noting that the encoder resolution (2.3 × 10−3 cm) is much
smaller than the cart displacements per sampling period dur-
ing the transient response. Indeed, as will be seen in the Sect.
4, the carts travel approximately 18 cm in one second, which
corresponds to 0.27 cm within a sampling period of 15 ms.
Therefore, the quantization noise in the position measure-
ments was not a significant issue regarding the use of the
approximations (19), (20).

3.2 Model Uncertainty

In order to evaluate the RMPC control law in the presence
of model uncertainty, the spring stiffness coefficient Ks will
be considered an uncertain parameter, as in the original sim-
ulation example presented by Kothare et al. (1996). More
specifically, three cases will be considered, with different
uncertainty ranges, as illustrated in Fig. 3. In Case I, the
uncertainty range is centered around the nominal stiffness
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Fig. 2 Open-loop results: a input voltage, b active cart position, c
passive cart position, d spring deformation

coefficient Ks (in the sense that the nominal value is the geo-
metrical mean of the uncertainty bounds). In Cases II and III,
the ranges are shifted toward larger and smaller values with
respect to the nominal stiffness coefficient Ks, respectively.
In what follows, subscripts 1 and 2 will be used to indicate
the smallest and largest values of Ks in each case, as well as
the corresponding model vertices.

In each case, an uncertainty polytope for matrix Ac is
defined with two vertices Ac1, Ac2 associated with the
extreme values of Ks through (17). The input matrix Bc is
not affected by the uncertainty, because the corresponding
expression (18) does not depend on Ks. Therefore, the uncer-
tainty polytope for the continuous-timemodel is formedwith
vertices (Ac1, Bc) and (Ac2, Bc).

With the extreme values Ks1 = 71 N/m and Ks2 = 284
N/m, the eigenvalues of Ac1 and Ac2 are (−3.0±13.2 j ,−9.6,
0) and (−3.2±27.4 j ,−9.2, 0), respectively. As can be seen,
a change in Ks is mainly reflected in the natural frequency
of the second-order mode (ωn1 = 13.5 rad/s and ωn2 = 27.6
rad/s).

71 156  (N/m)

Nominal value = 142 N/m

128 284

 (N/m)71 284

 (N/m)

Case I

Case II

Case III

Ks

Ks

Ks

Fig. 3 Uncertainty ranges for the spring stiffness coefficient Ks in three
cases considered in the experiments

3.3 Model Discretization

The state-space Eq. (16) needs to be discretized in the form
(1) for use in the RMPC control law. Since the control is
applied through a digital-to-analog converter, which keeps
the motor voltage constant between the sampling times, an
exact discretization can be carried out by using the zero-order
hold (ZOH) method (Franklin et al. 1998) as

A = eAcT =
∞∑

n=0

(AcT )n

n! (21)

B =
(∫ T

0
eAcτdτ

)
Bc =

( ∞∑

n=0

(AcT )n

(n + 1)!

)
BcT (22)

The sampling period was set to T = 15 ms, which is
an order of magnitude smaller than the natural period of
oscillation Tn of the second-order mode in either vertex
of the uncertain model (Tn1 = 2π/ωn1 = 465 ms and
Tn2 = 2π/ωn2 = 228 ms). As will be seen in the Sect.
4, the use of smaller values for T would not be appropriate,
in view of the time required for completion of the RMPC
calculations within each sampling period.

With the extreme values Ks1 = 71 N/m and Ks2 = 284
N/m, the eigenvalues of the A1, A2 matrices resulting from
the discretization of Ac1, Ac2 are (0.94±0.19 j , 0.87, 1) and
(0.87±0.38 j , 0.87, 1), respectively. As can be seen, the sta-
bility properties of the continuous-time model are preserved,
with a marginally stable mode (an integrator associated with
the unity eigenvalue), a stable first-order mode and a stable
second- order mode.

By using the ZOH method, the continuous-time model
vertices (Ac1, Bc) and (Ac2, Bc) are mapped to the discrete-
time counterparts (A1, B1) and (A2, B2). The vertices B1,
B2 for the input matrix, are obtained through (22) by using
Ac1 and Ac2, respectively, in addition to the single matrix Bc.

It is worth noting that this exact discretization may not
preserve the polytopic structure of the uncertainty, because
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of the nonlinear mapping between the continuous and dis-
crete models involved in (21), (22). As an alternative, a
first-order approximation (forward Euler method) could be
used as (Franklin et al. 1998):

Ae = Inx×nx + AcT (23)

Be = BcT (24)

where Ae and Be are the resulting matrices of the discrete-
time model. However, this approximation presents the fol-
lowing inconvenience. By using T = 15 ms, the eigenvalues
of the Ae1, Ae2 matrices for the extreme values Ks1 = 71
N/m and Ks2 = 284 N/m are (0.96 ± 0.20 j , 0.86, 1) and
(0.95 ± 0.41 j , 0.86, 1), respectively. As can be seen, the
second-order mode of the discretized model for Ks2 is unsta-
ble, since the complex conjugate poles (0.95 ± 0.41 j) are
outside the unit circle. This is an inconvenience because the
prediction model employed in the RMPC formulation would
differ in a drastic manner from the dynamics of the actual
physical system, in terms of stability properties. In order to
obtain a stable second-order mode for both vertices of the
uncertain model, the sampling period T would need to be
smaller than 8 ms, which would not be enough to complete
the RMPC calculations (as will be shown in the Sect. 4).

In view of these issues related to the stability of the dis-
cretized model, the ZOH method was adopted to obtain the
(A1, B1) and (A2, B2) matrices employed in the RMPC
control law. It is worth noting that the deviation from the
polytopic structure of the uncertainty is negligible with the
adopted sampling period, as shown in “Appendix 1.”

3.4 Handling the Computational Delay

Since the RMPC control law involves the real-time solution
of anoptimizationproblem, the timedelaybetween the acqui-
sition of sensor readings and the control voltage update may
correspond to a significant fraction of the sampling period.
If this delay was known and constant, it would be possible
to include it in the plant model, as described byMaciejowski
(2002). However, in the present work there is no guarantee
that the delay will remain constant during the entire con-
trol task. Therefore, the following procedure was adopted to
account for the computational delay.

After finding the solution of the optimization problem,
the resulting control value is stored to be used at the next
sampling time. By doing so, the delay will always be equal
to one sampling period, as depicted in Fig. 4.

Such a delay can be included in the model by defining an
augmented state vector ξ as

ξ(k) =
[
x(k)
u(k − 1)

]
, (25)

)(kξ )(kϑ

Fig. 4 Control loop with inclusion of an artificial delay

where x(k) ∈ R
4 is the original state vector for the two-mass–

spring system and u(k − 1) = ϑ(k) is the control voltage
actually applied to the plant at time k. As a result, the model
employed in the RMPC control law becomes

ξ(k + 1) = Āξ(k) + B̄u(k), (26)

with Ā and B̄ defined as

Ā =
[
A B
01×4 0

]
, (27)

B̄ =
[
04×1

1

]
. (28)

This augmented model can be regarded as a limit case
of the procedure presented by Maciejowski (2002), with the
delay equal to one full sampling period.

In short, the solution of the optimization problem P(ξ(k))
is used to obtain the control action u(k) = Fkξ(k), which is
applied to the plant at the next sampling time.

3.5 Parameters of the RMPC Controller

The control task considered herein consists of moving the
active and passive carts to a target position r = 20.0 cm,
starting from a rest condition. Since the RMPC control law
is formulated in regulation form, with the purpose of steering
the state to the origin, this task can be carried out by replacing
the state vector ξ(k) with a translated vector ξ̃ (k) = ξ(k) −
[r r 0 0 0]T . Therefore, by steering the state ξ̃ (k) to the
origin, the controller will move the cart positions xac and xpc
to the target value r .

The weight matrices were set to S = diag
(103, 104, 10−1, 10−1, 10−3) and R = 10−1. In order to
place greater emphasis on the minimization of the cart posi-
tion errors, a larger value was assigned to the first and second
diagonal elements of matrix S.

The bounds on the control variablewere set to±6.0V (i.e.,
umax = 6.0 V, which corresponds to the nominal voltage of
the active cart motor). Experimentally, it was observed that
larger control values could cause a derailment of the motor
pinion over the rack.
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In addition, bounds on the spring deformation were
imposed to evaluate the ability of the RMPC controller to
handle output constraints. For this purpose, an output vari-
able y(k) was defined as

y(k) = xac(k) − xpc(k) = [
1 −1 0 0 0

]
ξ(k). (29)

with positive and negative values corresponding to the com-
pression and elongation of the spring, respectively. The
bounds on this output variable were set to ±1.0 cm (i.e.,
ymax = 1.0 cm).

3.6 Implementation Details

The RMPC control law was implemented in a computer with
Intel i5-3470S processor (2.90 GHz), 6 GB of RAM mem-
ory and Windows 7 operational system. The interface with
the plant hardware was accomplished by using a Q2-USB
data acquisition module and the QuaRC software (both from
Quanser Consulting). The SDP problem was solved by using
the Robust Control Toolbox of MATLAB 2012a.

Remark 2 It is worth noting that industrial controllers are
typically implemented by using dedicated hardware and
software. However, general-purpose personal computers are
often employed in the predictive control literature for exper-
imental proof-of-concept studies (Gruber et al. 2009; Herceg
et al. 2009; Rahideh and Shaheed 2012). This is the approach
adopted herein.

It is worth noting that (9) is the only LMI that needs to be
altered during the control task (with ξ̃ (k) in place of x(k)),
which simplifies the recoding of the optimization problem in
real time. Indeed, after the set of LMIs (9)–(13) is encoded
in the memory of the computer upon the initialization of
the controller, it is sufficient to change the value of ξ̃ (k) in
LMI (9) at each new sampling time before invoking the SDP
solver.

Before the beginning of the control task, a solution
(γ0, Q0,Y0, X0) was obtained offline for the initial problem
P(ξ̃ (0)), in order to calculate the control u(0) = Y0Q

−1
0 ξ̃ (0).

Obtaining this solution required approximately 55 ms. Since
the calculation of the subsequent control actions needed to
be completed within the sampling period T = 15 ms, the
solution (γk−1, Qk−1,Yk−1, Xk−1) was used to initialize the
solver at each time k. Moreover, the maximum number of
iterations in the SDP solution algorithm was reduced from
100 (default value of the solver) to 10. As shown in “Appen-
dix 2,” this stopping criterion resulted in a cost γ close to the
solution obtained with the default number of iterations.

Finally, it was observed that infeasibility of the previous
solution occasionally occurred when the carts were already
close to the target positions. Such a problem can be ascribed
to nonlinear friction effects, which were neglected in the

model and become more significant at low speeds (Olsson
et al. 1998). This issue was circumvented by fixing the gain
matrix (15) upon the first infeasibility event, i.e., the opti-
mizationproblemwasno longer solved and the last calculated
gain Fk−1 was used in the remaining part of the control task.

The time required by the SDP solver and the overall com-
putation time spent in the implementation of the control law
(including I/O operations and auxiliary calculations) were
stored for presentation alongside the results of the control
task.

Remark 3 Even by using a predictive control law with
robustness properties, recursive feasibility problems may
occur in practice because the adopted uncertainty frame-
work may not capture all the mismatches between the design
model and the actual system. A possible approach to cir-
cumvent this problem consists of using slack variables to
soften the constraints (Erdem et al. 2004; Minh and Hashim
2011). However, such an approach implies an increase in
computational workload, since more variables are involved
in the optimization problem. The fixed-gain strategy adopted
herein has the advantage of not requiring the use of extra
optimization variables. Moreover, it preserves the robust
stability guarantees of the closed-loop system. Indeed, let
γk−1, Qk−1,Yk−1 be the values of γ, Q,Y obtained as the
solution of P(x(k − 1)), with x(k − 1) �= 0. Since γk−1 is
an upper bound for cost (3) and x(k − 1) �= 0, it follows that
γk−1 > 0. Moreover, Qk−1 is positive-definite as imposed
in (8), and γk−1, Qk−1,Yk−1 satisfy the LMI constraint (10).
Therefore, by applying Schur’s complement to the LMI (10)
and letting F = Yk−1Q

−1
k−1, it follows that

(Ai+Bi F)T P(Ai+Bi F)−P≤−S−FT RF, i=1, 2, . . . , L

(30)

with P = γk−1Q
−1
k−1 > 0. Since S > 0 and R > 0, it follows

that

(Ai + Bi F)T P(Ai + Bi F) − P < 0, i = 1, 2, . . . , L

(31)

which guarantees that the fixed gain F will stabilize the
closed-loop system for any (A, B) in the uncertainty poly-
tope Ω with vertices (Ai , Bi ), i = 1, 2, . . . , L (Boyd et al.
1994).

4 Results and Discussion

Figure 5 presents the results obtained in Case I, which
involves an uncertainty range for the spring stiffness coef-
ficient Ks ∈ [71 − 284] N/m. As can be seen in Fig. 5a–c,
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Fig. 5 Results obtained in Case
I. a Encoder position readings
and associated target value. b
Control voltage ϑ and
associated constraint bounds. c
Spring deformation and
associated constraint bounds. d
Time spent by the optimization
solver and overall computation
time required to implement the
control law at each sampling
period
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both the active and passive carts were driven to the setpoint,
with proper enforcement of the constraints on the voltage
and spring deformation. The steady-state positioning error
(approximately 1.5%) can be ascribed to dry friction effects
and was considered sufficiently small so that changes in the
controller design were not necessary. The gain matrix was
fixed after t = 1.11 s, because the previous SDP solu-
tion was found to be infeasible, as discussed in Sect. 3.6.
For this reason, the computation time decreased to very
small values after this event, as can be seen in Fig. 5d. It
is worth noting that the carts were already close to the tar-
get positions at this time, and thus, further optimization of
the gain matrix would not result in substantial performance
improvement.

Figure 5d reveals that the optimization process accounted
for a substantial part of the computational workload. How-
ever, the overall computation time was always smaller than
the sampling period, as required for the implementation of
the control law. Moreover, by measuring the time intervals
between the control action updates (with an Agilent MSO-X
2012A oscilloscope), the relative deviations with respect to
the nominal sampling period were found to be smaller than
1 %.

It is worth noting that both the control voltage (Fig. 5b)
and the spring deformation (Fig. 5c) values exhibit a notice-
able gap with respect to the constraint bounds. However, as

shown in “Appendix 3,” the removal of the spring deforma-
tion constraint leads to deformations larger than 3 cm, with
control values very close to the upper bound of 6 V. There-
fore, it may be argued that the spring deformation constraint
was the limiting factor for the control actions.

The results for Cases II and III are presented in Figs. 6
and7, respectively. In these cases, the controllerwas designed
with uncertainty ranges Ks ∈ [71−156] N/m and Ks ∈
[128−284]N/m. Again, the control task was performed with
very small steady-state error (approximately 1.5 and 0.5%,
respectively), satisfaction of the voltage and spring deforma-
tion constraints, and computation time always smaller than
the sampling period.

It is interesting to notice that the transient response in
Case III (Fig. 7a) was faster compared to Cases I (Fig. 5a)
and II (Fig. 6a). Indeed, as shown in Table 2, the rise time
was considerably smaller in Case III. Such a finding may be
explained because the controllers in Cases I and II were faced
with a more difficult task, in view of the possibility of having
a less stiff spring connecting the carts (smaller lower bound
for the uncertain coefficient Ks). It is worth pointing out that
the springwas physically the same in all cases, but the control
actions were more cautious in Cases I and II. Indeed, the gap
between the maximum deformation value and the constraint
bound (1 cm) is wider in Cases I and II compared to Case III,
as shown in Table 2.
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Fig. 6 Results obtained in Case
II. a Encoder position readings
and associated target value. b
Control voltage ϑ and
associated constraint bounds. c
Spring deformation and
associated constraint bounds. d
Time spent by the optimization
solver and overall computation
time required to implement the
control law at each sampling
period
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Fig. 7 Results obtained in Case
III. a Encoder position readings
and associated target value. b
Control voltage ϑ and
associated constraint bounds. c
Spring deformation and
associated constraint bounds. d
Time spent by the optimization
solver and overall computation
time required to implement the
control law at each sampling
period
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Table 2 Maximum spring
deformation and rise timea

values

Case Uncertainty
range for Ks
(N/m)

Max. spring
deformation
(magnitude)
(cm)

Rise timea

(active cart) (s)
Rise timea

(passive cart)
(s)

I 71–284 0.58 0.98 0.97

II 71–156 0.62 0.99 0.98

III 128–284 0.86 0.77 0.76

a(0–90%) criterion

5 Conclusions

This paper presented an experimental demonstration of the
effectiveness of the RMPC control law originally proposed
by Kothare et al. (1996), using an actual two-mass–spring
system with electromechanical actuation. This plant is often
used as a benchmark in robust control studies and has been
widely employed in the LMI-based RMPC literature. How-
ever, to the best of the authors’ knowledge, this is the first
work concerning an actual experimental RMPC implemen-
tation for such a system.

Particular care was taken to obtain the solution of the SDP
optimization problem within a sampling period of 15 ms. A
warm start of the optimizer was employed by always using
the solution obtained at the previous sampling time. More-
over, the default settings of the solver were changed to reduce
the maximum number of optimization iterations. Even so,
the required computational time varied during the control
task and could be as large as 8 ms, which is a significant
fraction of the sampling period. In order to account for this
time delay, the resulting control value was stored to be used
only at the next sampling time. By doing so, the delay was
always equal to one sampling period, which facilitated its
inclusion in the RMPCmodel. It is worth noting that the loss
of polytopic structure resulting from the zero-order hold dis-
cretization of the uncertain model was found to be negligible
with the adopted sampling period, as shown in “Appendix
1.”

Three experimental scenarios were considered, with dif-
ferent ranges for the uncertain value of spring stiffness
coefficient. The control task was successfully accomplished
in all cases,with satisfaction of the constraints imposedon the
motor voltage and spring deformation. Due to the presence of
dry friction, steady-state position errors ranging from 0.5 to
1.5%were obtained. Future studies could be concerned with
methods for compensating the dry friction effects in order to
further reduce the magnitude of the steady-state errors. It is
worth noting that the introduction of integrators in the control
lawmay result in a hunting phenomenon involving sustained
oscillations around the target position (Yao et al. 2013),
(Hensen et al. 2003). Alternatively, disturbance estimators
could be employed as in traditional predictive control for-

mulations (Maeder et al. 2009). However, such an approach
may not be appropriate in this case, because the friction force
changes with the direction of motion and may exhibit com-
plex features at low speeds (Olsson et al. 1998). Therefore,
more detailed investigations are required to address this issue.
Future works could also be concerned with an implemen-
tation of the RMPC control law using dedicated industrial
hardware. For this purpose, the use of non-commercial SDP
solvers such as CSDP (C library for semidefinite program-
ming) (Borchers 1999) or SDPA (semidefinite programming
algorithms) (Fujisawa et al. 2002) could be investigated.
Finally, the experimental framework presented in this paper
could be employed in comparative studies involving differ-
ent RMPC approaches derived from the original formulation
of Kothare et al. (1996).
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Appendix 1

A pair of matrices (A, B) ∈ (Rnx×nx × R
nx×nu ) belongs to

a polytope Ω = Co{(A1, B1), (A2, B2)} if and only if there
exists a scalar λ ∈ [0, 1] such that

(A, B) = λ(A1, B1) + (1 − λ)(A2, B2). (32)

In order to test whether a given pair (A, B) belongs to Ω ,
let w1, w2, w ∈ R

(n2x+nxnu) be defined as

w1 = vec(A1, B1) (33)

w2 = vec(A2, B2) (34)

w = vec(A, B) (35)
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where vec is an operator that stacks the elements of the pair
of matrices in a column vector form.

The problem then consists of testing whether w can be
written as w = λw1 + (1 − λ)w2 for some λ ∈ [0, 1]. For
this purpose, a least-squares solution for λ can be obtained
by solving the following optimization problem:

min
λ

J (λ) = (w − ŵ)T (w − ŵ), (36)

with

ŵ = λw1 + (1 − λ)w2. (37)

In the absence of the constraint λ ∈ [0, 1], the optimal
solution λ̂ for this problem is obtained by replacing (37) for
ŵ in (36) and imposing d J/dλ = 0. The result is uniquely
given by

λ̂ = (w − w2)
T (w1 − w2)

(w1 − w2)T (w1 − w2)
(38)

If λ̂ ∈ [0, 1] and J (λ̂) = 0, one can conclude that (A, B)

belongs to Ω .
Within the scope of the present paper, the problem

consists of testing whether the uncertain (A, B) matri-
ces obtained through the ZOH discretization of (Ac, Bc)

belong to the polytope Ω = Co{(A1, B1), (A2, B2)}, with
(A1, B1), (A2, B2) obtained through the ZOH discretization
of (Ac1, Bc) and (Ac2, Bc), respectively (with Bc not subject
to uncertainty).

For this purpose, four matrices A(1)
c , A(2)

c , A(3)
c , A(4)

c were
created through convex combinations of Ac1 and Ac2 as

A(n)
c = λ(n)Ac1 +

(
1 − λ(n)

)
Ac2, n = 1, 2, 3, 4, (39)

with λ(1) = 0.1, λ(2) = 0.4, λ(3) = 0.6 and λ(4) =
0.9. The pairs of matrices (A(1)

c , Bc), (A
(2)
c , Bc), (A

(3)
c , Bc),

(A(4)
c , Bc) were then discretized to obtain (A(1), B(1)),

(A(2), B(2)), (A(3), B(3)), (A(4), B(4)). The elements of these
resulting matrices were stacked in column vectors w(n), in
order to solve the least-squares problem (36), (37). As can be
seen in Table 3, the resulting solutions λ̂(n) were all inside the
[0, 1] interval, displaying very small differences with respect
to the actual λ(n) values. This finding indicates that the devi-
ations from the polytopic structure resulting from the ZOH
discretization are very small in this case. Such a conclusion is
corroborated by the graphical representation in Fig. 8, which
shows a close agreement between the corresponding compo-
nents of vectors ŵ(n) and w(n).

Table 3 Least-squares solutions

n λ(n) λ̂(n) Difference (%)

1 0.100 0.0987 1.3

2 0.400 0.397 0.8

3 0.600 0.597 0.5

4 0.900 0.899 0.1

Fig. 8 Comparison of the corresponding components of vectors ŵ(n)

and w(n) for n = 1, 2, 3, 4. The bisectrix of each plot is presented as a
straight line between the extreme data points

Appendix 2

Figure 9 illustrates the evolution of the cost γ over 100 iter-
ations of the solver. This analysis was carried out offline
by using a state vector obtained in Case I during the tran-
sient response (t = 0.69 s). As in the online procedure, the
solver was initialized with the solution obtained in the previ-
ous sampling period. As can be seen, the cost obtained after
10 iterations is very close to the value resulting from 100
iterations (default stopping criterion of the solver).
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Fig. 9 Evolution of the cost γ over 100 iterations of the solver
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Fig. 10 Results obtained in Case I without the spring deformation
constraint. a Spring deformation. b Control voltage ϑ and associated
constraint bounds

Appendix 3

Figure 10 presents the spring deformation and control voltage
signals obtained in Case I (uncertainty range Ks ∈ [71−284]
N/m), without the constraint on the spring deformation. As
can be seen in Fig. 10a, the excursion of the spring defor-
mation is now larger than the constraint bounds previously

adopted (±1 cm), which indicates that this constraint was
indeed active. It is worth noting that the control actions now
get much closer to the upper bound of 6 V, as shown in
Fig. 10b.
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