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Abstract The unscented Kalman filter (UKF) is one of the
most used approximate solutions to the problem of non-
linear filtering. It is relatively easy to implement, and it
produces better state estimates than the extended Kalman
filter, especially when the nonlinearities of the dynamic sys-
tem are significant. The quality of the estimates yielded by
the UKF is dependent on the tuning of the parameters that
govern the unscented transform (UT). To the user, manu-
ally tuning the UT means picking proper values for three
scalar variables with almost no theoretical guidance. To help
relieve the user from this burden, we approach the tun-
ing of the UT parameters as an optimization problem and
propose a tuning algorithm based on ideas of the boot-
strap particle filter. The proposed algorithm is analyzed and
numerically tested against both a set of popular nonlinear
filters and a recently published model-based tuning algo-
rithm.

Keywords UKF automatic tuning · UT automatic tuning ·
Nonlinear filtering

1 Introduction

According to Turner and Rasmussen (2012), three of the
most used approximate solutions to the problem of nonlinear
filtering are the unscented Kalman filter (UKF; Julier and
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Uhlmann 1997), the extended Kalman filter (EKF; Maybeck
1979) and the cubatureKalman filter (CKF;Arasaratnam and
Haykin 2009).

The EKF has been the most popular nonlinear filter of the
last decades (Psiaki 2013). It is nonetheless known that the
first-order Taylor series approximations used by the filter can
hinder its applicability in situations where nonlinearities are
significant, or when the necessary Jacobians are difficult to
obtain. In spite of its known shortcomings, the EKF is still
popular, probably due to its very low computational cost.

The CKF was described by its authors as being numeri-
cally more accurate and stable than the UKF [see Section VII
of Arasaratnam and Haykin (2009)]. It is though known that
the CKF can be reduced to a particular case of the UKF
(Turner and Rasmussen 2012), when α = 1, β = 0 and
κ = 0.

The UKF is known to be able to achieve better estima-
tion performance than the EKF, although both filters display
the same order of computational complexity (Wan and van
der Merwe 2000). To yield better state estimates than the
EKF, the UKF resorts to the UT (Julier and Industries 2002)
to properly propagate the mean and covariance of the state
estimate through the nonlinear functions of the dynamic sys-
tem. To work well, the UT demands the tuning of its three
scalar parameters (α, β and κ), a difficult task given the lack
of comprehensive theoretical guidance for picking the para-
meter values. A common tuning strategy is given in Julier
et al. (2000), which is to make κ = 3− nx 1, where nx is the
dimension of the state vector. We call the UKF tuned with
such heuristic the default UKF (UkfD). This strategy, though,
may produce poor results.

1 Julier et al. (2000) use the nonscaled version of the UT, which can be
obtained by making α = 1 and β = 0 in the regular (scaled) UT.
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To fulfill the need for more effective tuning strategies, a
number of recently published works approach the tuning of
the UT as a numerical optimization problem.

Abbeel et al. (2005) propose to usemachine learning algo-
rithms (Barber 2012) to automatically tune the covariance
matrices of both the process and measurement noises of a
Kalman filter. Despite not dealing with the UT, this refer-
ence is important because it approaches the tuning of the
noise covariancematrices as an optimization problem guided
by the maximization of the likelihood of the measurements
taken from the dynamical system. The maximization of such
likelihood was later used in a number of UT tuning works
(Dunik et al. 2012; Turner and Rasmussen 2012; Straka et al.
2014).

In Sakai and Kuroda (2010), values for both the UT para-
meters and the noise covariance matrices are obtained by
offline optimization. The optimization process, nonetheless,
demands the availability of highly accurate measurements of
the state vector or at least of part of it, reducing the applica-
bility of the approach.

An online adaptation strategy of the scaling parameter κ

is proposed in Dunik et al. (2010, 2012), Straka et al. (2012,
2014) and Scardua and da Cruz (2015). Under the proposed
strategy, at each filtering iteration, the scaling parameter κ is
selected from a discrete set of possible values, while keep-
ing α = 1 and β = 0. A value for κ is selected each time
a measurement is received by the filter. The chosen value
is the one that maximizes a given performance criterion,
such as the likelihood of the measurements received by the
filter. The proposed strategy is claimed to be able to cope
with changes in the operating point of the dynamical system,
but the selection of values for κ demands the realization of
extra measurement update steps, entailing reasonable com-
putational cost.

The machinery of model-based optimization (Forrester
et al. 2008) was used for tuning all three UT parameters
by Turner and Rasmussen (2010) and Turner and Rasmussen
(2012). The optimization seeks to find values for theUTpara-
meters that maximize the popular upper confidence bound
(UCB) criterion (Cox and John 1997). The only data needed
from the original dynamical system are the measurements
which would be regularly available for the filter. The pro-
posed approach does not increase the computational cost
of the UKF, but confidence bound criteria are known to be
sensitive to the tuning of the parameter that controls the
exploration/exploitation trade-off (Jones 2001). Moreover,
the algorithms involved in model-based optimization can be
relatively complex to implement.We call UkfO the UKF that
stems from this optimization approach.

We also approach the tuning of the UT parameters as an
optimization problem. We propose a search method that is
based on ideas of the BSF (Gordon et al. 1993). The opti-
mization process is guided solely by noisy measurements of

the nonlinear dynamic system that is to be filtered. The search
space is a cube in the Euclidean space, with each dimension
corresponding to one of the UT parameters. The points in
the cube are called particles. The tuning is performed offline,
thus incurring no extra cost for the filter during runtime. We
call PfUkf the UKF tuned with the proposed optimizer.

The rest of this paper is organized as follows. Section 2
gives the necessary background on the UT, showing how the
UT parameters influence the estimates produced by the UKF.
Section 3 describes how the tuning of the UT parameters was
approached as an optimization problem. Section 4 justifies
why a direct search algorithmwould be suitable to the tuning
of the UT. Section 5 describes the optimization algorithm
developed for the task. Section 6 describes the numerical
testing of the filters, and Sect. 7 presents the final comments.

2 The Unscented Kalman Filter

The discrete-time nonlinear filtering problem consists in
estimating p(xk |y1:k), the marginal distribution of the cur-
rent state xk of a discrete-time dynamic system, given the
sequence of measurements y1:k = {y1, . . . , yk}.

The sequentialBayesianfilter (Candy2009) provides opti-
mal solution to the discrete-time nonlinear filtering problem.
To this end, the filter alternates between prediction and cor-
rection steps. The prediction step estimates p(xk |y1:k−1), the
conditional probability distribution of the state at time instant
k, given both the measurements available at time instant
k − 1 and the transition probability p(xk|xk−1), which is
determined by the dynamic model. The correction step uses
measurement yk and the distribution p(yk|xk) given by the
measurement model to generate p(xk |y1:k), the corrected
conditional probability distribution of xk . The sequential
Bayesian filter equations are

p(xk |y1:k−1) =
∫

p(xk |xk−1)p(xk−1|y1:k−1)dxk−1

p(yk |y1:k−1) =
∫

p(yk |xk)p(xk |y1:k−1)dxk

p(xk |y1:k) = p(yk |xk)p(xk |y1:k−1)

p(yk |y1:k−1)
. (1)

A closed-form solution to (1) can only be found in spe-
cific situations. One such situation arises when the dynamic
system is linear with additive Gaussian noise. In this case,
the required distributions are Gaussian and the solution is
the Kalman filter [Section 5.3 of Candy (2009)]. When the
dynamic system is nonlinear, it is necessary to resort to
approximate solutions.

One type of approximate solution to (1) is obtained when
the probability distributions involved are assumed to be
Gaussian. This approach yields the so-called Gaussian filters
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(Wu et al. 2006). It then suffices to calculate the necessary
means and covariances, in order to completely specify such
distributions.

Gaussian filters feature a general form, fromwhich stem a
number of popular nonlinear filters (Wu et al. 2006), such as
the EKF, the CKF and the UKF. To provide further context
to the present discussion, let us define that the discrete-time
nonlinear dynamic systemmodel used in the nonlinear filter-
ing problem is given by

xk = f (xk−1) + wk−1

yk = h(xk) + vk , (2)

where f (·) and h(·) are known functions, wk−1 ∼ N (0,Q)

is the process noise, and vk ∼ N (0,R) is the measurement
noise. Both noises are white and uncorrelatedwith each other
and with the initial system state.

The general Gaussian filter uses a Kalman-like structure
to completely address the estimation task for system (2) (Wu
et al. 2006). The equations of the additive noise general
Gaussian filter are [Algorithm 6.3 of Sarkka (2013)]:
Prediction

m−
k =

∫
f (xk−1)N (xk−1|mk−1,Pk−1) dxk−1

P−
k =

∫ (
f (xk−1) − m−

k

) (
f (xk−1) − m−

k

)T
N (xk−1|mk−1,Pk−1) dxk−1 + Qk−1 (3)

Update

μk =
∫

h (xk)N
(
xk |m−

k ,P−
k

)
dxk

Sk =
∫ (

h (xk)−μk
) (
h (xk) − μk

)T N (
xk |m−

k , P−
k

)
dxk

+Rk

Ck =
∫ (

xk − m−
k

) (
h (xk) − μk

)T N (
xk |m−

k ,P−
k

)
dxk

Kk = CkS
−1
k

mk = m−
k + Kk

(
yk − μk

)
Pk = P−

k − KkSkKT
k (4)

Different approaches to solving the moment integrals in
(3) and (4) give rise to different Gaussian filters (Wu et al.
2006). Cubature rules give rise to the CKF. Approximating
functions f (·) and g(·) with first-order Taylor series gives
rise to the first-order EKF, and using theUT to approximately
calculate those moment integrals gives rise to the UKF.

The UKF thus uses the UT to approximately compute
the mean and covariance of a random variable y that results
from a nonlinear transformation h(·) of a Gaussian random
variable x ∼ N (x̄, P x ), with x ∈ �nx .

To this end, the dimensionless UT parameters {α, β, κ} ∈
�+ are used to calculate a set of 2nx +1 deterministic points
(sigma points) and weights. The sigma points are given by

X 0 = x̄

X i = x̄ +
(√

(nx + λ)Px

)
i

i = 1, . . . , nx

X i = x̄ −
(√

(nx + λ)Px

)
i

i = nx + 1, . . . , 2nx , (5)

where (·)i denotes the ith column of the matrix and λ is a
scaling parameter given by

λ = α2(nx + κ) − nx . (6)

The corresponding weights are

w
(m)
0 = λ

nx + λ

w
(c)
0 = λ

nx + λ
+

(
1 − α2 + β

)

w
(m)
i = w

(c)
i = λ

2(nx + λ)
. (7)

Sigma pointsX i are then submitted to the nonlinear trans-
formation h(·), yielding

Y i = h(X i ) i = 0, . . . , 2nx . (8)

Finally, the first two moments of y are approximated as

ȳ ≈
2nx∑
i=0

w
(m)
i Y i

P y ≈
2nx∑
i=0

w
(c)
i (Y i − ȳ) (Y i − ȳ)T . (9)

The results yielded by the UT thus depend heavily on the
values of α, β and κ . Accordingly, the quality of the UKF
state estimates also depends heavily on such values. Properly
tuning theUTparameters is hence essential to obtaining good
UKF performance.

3 Approaching the Tuning of the UKF as an
Optimization Problem

The UT tuning process described in this article seeks to
improve the state estimation performance of theUKFwithout
imposing extra computational costs to the filter. Moreover,
the tuning process must be able to deal with the fact that it
would be difficult to obtain an explicit model of the UKF
applied to a particular dynamic system. These requirements
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lead us to resort to an offline optimization strategy that could
cope with black-box functions.

To perform the optimization of the UT parameters, it
would thus be necessary to conceive a scalar goal function
g(·) that could properly weight points of the UT domain. The
weight of a given point should be an indication of the state
estimation performance of the UKF when tuned with that
point. The tuning process would then consist in the maxi-
mization of a scalar goal function g(θ), where θ is a point in
the UT parameter space.

The tuning process described in this article adopts the
goal function used in Turner and Rasmussen (2010). This
goal function maximizes the likelihood of the measurements
that serve as training data. This strategy was also applied to
the offline tuning of the EKF noise covariance matrices in
Abbeel et al. (2005) and to the online tuning of the κ UT
parameter in Dunik et al. (2010).

For a given point θ , this goal function runs a UKF tuned
with θ on one or more time series

Yi = {yi (1), yi (2), . . . , yi (T )} , i = 1, . . . , nY (10)

where the yi (t) are the sequential noisy measurements of the
dynamic system state that comprise time series Yi .

For each Yi , the means and covariances of the measure-
ment predictions yielded by the UKF tuned with θ are used
to calculate the log of the conditional likelihood p(Yi |θ),
which is given by

log p (Yi |θ) =
∑T

t=1 log
(N (

yi (t)|ŷi (t),Si (t)
))

T
, (11)

where ŷi (t) and Si (t) are, respectively, the mean and covari-
ance of the measurement estimates yielded by the UKF
tuned with θ . The sequence of calculations performed by
the goal function is shown in Algorithm 1. The goal func-
tion receives the UT parameters θ , the training time series
Y = {Y1, . . . ,YnY } and both the mean M0 and covariance
P0 of the initial state. It then returns the conditional log-
likelihood of Y.

Algorithm 1 Goal Function
1: procedure goalfun(θ,Y,M0,P0)
2: for each Yi ∈ Y do
3:

[
Ŷi ,Si

]
← UKF(θ ,Yi ,M0,P0)� Run the UKF tuned with

Θ

4: loglik(Yi ) = log p(Yi , θ) � The conditional log-likelihood
of Yi is given by (11)

5: wθ ← ∑nY
1 loglik(Yi )� Return the conditional likelihood of Y

6: return wθ

It is important to note that the maximization of the log-
likelihood of the training data Y does not guarantee the

maximization of the state estimation performance of the fil-
ter, since no information about the true states that gave rise to
the measurements is used (Turner and Rasmussen 2010). It
would be more convenient to maximize the likelihood of the
true states that gave rise to the measurements, but in many
cases, it would be costly or even impossible to obtain such
ground-truth data. Fortunately, the results described in Sect. 6
show that it is possible to significantly improve the perfor-
mance of the UKF without having to obtain ground-truth
data.

4 Stochastic Tuning of the UKF

As seen in Sect. 3, the tuning of the UT parameters will
be approached as the optimization of a black-box function.
Though its analytic form is unknown, a black-box function
can be evaluated to yield its value, entailing the adoption of
gradient-free optimization algorithms, such as pattern search
(Hooke and Jeeves 1961) or genetic algorithms (Goldberg
1989).Nonetheless, existing gradient-free optimizers usually
require a large number of function evaluations, and Algo-
rithm 1 may be costly to evaluate in a number of situations,
such as when the time series that comprise the training data
are long or when the dynamic model (2) takes significant
computational time to run.

A better alternative would thus be to conceive a direct
search algorithm able to find a good tuning of the UT para-
meters without the need to perform too many evaluations of
the goal function. This can be accomplished by assuming
that the goal function shows some degree of smoothness.

If this is the case, then it is reasonable to expect that two
points in the input space that are close to each other are likely
to have similar values of the goal function. Hence, the value
of the goal function at a given point can be estimated by
the values of the goal function at points that are near. This
property means that close to points where the value of the
goal function is high, there are points where the value of the
goal function is similarly high, or maybe even higher.

As a result, an optimization algorithm that searches close
to points that display high values of the goal function
described by Algorithm 1 would have the potential to find
points where this goal function displays even higher values.
Nonetheless, to minimize the chance of getting stuck at poor
local maxima, the optimizer must implement some sort of
exploration of the input space.

To balance the conflicting goals of searching near points
where the goal function is known to be high (exploita-
tion of what is already known) and searching in regions
of the input space where there are few or no samples
at all (exploration or the input space), an optimization
algorithm could evaluate the goal function at points sam-
pled from a given probability distribution. This proba-
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bility distribution should be conceived in a way that it
would produce points located near and also points located
not so near existing samples. The former points would
allow the algorithm to exploit what is already known
about the shape of the goal function, while the latter
points would allow the algorithm to explore the input
space.

5 The Optimizer

The proposed tuning algorithm is based on ideas of the BSF
(Gordon et al. 1993). The BSF approximates the probabil-
ity distribution of the system state xk at time step k by a set
of random samples (particles). The mean and covariance of
the state estimate x̂k yielded by the filter at time step k are,
respectively, given by the mean and covariance of the exist-
ing particles at time step k. The filter works sequentially,
performing two basic steps, a prediction step and an update
step.

To briefly describe how the BSF works when applied to
system (2), let us assume that, at time step k − 1, the set of
particles isXk−1 = {xk−1(i) : i = 1, . . . , N } ,wherexk−1(i)
is the ith particle in Xk−1. This set of particles is indeed
a set of random samples from the probability distribution
p(xk−1|Dk−1), where Dk−1 = {yi , i = 1, . . . , k − 1} is the
set of measurements available at k − 1.

The prediction step is aimed at predicting what would be
the next state xk ∼ p(xk |Dk). To this end, each particle in
Xk−1 is transformed by the state transition function f (·),
yielding prior samples x−

k (i) = f (xk−1(i)) + wk−1, with
wk−1 sampled from the probability distribution of the system
process noise.

The update step uses measurement yk to correct the prior
samples. To this end, normalized weights are attributed to
the prior samples, so that the weight qi associated with prior
sample x−

k (i) is proportional to the conditional likelihood
p(yk |x−

k (i)). Each weight qi is seen as the probability mass
associated with the prior sample x−

k (i) and is hence used
to form a discrete probability distribution over the prior
samples. The corrected samples (particles) xk(i) are then
obtained by sampling from this discrete distribution, so that
the probability that a given prior particle will be resampled
is equal to its weight.

The operations performed by the proposed tuning algo-
rithm resemble those of the update step of the BSF. At each
iteration of the proposed optimizer, the particles associated
with the Ns highest values of the goal function are selected,
forming a subset Θ�. The values of the goal function corre-
sponding to the points in Θ� are then normalized to interval
[0, 1], in a way that the points in Θ� and the normalized
weights formadiscrete probability distribution.Apopulation
Θbest is then formed by randomly sampling Ns points from

this discrete distribution. In Sect. 6, the resampling is per-
formed according to the stratified resampling strategy (Douc
and Cappe 2005).

This resampling strategy steadily increases the number
of copies of particles with high weights and decreases the
number of copies of particles with low weights. This can be
seen as a way to exploit the information conveyed by the
existing particles, but it does not bring any new information
to the optimization process. To bring new information to the
optimization process, the algorithm samples Ns newparticles
from the distribution

p(θnew) = N (Mbest,Sbest), (12)

whereMbest and Sbest are, respectively, the mean and covari-
ance of Θbest. The normal distribution was chosen because
the UKF is a Gaussian filter.

The goal function is evaluated at θnew, providing them
with weights. The new particles and their weights are then
added to the current particle population, thus bringing new
information to the optimization process.

Probability distribution (12) is interesting because it can
yield samples located within varying distances of the best
existing particles. Samples that are close to existing particles
allow the tuning algorithm to exploit existing information
about the goal function, while points that are farther away
allow the algorithm to explore the input space.

A more systematic description of these general tuning
steps is given in Algorithm 2, which receives as inputs the
range of possible values for the particles, the budget of eval-
uations of the goal function, a set Θ = {θ1, . . . , θ N } of N
initial particles and the number Ns of new particles generated
at each iteration.

Algorithm 2 Particle-Based UT Tuning
1: procedure PFUKF- OPT(Ns ,Budget,Range,Θ)
2: WΘ ← Evaluate the goal function on the particles inΘ yielding

weights for each of them.
3: Θbest ← Θ

4: for i = 1 to Budget
Ns

do
5: Mbest ← Calculate the mean of particles in Θbest .
6: Pbest ← Calculate the covariance of particles in Θbest .
7: Θnew ← Sample Ns particles from N (Mbest ,Pbest ).
8: Θnew ← trim(Θnew, Range) � The coordinate values of

the particles Θnew may be trimmed to enforce the limits
defined by Range.

9: Wnew ← Evaluate the goal function on the new particles in
Θnew yielding weights for each of them.

10: Θ ← {Θ; Θnew} � Append the new particles to Θ .
11: WΘ ← {WΘ ;Wnew} � Append the new weights toWΘ .
12: Wθ ← Keep only the Ns highest weights in Wθ .
13: Θ ← Keep only the particles corresponding to the the new

Wθ .
14: Θbest ← resample Ns particles from a discrete distribution

formed with Θ and Wθ

15: θ� ← Return the particle associated with the highest weight.

123



J Control Autom Electr Syst (2016) 27:10–18 15

6 Numerical Experiments

All numerical experiments were executed according to the
following steps:

1. The training data Ytrain = {Ytrain
1 , . . . ,Ytrain

Ntr
} were com-

prised of Ntr time series generated by Monte Carlo
simulation of the nonlinear system;

2. The tuning for PfUkf was obtained by feeding Algo-
rithm 2 with Ytrain and the other necessary parameters;

3. The tuning for UkfO was obtained by feeding the opti-
mizer provided in Turner (2014) withYtrain and the other
necessary parameters;

4. The test data Ytest = {Ytest
1 , . . . ,Ytest

Nts
} were comprised

of Nts different time series generated by Monte Carlo
simulation of the nonlinear system;

5. The testing of the filters consisted in assessing the quality
of the state estimates yielded by the filters on the true
states corresponding to Ytest.

In all experiments, the optimizations corresponding to
steps 2 and 3 used the same set of 27 initial samples also
used in Turner and Rasmussen (2010). The maximum num-
ber of evaluations of the goal function (budget) was 100,
and the range of possible values for the UT parameters
was

0.01 ≤ α ≤ 4

0 ≤ β ≤ 4

0 ≤ κ ≤ 5 . (13)

The numerical experiments also assumed that the covari-
ance noise matrices Q and R were known, and the Ns free
parameter of Algorithm 2was always Ns = 10. The distribu-
tion of the initial state of the filters was the same distribution
used to generate the training and test data.

6.1 Benchmarks

Three commonly adopted nonlinear filtering problems are
used in the numerical experiments.

6.1.1 Kitagawa

Variations of the Kitagawa (1996) model have been used as
benchmark for nonlinear filters (Gordon et al. 1993; Turner
and Rasmussen 2010, 2012). The model equations are

xk+1 = 0.5xk + 25xt
(1 + x2t )

+ wk, wk ∼ N (0, 0.22)

yk = 5sin(2xk) + vk, vk ∼ N (0, 0.012) . (14)

For the numerical experiment with Kitagawa, the train-
ing data consisted of a single time series of 1000 sequential
measurements, and the test data consisted of 500 indepen-
dent time series of 10 sequential measurements each. The
initial state estimate for generating both the training and test
data was x0 ∼ N (0, 0.52).

6.1.2 Sinusoid

The Sinusoid problem (Turner and Rasmussen 2010, 2012)
is given by

xk+1 = 3 sin(xk) + wk, wk ∼ N
(
0, 0.12

)
(15)

yk = σ(xk/3) + vk, vk ∼ N
(
0, 0.12

)
, (16)

where σ(·) represents the logistic sigmoid.
For the numerical experiment with Sinusoid, the train-

ing data consisted of a single time series of 1000 sequential
measurements, and the test data consisted of 500 indepen-
dent time series of 100 sequential measurements each. The
initial state distribution for both the training and test data was
x0 ∼ N (0, 12).

6.1.3 Bearings Only

Different versions of the Bearings only are also popular
(Dunik et al. 2012;Bar-Shalomet al. 2002). Themodel repre-
sents the problem of tracking amoving target based solely on
measurements provided by one angular sensor. In this paper,
the system state is the position of the target in the Cartesian
plane. The model equations are

xk+1 =
[
0.9 0
0 1

]
xk + wk, wk ∼ N (0,Q)

yk = tan−1
(
x2,k − sin(k)

x1,k − cos(k)

)
+ vk, vk ∼ N (0, R),

(17)

where

Q =
[
0.1 0.01
0.01 0.1

]

R = 0.025 . (18)

For the numerical experiment with Bearings Only, the
training data consisted of a single time series of 1000
sequential measurements, and the test data consisted of 500
independent time series of 100 sequential measurements
each. The distribution of the initial state for both the training
and test data was
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Table 1 State errors computed from 500 Monte Carlo simulations for
Kitagawa

UkfD CKF EKF UkfO PfUkf

RMSE 2.824 3.416 6.387 0.432 0.391

MAE 0.491 0.967 1.921 0.179 0.169

x0 ∼ N
([

20
5

]
,

[
0.1 0
0 0.1

])
. (19)

6.2 Performance Criteria

The performances of the different filters are assessed with
the root-mean-squared error (RMSE) and the mean absolute
error (MAE) of the estimated states. Considering that the
prediction errors in each component i of the state vector x at
time step k are given by

ei,k = x̂i,k − xi,k , (20)

where x̂i,k and xi,k are, respectively, the predicted and the real
value of the ith component of x at time step k, the equations
of the error criteria are

RMSE =
√√√√ 1

nT

nT∑
k=1

nx∑
i=1

e2i,k (21)

and

MAE = 1

nT

nT∑
k=1

nx∑
i=1

|ei,k | , (22)

where nT is the number of time steps of the series of true
data.

The two criteria provide different views of the estima-
tion performances. In MAE, all errors are equally weighted,
while in RMSE, bigger errors have more impact than small
errors. We also employ boxplots of the squared state esti-
mation errors, in order to provide further assessment of the
variability of the predictions yielded by the filters.

6.3 Results

The state estimation errors for all three benchmark problems
are shown in Tables 1, 2 and 3. The measurement estimation
errors are shown in Tables 4, 5 and 6. The UT parameters
used in the UKF filters are shown in Tables 7, 8 and 9.

Table 2 State errors computed from 500 Monte Carlo simulations for
Sinusoid

UkfD CKF EKF UkfO PfUkf

RMSE 0.980 1.201 1.241 0.870 0.871

MAE 0.781 0.889 0.938 0.686 0.687

Table 3 State errors computed from 500 Monte Carlo simulations for
Bearings

UkfD CKF EKF UkfO PfUkf

RMSE 3.263 4.153 7.230 1.765 1.701

MAE 2.371 3.135 7.490 1.504 1.483

Table 4 Measurement errors computed from 500 Monte Carlo simu-
lations for Kitagawa

UkfD CKF EKF UkfO PfUkf

RMSEy 2.292 2.312 2.962 1.920 1.749

MAEy 1.285 1.323 1.637 1.050 1.007

Table 5 Measurement errors computed from 500 Monte Carlo simu-
lations for Sinusoid

UkfD CKF EKF UkfO PfUkf

RMSEy 0.151 0.152 0.172 0.135 0.136

MAEy 0.121 0.119 0.135 0.107 0.107

Table 6 Measurement errors computed from 500 Monte Carlo simu-
lations for Bearings

UkfD CKF EKF UkfO PfUkf

RMSEy 0.955 0.975 1.247 0.986 0.969

MAEy 0.580 0.634 0.883 0.532 0.526

Table 7 Kitagawa—UT parameters computed from a budget of 100
points and 1 training time series

α β κ

UkfO 0.31929 1.99620 1.71978

PfUkf 0.82318 2.16289 0.02967

Table 8 Sinusoid—UT parameters computed from a budget of 100
points and 1 training time series

α β κ

UkfO 2.03334 0.24597 0.37981

PfUkf 2.37510 1.80140 0.01101
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Table 9 Bearings—UT parameters computed from a budget of 100
points and 1 training time series

α β κ

UkfO 1.55542 3.78321 0.55737

PfUkf 1.03510 3.69540 3.45110
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Fig. 2 Sinusoid

The variability of the root-squared errors of the state esti-
mates yielded by the filters is shown in Figs. 1, 2 and 3.

6.4 Analysis

Tables 1, 2 and 3, together with Figs. 1, 2 and 3, show that
PfUkf performed better than the other filters in Kitagawa and
Bearings only. In Sinusoid, its state estimation performance
was on a par with that of UkfO. Except for UkfD in Sinusoid,
the remaining filters state estimation performances were sig-
nificantly worse than the performances of the tuned filters.
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Fig. 3 Bearings only

As for the measurement estimation performances,
Tables 4, 5 and 6 show that there can be some disagreement
with the state estimation performances, as expected.

7 Conclusion

We have presented a particle-based optimization algorithm
for automatically tuning theUTparameters. Themain advan-
tage of the proposed approach is that it can significantly
enhance the state estimation performance of theUKFwithout
imposing extra computational cost to the filter at runtime.

Numerical experiments showed that the proposed algo-
rithm yielded state estimation results better than filters EKF,
CKF andUkfD. The results alsowere comparable to or better
than the results of UkfO, a recently published model-based
optimization algorithm. The proposed optimizer, though, is
much easier to implement and also computationally simpler
than UkfO.
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