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Abstract This work presents an algorithm based on the
bio-inspiredoptimization techniqueknownasmonkey search
(MS) for the optimal allocation of fixed and switched capac-
itor banks in distribution systems. The objectives are to
minimize the energy loss, to improve the voltage levels
and to reduce the carbon dioxide emission. The monkey
search technique is a metaheuristic method that is inspired
by the behavior of a monkey searching for food in a jungle.
The applied method consists of a modified monkey search
(MMS), which presents modifications and improvements for
the original MS technique to represent in a suitable man-
ner the features and constraints of the capacitor allocation
problem. The proposed model considers different load lev-
els, voltage limit constraints and practical values for fixed
and switched capacitor banks, as well as for unit costs and
emission coefficient. Case studies are performed by using
test systems of the literature in order to assess the efficiency
of the proposed algorithm, including a tutorial on the MMS
algorithm.

Keywords Fixed and switched capacitors · Distribution
systems · Loss minimization · Carbon dioxide emission ·
Modified monkey search

1 Introduction

The new paradigms of the energy sector, as the requirements
for lower costs and higher quality of the energy supplying,
as well as the technological advances, have leading to the
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search for more efficient solutions of common problems, as
the network loss and the voltage drop. The distribution sys-
tems have an important role for the energy sector, because
such systems impact appreciably on the electrical networks
planning (Gonen 1986) and are more complex in respect of
voltage control and loss (Grainger and Lee 1981; Lee and
Grainger 1981).

The energy quality question has been handled by energy
efficiency policies through the development of short-,
medium- and long-term plans, in line with the strategic and
business plans of energy companies. Such policies aim at
the economy of resources and the postponement of invest-
ments in generation, transmission and distribution systems,
which can reduce the environmental impact (Li et al. 2013).
Moreover, the planning of modern systems should encour-
age the search for technological solutions through analyses
of the social, economic and environmental impacts from
the potential generation sources and respective conversion
technologies. In this context, options for increasing the effi-
ciency and quality of distribution systems with control of the
environmental impact, as the capacitor allocation, should be
considered.

The problem of optimal capacitor allocation in distrib-
ution systems comprises the determination of the location,
the type of equipment that can be fixed or switched, and its
capacity, so that the economic benefits are maximum, with-
out violation of the operational constraints (Singh and Rao
2012). The following aspects give more complexity to the
problem: (i) different capacities given by a series of tab-
ulated values adopted by the distribution utilities, which
implies more variables for the problem; (ii) different load
levels during the operation, given by diary curves related
to different kinds of costumers (Gerbec et al. 2005); and
(iii) operation of the switched banks during the load varia-
tions.
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Additionally, the nonlinear features of the objective func-
tion and constraints, as well as the existence of discrete
variables that are related to the location, type and capac-
ity options for the capacitor banks, result in a problem of
combinatorial, nonlinear and mixed-integer mathematical
programming,whose solution space is not convex. These fea-
tures increase the difficulty of solving the problem (Oliveira
et al. 2010), especially for larger networks. Therefore, the
search for efficient capacitor allocation solutions that can
combine suitable quality and processing times (Gallego et al.
2001) is important for the planning of modern distribution
systems.

Given the characteristics of the capacitor allocation prob-
lem, metaheuristic techniques have been proposed for solv-
ing it, with the purpose of obtaining good quality solutions
and computational efficiency (Arora et al. 1995). Some tech-
niques are bio-inspired, i.e., based on the behavior of natural
systems, as ant colony (Chang 2001; Chiou et al. 2004;
Sirjani and Hassanpour 2012), particle swarm optimization
(Eajal and El-Hawary 2010; Etemadi and Fotuhi-Firuzabad
2008; Ghadimi 2012) and genetic algorithms (Levitin et al.
2000;HaghifamandMalik 2007; Salama andChikhani 2000;
Sundhararajan andPahwa1994; Swarnkar et al. 2010).Artifi-
cial intelligence techniques, as neural networks (Salazar et al.
2006) and fuzzy logic (Mekhamer et al. 2003), as well as
hybrid algorithms (Barukcic et al. 2010; Gerbec et al. 2005),
have also been applied. Fuzzy logic and genetic algorithm are
joint in (Das 2008; Souza et al. 2004; Su et al. 2001a) for the
capacitor allocation, whereas (Bhattacharya and Goswami
2009) present the application of diffuse systems with tabu
search.

In Huang and Liu (2012), it is presented a methodology
based on a bio-inspired technique known as plant growth-
based optimization approach for the capacitor allocation,
which considers the reduction in the carbon dioxide emis-
sion among the objectives. The emission reduction can be
achieved from the reactive support provided by capacitors.
It can be highlighted that the consideration of contemporary
objectives, as the gas emission reduction, is still not much
investigated (Baghipour and Fallahian 2015; Huang and Liu
2012; Humbert et al. 2013).

From the application of bio-inspired optimization meth-
ods to determine the optimal capacitor allocation in distrib-
ution systems, this paper presents an algorithm based on the
MS technique (Mucherino and Seref 2007) for the alloca-
tion of fixed and switched capacitor banks. The objectives
comprise the minimization of energy loss considering dif-
ferent system load levels, the improvement of voltage and
the reduction in gas emissions. The optimization method is
known asMMS and consists on amodification of the original
MS technique that allows performing the search process in a
more efficient way according to the problem characteristics
(Duque et al. 2015). The main contribution is the application

of a technique still unexplored for the allocation of fixed and
switched capacitors banks, in view of its successful applica-
tion just for fixed banks (Duque et al. 2015). Moreover, the
addition of present-day objectives as the gas emission mini-
mization can also be included among the contributions. Case
studies are made to evaluate the proposed approach.

The rest of the paper is organized as follows: Sect. 2 for-
mulates the capacitor allocation problem, Sect. 3 describes
the proposed methodology and details the procedures for the
calculations, Sect. 4 presents the case studies and Sect. 5 the
conclusions.

2 Formulation of the Problem

The mathematical formulation of the optimization problem
considers the energy loss minimization for different load lev-
els and incorporates the reduction in carbon dioxide (CO2)

emission, subject to the network andvoltage limit constraints.
This formulation is presented hereafter:

Min OBF =
nt∑

u=1

ke,u .Tu .Li j,u · Bp

+
nt∑

u=1

β.kCO2 .Tu .Li j,u · Bp …

+
nb∑

i=1

(
k f · ui, f · Q fi + ks · ui,s · Qsi

) · Bp

(1)

subject to:

Pgi,u − Pli.u +
∑

j∈�i

pi j,u = 0 (1a)

Qgi,u + ui, f · Q fi + ui,s · αi,u · Qsi − Qli,u

+
∑

j∈�i

qi j,u = 0 (1b)

ui, f + ui,s ≤ 1 (1c)

Li j,u = gi j ·
[
V 2
i,u + V 2

j,u − 2 · Vi,u · Vj,u · cos (
θi j,u

)]

(1d)

Vmin ≤ V ≤ Vmax (1e)

pi j,u =V 2
i,u ·gi j −Vi,u ·Vj,u ·(gi j cos θi j,u+bi j sin θi j,u

)

(1f)

qi j,u = −V 2
i,u · (

bi j + bsi j
)

+Vi,u · Vj,u · (
bi j cos θi j,u − gi j sin θi j,u

)
(1g)

where

OBF Objective function ($);
Nt Number of load levels;
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ke,u Energy cost for load level u ($/kWh);
Tu Duration time of load u (h);
Li j,u Active power loss of branch ij at load level u

(pukW);
Bp Base power (kW);
β CO2 emission coefficient (CO2/kWh);
kCO2 CO2 emission cost ($/CO2);
Nb Number of candidate buses for capacitor bank

allocation;
k f , ks Unitary costs for fixed and switched capaci-

tors, respectively ($/kvar);
ui, f , ui,s Binary variables that represent allocation of

fixed and switched capacitor at bus i , respec-
tively (0—not allocated; 1—allocated);

Q fi , Qsi Capacity of thefixedor switched bank, respec-
tively, at candidate bus i (pukvar);

Pgi,u, Qgi,u Active (pukW) and reactive (pukvar) power,
respectively, generated at bus i at load level u;

Pli,u, Qli,u Active (pukW) and reactive (pukvar) load
demand, respectively, at bus i at load level u;

pi j,u, qi j,u Active (pukW) and reactive (pukvar) power
flows, respectively, at branch ij at load level u;

�i Set of the buses connected to bus i through
distribution branches;

αi,u Factor for obtaining the reactive support at bus
i provided by switched capacitors at load level
u;

gi j Conductance of branch ij (puS);
θi j,u Phase angle between buses i and j at load level

u (rad);
Vmin, Vmax Lower and upper voltage limits at buses

(puV);
bi j Susceptance of branch ij (puS); and
bsi j Shunt susceptance of branch ij (puS).

The objective function (OBF) of (1) is also used inHuang and
Liu (2012) and is formed by three cost terms. The first one
refers to the cost associated with the total energy loss during
the operation period, and the second term is related to the
cost associated with the total volume of CO2 emitted into the
atmosphere during the same period. The third term, in turn,
consists on the total cost of investment in fixed and switched
capacitors, whose unitary costs are different according to
each option and are given by practical values (Huang and
Liu 2012).

Equations (1a) and (1b) correspond to the active and reac-
tive balance constraints in each bus, respectively, and are
related to the Kirchhoff’s current law (KCL). The factor
αi,u ≤ 1 determines the reactive support at bus i and load
level u provided by switched capacitor. For the higher load
level, the reactive support corresponds to the capacity of the
bank and αi,u = 1. The constraint (1c) establishes that only
one type of capacitor, fixed (ui, f = 1) or switched (ui,s = 1),

is allowed for a same candidate bus—i , at most. The con-
straint in (1d) is used to calculate the active power loss at
branch ij and load level u. The voltage limit constraints are
formulated in (1e). Equations (1f) and (1g) are related to
Kirchhoff’s voltage law (KVL) and consist of the active and
reactive power flows at branch ij and load level u, respec-
tively.

Notice that the loss minimization implies the improve-
ment of the voltage levels. The load flow problem resulting
from each solution proposal provided by the MMS is solved
by using the Newton’s method (Tinney and Hart 1967), to
calculate losses and the other quantities.

3 The Modified Monkey Search Algorithm

TheMMS algorithm upgraded for the allocation of fixed and
switched capacitor banks is presented hereafter, including the
codification of the candidate solutions, the parameters and
steps of the algorithm, the mechanisms of memory updating
and convergence criteria.

3.1 Codification of the Candidate Solutions

The codification proposed for a candidate solution (m) of the
MMS algorithm stores the capacity of reactive support pro-
vided by capacitors banks in each candidate bus, according
to (2).

m = [Qb1 Qb2 Qb3 . . . Qbnb] (2)

where Qbi is the capacity of the bank allocated at candidate
bus i that can be fixed (Qbi = Q fi ) or switched (Qbi =
Qsi ). The determination of type is done by combining the
candidate solution in m with a matrix α, which stores the
multiplicative factors αi,u for obtaining the reactive support
at each bus and load level. The matrix (3) is defined such that
each line stores the factors associated with a bus in all load
levels and each column stores the factors related to a load
level in all candidate buses.

α =

⎡

⎢⎢⎢⎢⎢⎢⎣

α1,1 α1,2 · · · α1,nt

α2,1 α2,2 · · · α2,nt

·
·
·

·
·
·

·
·
·

·
·
·

αnb,1 αnb,2 · · · αnb,nt

⎤

⎥⎥⎥⎥⎥⎥⎦
(3)

The factor αi,u .Qbi can result in a value that is not among the
discrete values for a capacitor bank. In this case, the factor
αi,u .Qbi is rounded to the nearest discrete number, in a sim-
ilar procedure adopted in (Viana et al. 2013), as represented
in (4).
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Fig. 1 Structure of an artificial tree

Qci,u = round(αi,u .Qbi ) (4)

where

Qci,u Reactive support provided by capacitor bank
at bus i and load level u; and

round Operator that rounds to the nearest discrete
value.

When the values of Qci,u for bus i , at the final of the optimiza-
tion process, are different between load levels u, a switched
capacitor bank is allocated at bus i , ui,s is set at 1 and
Qsi = Qbi in system of equations (1). On the other hand,
when Qci is the same for all load levels u, a fixed capacitor
bank is allocated at bus i, ui, f is set at 1 and Q fi = Qbi in
(1). The factors αi,u are randomly generated at the beginning
of the optimization process for every bus and load level. As
the algorithm evolves, the factors are fixed by a procedure
known as intensification, which is described in this paper.

3.2 Parameters of the Initial Tree

The initial tree is defined as the set of candidate solutions
that are used as starting point for the MMS algorithm. The
base case is the condition where there is not capacitor alloca-
tion and it is defined as “root candidate solution”. From the
“root”, the algorithm generates two new candidate solutions
that along with the base case form the first level of the initial
tree. The first-level solutions are derived from the base case
through tree branches as pictured in Fig. 1. From that, the sec-
ond level is obtained by deriving two new solutions fromeach
point of the first level, and so on. Each level implies a new
depth for the search. Themechanism to derive new candidate
solutions from a current solution is known as perturbation.

In the initial tree of Fig. 1, the number of levels is equal
to 3 because the “root” and the two first candidate solutions
form a unique level. Therefore, the first level is formed by the

candidate solutions “root”, “A” and “B”, the second one by
solutions “C” to “F” and the third level is formed by eight
candidate solutions (“G”–“N”). In an artificial tree, a branch
consists of a link between two candidate solutions, whereas
a path consists on a full sequence of solutions between the
“root” and a solution of the last level. In the initial tree of
Fig. 1, (“root”–“A”) e (“A”–“B”) represent two branches,
whereas (“root”-“A”–“C”–“G”) define a path. In this way,
the number of paths in an artificial tree can be formulated as:

c = 2h (5)

where

c Number of possible paths in an artificial tree;
h Number of levels (height or top of the tree).

The search for candidate solutions in the initial tree is fin-
ished when all paths between the “root” and the last level are
covered through a full search process.

3.3 Subsequent Trees

Thefirst subsequent tree to be investigated in theMMSsearch
process is obtained through perturbation in the best solution
found in the initial tree, which is defined as the “root” of the
first subsequent tree. In general, the starting point of any sub-
sequent tree is the best candidate solution among all previous
trees.

In a subsequent tree, the algorithm performs a search
guided by the best candidate solutions obtained during the
perturbation processes, avoiding the full search and increas-
ing the efficiency of the method in relation to the original
MS (Kammerdiner et al. 2009) for the capacitor allocation
problem.The originalMSperforms the full search in all trees.

In Fig. 2, the candidate solution “root” is perturbed to gen-
erate solutions “A” and “B”. The algorithm compares the two

Fig. 2 Search process of an artificial subsequent tree
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Fig. 3 Perturbation mechanism

generated solutions and “A” is the best. From that, the process
continues from the candidate solution “A”, generating “C”
and “D”, and so on until the top of the tree. Therefore, the
candidate solution “D” and the respective derived branches
are excluded from the search process by a pruning procedure.

3.4 Adaptive Memory

The adaptive memory is initialized by the ten best solutions
obtained in the initial tree and is updated during the search
in the subsequent trees. The adaptive memory after the full
search in the initial tree is represented in (6).

memom1 = [m1,m1,m2,m1,m3,m1,m4,m1,m5,m1,m6,m1, . . .

m7,m1,m8,m1,m9,m1,m10,m1] (6)

where

memom1 Initial adaptive memory of tree m1;
mn,mi Candidate solution stored at position n of tree

mi.

As previously described, the best candidate solution found in
tree m1,m1,m1, is the “root” of subsequent tree m2. If a can-
didate solution found in treem2 is better than any solution of
memom1, thememory is updated and the last positionm10,m1

is discharged, maintaining the number of stored candidate

Fig. 4 Example of the perturbation mechanism applied to the allocation of fixed and switched capacitors
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solutions. As an example, two solutions of tree m2,m1,m2

e m2,m2, are assumed to be better than solutions m3,m1 and
m6,m1 of the initial memory in (6), respectively. So the mem-
ory should be updated as in (7).

memom2 = [m1,m1,m2,m1, m1,m2 ,m3,m1,m4,m1,m5,m1, . . .

m2,m2 ,m6,m1,m7,m1,m8,m1] (7)

It can be observed that even if the candidate solutions found
inm2 are not better than the first solution ofmemom1, and the
memory is updated if at least one solution ofm2 is better than
any candidate solution in set given by [m2,m1 : m10,m1], the
adaptivememory is updated. This proceduremakes theMMS
method more efficient for the capacitor allocation problem
and is a modification in relation to the original MS (Kam-
merdiner et al. 2009), which makes comparisons only with
the best stored solution.

3.5 Perturbation Mechanism of the Current Solution

The perturbation process applied to a candidate solution to
generate new solutions consists of increment and decrement
operations in random positions of the solution code. Given
the adopted codification for the candidate solutions, an incre-
ment operation changes the capacity of the capacitor bank at
a random bus to the next higher capacity among the pos-
sible discrete values, provided that the new capacity does
not exceed the maximum discrete value. Likewise, a decre-
ment operation changes the current capacity to the next lower
among the discrete values. The number of increment (ninc)
or decrement (ndec) operations varies randomly from 1 to 3.
Figure 3 is used to exemplify the perturbation mechanism,
where the values modified by perturbations are highlighted.
From the “root”, candidate solution “A” is generated through
two increments and one decrement, whereas solution “B” is
obtained by one increment and one decrement.

If a bus is selected two times for increment, its capacity
will be changed to the second value above among the possible
discrete values for capacitor bank.Analogous process is done
when a bus is selected three times for increment or two times
for decrement. The capacity limits are considered in such
operations, i.e., if a new value goes out of the discrete values
range, the respective operation is not done and new random
values are generated until the numbers of increments—ninc
and decrements—ndec are achieved, which are also randomly
chosen.

Regarding the multiplicative factors αi,u , which define the
reactive support in eachbus and load level, the candidate solu-
tions “A” and “B” generated by the perturbation mechanism
have distinct characteristics from one another. While “A”
maintains the factors of “root”, new multiplicative factors
are randomly generated for solution “B” from the beginning

of the optimization process until the beginning of the inten-
sification process that is described ahead. The differences
in the generation of “A” and “B” avoid the algorithm from
being limited to a nonoptimal solution given by the factors
αi,u of the “root” in the first iterations. The same mecha-
nism procedure applied to the “root” is extended to derive
two solutions of any level in tree from a given solution of the
previous level.

Figure 4 exemplifies the proposed perturbation mecha-
nism of the MMS algorithm upgraded for fixed and switched
capacitor banks allocation. The example assumes five can-
didate buses and the following discrete values: 0, 150, 300,
450. It is further considered that the candidate solution at
level “k” of a given tree is codified as [150 0 0 300 150],
which determines the allocation of 150kvar banks at the first
and fifth candidate buses (Qb1 = Qb5 = 150), besides
a bank of 300kvar at the fourth bus (Qb4 = 300). Solu-
tion “A” of level “k + 1” in the tree maintains the matrix
of factors α of level “k”, whereas solution “B” receives new
random factors αi,u , as pictured in Fig. 4 that also shows the

Fig. 5 Flowchart of the proposed MMS algorithm
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Table 1 Case 1: Data for the base case (without capacitors)

Minimum voltage (pu) Total loss (kWh) Loss cost ($) Total loss cost ($) Capacitor cost ($) Total cost ($)

0.9567 103,199.29 6191.96 135,930.27 0.00 135,930.27

0.9092 1,183,514.54 71,010.87

0.8445 978,790.74 587,272.44

Fig. 6 Convergence and
number of perturbations in every
tree
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factors αi,u .Qbi for each solution and the respective reac-
tive support values Qci,u after the rounding operations of
(4). In this case, candidate solution “A” determines alloca-
tions of switched banks at buses 1 and 4, because the values
of QCi,u are different between two or more load levels for
these buses, besides the allocation of a fixed bank at bus 3
because Qc3,1 = Qc3,2 = Qc3,3. Solution “B”, in turn,
determines the allocation of switched banks at buses 1, 3 and
4.

3.6 Convergence

The convergence criteria for the search in the artificial trees
of the MMS algorithm are summarized hereafter.

(i) Initial tree The convergence is achieved when all paths
are covered.

(ii) Subsequent tree The convergence is achieved when at
least one of the following conditions is met:

• a solution better than the “root” is achieved; the lower is
the OBF of (1), the higher the quality of solution;

• all paths of the tree are covered.

Besides the convergence criteria of the search in trees, there is
the global convergence criteria of the MMS algorithm listed
hereafter:

(i) the differencebetween theworst and thebest solutions of
the adaptive memory is less than or equal to a tolerance
ε, or

(ii) the maximum number of covered trees (ntmáx) is
achieved.

3.7 Intensification Process

After the full search in the initial tree ofMMS,when the num-
ber of evaluated solutions achieves a given preestablished
number (nperi), the algorithm obtains the multiplicative fac-
tors of the reactive supports by bus and load level—αi,u—of
the candidate solutions stored in the adaptive memory. After
that, the candidate solutions derived until the convergence
maintains the factors αi,u and the perturbation mechanism
only changes the bank capacity values—Qbi . Therefore,
from the nperi solution obtained after the initial tree, the fac-
tors αi,u remain the same for both solutions “A” and “B”
derived from any candidate solution.
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Table 3 Case 1: Reactive support in every load level

Optimal location Control setting (kvar) Optimal size (kvar)

0.5 1.0 1.6

10 – 150 150 150

18 150 300 300 300

59 – 150 150 150

61 300 600 750 750

62 150 300 450 450

64 150 300 450 450

3.8 Flowchart of the Proposed MMS Algorithm

Figure 5 presents the flowchart of theMMSalgorithm,whose
steps are described ahead.

Step 1 InputData. In this step, the distribution systemdata
are obtained and the MMS parameters and optimization
conditions are defined.
Step 2 Climbing up the initial tree. This step consists of
exploring the initial tree from its root, which corresponds
to the base case, without any capacitor bank allocation.
The root is successively perturbed until the top is reached.
The root and each node achieved in the tree are solutions
for the optimal capacitor allocation evaluated each one
through the optimization problem formulated in (1). The
quality or fitness of each solution is inversely propor-
tional to its OBF associated with the total cost of loss
and investment.
Step 3 Initialization of the adaptive memory (memo). The
n better solutions found in the initial tree are stored in
memo in descending order of fitness. The first element of
memo is named ibest. In the proposed algorithm, n is set
to 10.
Step 4Beginning of search in the subsequent treemi. Per-
turbation of ibest to generate two new nodes or solutions
through the perturbation mechanism described before.
Step 5 Choosing the new current solution. The node gen-
erated at Step 4 that presents the better fitness is chosen.
Step 6 Evaluation of the new current solution chosen at
Step 5. Two situations can occur: (i) If the chosen solution
presents fitness better than ibest, this solution replaces
ibest and the convergence of tree mi is achieved; in this
case, counter i is incremented and a new tree mi begins
to be explored from Step 4; (ii) otherwise, the adaptive
memory is updated if the new current solution is better
than at least one solution of memo; in this case, the algo-
rithm goes to Step 7.
Step7Global convergence criteria evaluation. In this step,
the global convergence criteria previously described are
assessed. If at least one of the presented conditions is

achieved, the algorithm is ended. Otherwise, it goes to
Step 8.
Step 8 The algorithm verifies if the top of tree mi was
achieved. If the answer is ‘yes’, it means that no solution
better than ibest has been found from the root to the top of
mi. In this case, the algorithm returns to Step 4 to perform
a new perturbation process in ibest. This procedure is the
climbing down process. Otherwise, i.e., if the top has not
been achieved, the algorithm remains in the climbing up
process at Step 9.
Step 9 Perturbation of the current solution. As previ-
ously described, the perturbation mechanism generates
two new solutions candidate to the new current solution.
From this generation, the algorithm goes to Step 5.

4 Case Studies

Four case studies are performed to evaluate the MMS algo-
rithm upgraded to be applied to the problem of fixed and
switched capacitors banks allocation: case 1—69 buses
(Baran and Wu 1989); case 2—17 buses (Su et al. 2008),
case 3—85 buses (Das et al. 1995) and case 4—123 buses
(Kersting 1991). The first one is a tutorial case for the MMS
algorithm and presents a step-by-step description of the opti-
mization process. The common parameters for the cases
studies are: (i) height of a tree (h) = 8, totaling c = 256
paths according to (5); (ii) tolerance ε = 0; (iii) maximum
number of trees ntmax = 20; (iv) size of the adaptive memory
equal to 10; (v) nperi = 100; and (vi) maximum number of
capacitor banks in the whole system is 15 as in (Duque et al.
2015). In case 1, there is a set of buses candidate for capacitor
allocation from the literature, whereas in cases 2–4, all buses
are candidate.

The MMS method applied in this paper is compared to
other metaheuristics as listed hereafter:

(1) Original Monkey Search (MS) of (Kammerdiner et al.
2009);

(2) Genetic Algorithm (GA) which parameters obtained of
(Silva et al. 2008) are: (i) crossover probability of 95%,
(ii) mutation probability of 2%, (iii) population size of
300, (iv) number of generations of 100, (v) convergence
criterion based on maximum number of generations, (vi)
elitism with one individual, (vii) decimal coding, (viii)
roulette selection and (ix) two-point crossover;

(3) Simulated Annealing (SA) which parameters are (Su and
Lee 2001b): (i) Boltzmann constant equal to 1, (ii) initial
temperature equal to 30, (iii) maximum number of itera-
tions equal to 300 and (iv) cooling rate equal to 0.95.

The tests were performed using a 3.20-GHz Intel Corei5–
4200 processor with 6GHz RAM.
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Table 5 Case 2: Reactive support in every load level

Optimal
location

Control setting (kvar) Optimal
size (kvar)

0.5 1.0 1.6

12 – 150 150 150

20 – 150 150 150

25 150 150 300 300

26 – 150 150 150

30 – 150 150 150

36 150 150 300 300

40 – 150 150 150

44 150 150 300 300

54 – 150 150 150

57 150 150 300 300

60 150 150 300 300

61 – 150 150 150

69 150 300 450 450

80 150 150 300 300

4.1 Case 1: Tutorial

The 69-bus test system (Baran et al. 1989) is used as a tutorial
case for the MMS algorithm. The system has a substation,
74 branches and nominal voltage at 12.66kV.

The optimization conditions are described hereafter:

• Total operation time of 8760hours (1year), divided
into three load levels: light (0.5pu during 2000hours),
medium (1.0pu during 5260hours) and heavy (1.6pu
during 1500hours);

• The cost related to the energy loss and the investment
in capacitors, fixed or switched, are 0.06$/kWh and
3.00$/kvar, respectively;

• The set of buses candidate for capacitor allocation is (Das
2008):

S = [7 8 9 10 11 12 14 15 16 17 18 21 24 26 27 49 50

51 54 55 59 61 62 64 65 66 67 68 69];

• The objective function for this case considers only the
first and the third terms of (1), related to the energy loss
and investment in capacitors, as presented hereafter:

Min OBF =
nt∑

u=1

ke,u .Tu .Li j,u · Bp …

+
nb∑

i=1

(
k f · ui, f · Q fi + ks · ui,s · Qsi

) · Bp

(8)

• As the results from other works that are used for compar-
ison in this case do not consider voltage limit constraints,
such constraints are also not considered here by the pro-
posed approach.

The MMS algorithm starts from the initial tree which “root”
corresponds to the base case where there is not any capacitor.
Table 1 presents the data for the base case.

The search in the initial tree is performed until all paths
are covered, comprising 256 solutions. The ten best solutions
initialize the adaptive memory. Vectormemom1 with the best
objective function values for the initial tree is presented
here.

memom1 = [95,433.76 95,642.61 95,719.44 95,853.49

95,991.38 . . . 96,273.91 96,345.16

96,558.82 96,880.48 97,076.12]

The next step consists of searching in the subsequent trees,
without necessarily evaluating all the possible paths. Fig-
ure 6a shows that the objective function reduces from
$ 135,930.27 (base case) to $ 95,433.76 after searching the
initial tree (m1). From the “root” ofm2, i.e., the best solution
found in m1, 17 perturbation processes is performed until a
solution better than the “root” is achieved, when the con-
vergence criterion of m2 is met. The same reasoning can be
applied for the other trees. The final solution found by the
MMS algorithm is found after the search in the last tree (m8)
and presents a total cost of $ 94,067.69. Figure 6b presents
the number of perturbations in each tree.

It can be seen in Fig. 6 that the number of perturbations in a
tree increases from the second one to the last tree, because as
the optimization process evolves, better quality solutions are
obtained and it becomes harder to overcome the best solution,
i.e., the “root” of the current tree. This reasoning does not
apply to the first tree due to the full search that is performed
only in this tree.

Table 6 Case 3: Size, type and
costs for capacitors (Huang and
Liu 2012)

kvar 100 150 200 300 450 600 900 1200

Fixed capacitors ($/year) 929 1656 2192 3204 5059 6408 9612 12,815

Switched capacitors ($/year) 1385 2112 2648 3660 5515 6864 10,068 13,271
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Table 7 Case 3: Comparison of the MMS algorithm with other methods

Methodology Optimal locations
and size (kvar)

CO2 emission
(tons)

CO2 emission
cost ($)

Total loss
cost ($)

Capacitor
cost ($)

Total
cost ($)

CPU
time (s)

Without capacitor – 153.65 455,879.60 510,538.03 – 966,404.00 N/A

MMS algorithm 2(600–F), 3(150–F),
5(150–F), 8(150–F),
9(150–F), 14(300–F),
17(150–F)

133.95 397,424.39 445,083.00 17,892.00 860,399.40 3.32

Developed MS 2(900–F), 6(150–F),
7(150–F), 11(150–F),
13(150–F), 14(150–F),
16(150–F)

134.15 398,012.84 445,742.01 19,548.00 863,302.85 14.55

Developed GA 2(600–F), 4(300–F),
5(150–F), 9(150–F),
13(450–F)

134.71 399,699.25 447,630.66 17,983.00 865,312.90 50.67

Developed SA 2(600–F), 4(150–F),
6(450–F), 7(150–F),
11(150–F), 16(150–F)

135.35 401,577.56 449,734.21 18,091.00 869,402.77 134.90

Huang and Liu (2012)
4(100–F), 10(150–S),
12(100–F), 14(450–S),
17(200–F)

135.50 402,028.50 450,255.05 11,677.00 863,970.00 223.00

Table 8 Case 3: Reactive support in every load level

Optimal
location

Control setting (kvar) Optimal
size (kvar)

0.3 0.7 1.0

2 600 600 600 600

3 150 150 150 150

5 150 150 150 150

8 150 150 150 150

9 150 150 150 150

14 300 300 300 300

17 150 150 150 150

Table 9 Case 4: Size, type and costs for capacitors (Huang and Liu
2012)

kvar 150 300 450 600 900 1200

Fixed capacitors ($/year) 2528 3287 3843 4450 5562 6877

Switched capacitors ($/year) 3034 3809 4349 4956 6068 7383

Table 2 presents the results of the MMS algorithm and the
solutions of the MS, GA and SA algorithms, developed for
comparison purpose, and other from the literature (Neelima
and Subramanyam 2012; Ramalinga et al. 2012; Swarnkar
et al. 2010; Sultana andRoy 2014). The total cost obtained by
MMS ($ 94,067.69) presents a reduction of 30.80% in rela-
tion to the base case ($ 135,930.27). Moreover, the results
show that the MMS algorithm presents the lowest cost and
processing time, compared to the other methods. It can also
be observed that other sizes for the capacitor banks are con-

sidered in (Neelima and Subramanyam 2012; Swarnkar et al.
2010). The processing times for (Neelima and Subramanyam
2012; Ramalinga et al. 2012; Swarnkar et al. 2010) were not
given.

The values obtained for the load multiplicative factors as
in (3) are shown in the following matrix:

α =
⎡

⎣
0.3 0.4 0.3 0.4 0.4 0.3
0.8 0.8 0.8 0.7 0.8 0.7
1.0 1.0 1.0 1.0 1.0 1.0

⎤

⎦ ,

where the first, second and third lines are related to the light,
medium and heavy load conditions, respectively. Table 3
presents the reactive power from the allocated capacitors in
every load level for the best solution found by theMMS algo-
rithm, after the updating process applied to the banks in order
to obtain multiples of 150kvar.

4.2 Case 2

Case 2 uses the 85-bus (Das et al. 1995) test system and
considers the same optimization conditions of the previous
case.

Tables 4 and 5 present the results for Case 2. FromTable 4,
it can be verified that the MMS algorithm presents the lower
total cost, with a reduction of 50.82% in relation to the base
case. The processing time for (Ramalinga et al. 2012) was
not given.
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Table 11 Case 4: Reactive support in every load level

Optimal
location

Control setting (kvar) Optimal
size (kvar)

0.5 0.8 1.0

9 300 300 450 450

42 150 300 300 300

47 300 450 600 600

53 150 150 150 150

64 150 150 150 150

65 150 150 150 150

67 300 450 600 600

71 150 150 150 150

78 300 300 450 450

91 150 150 150 150

4.3 Case 3

Case 3 does the optimal capacitor allocation in the 17-bus
system of (Su et al. 2008). The optimization conditions are
as follows:

• Operation time of 8760hours (1year), divided into three
load levels—light (1000hours), medium (6760hours)
and heavy (1000hours);

• Multiplicative factors of the load (light/medium/heavy)
—0.3/0.7/1.0pu;

• Energy loss cost—2.1133 $/kWh for all load levels;
• Costs for fixed and switched capacitors—Table 6 (Huang
and Liu 2012);

• Voltage limits—from 0.9 to 1.0pu;
• Objective function given by (1);
• CO2 emission cost “kCO2”—2,967 $/ton (Huang and Liu

2012).

Tables 7 and 8 present the results. In Table 7, column
“Optimal Locations and Size”, “F” means fixed capacitor
and “S” switched capacitor.

The efficiency of the MMS algorithm for this case can be
shown by comparing the total costs, the CO2 emissions and
the processing times, because the MMS obtains the lower
values for such parameters and met the voltage limit con-
straint.

4.4 Case 4

Case 4 has as purpose to evaluate the MMS algorithm for
a larger network that has 123 buses (Kersting 1991). The
optimization conditions are:

• Multiplicative factors of the load (light/medium/heavy)—
0.5/0.8/1.0pu;

• Energy loss costs—0.64 $/kWh, 1.65 $/kWh and 2.76
$/kWh for the light, medium and heavy load, respec-
tively;

• Costs for fixed and switched capacitors—Table 9 (Huang
and Liu 2012);

• CO2 emission cost “kCO2”—843 $/ton (Huang and Liu
2012).

The other optimization conditions are the same of the previ-
ous case.

Tables 10 and 11 present the results for Case 4, where the
efficiency and applicability of the MMS algorithm for allo-
cating fixed and switched capacitors, considering relevant
objectives as the emission reduction, can be verified.

5 Conclusions

This paper presented an algorithm based on the metaheuris-
tic optimization technique known as Monkey Search for the
allocation of fixed and switched capacitors banks in energy
distribution systems. The Modified Monkey Search algo-
rithm applied to the capacitor allocation problem presents
improvements in relation to the original method. An advan-
tage of the applied method consists of the reduced set of
parameters to be adjusted and the combination of local
and global search strategies in the feasible solution space.
Important aspects as different load levels, voltage limit
constraints and contemporary objectives as the gas emis-
sion reduction are considered by the proposed approach.
The results show that the proposed algorithm is efficient,
achieving good quality solutions with reduced processing
times.
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