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Abstract The optimization of five-phase induction
machines is addressed using a new procedure based on
genetic algorithms. A constrained optimization model is
introduced which considers the main machine dimensions
as free variables. Number of stator and rotor slots, wind-
ing pitch, and rotor bar inclination angle are among the free
design variables. In addition, the relationship between funda-
mental and third harmonic component of the airgap induction
is also considered as a free variable. This relationship is used
to shape the airgap induction making it near to a trapezoid,
thus potentially increasing the output torque. The underlying
machinemodel used in the optimization process is detailed in
previous works and includes the effect of losses and satura-
tion on the steady state performance. Thus, a mixed-integer
optimization problem is defined, in which the continuous
variables are codified as integer variables making the opti-
mization problem easier to solve. Three objective functions
are defined and tested: efficiency, cost of conductor material,
and a weighted combination of efficiency and material costs;
other objective functions can be defined, too. The proposed
method was applied to the optimization of a 5.5-kW proto-
type machine, and the results are presented and discussed.
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1 Introduction

Induction machines have widely been used in virtually all
kinds of application due their excellent characteristics in
terms of robustness, low maintenance, production costs, and
high overload capacity. Furthermore, squirrel cage induc-
tion machines are very well suited for operation in explosive
atmosphere and other hazard areas, where other types of
machines cannot be applied.When fed froma high-efficiency
power converter, they become suitable for applications
requiring accurate speed, torque, or position control. Thus,
they are nowadays able to replace the dc machine in almost
any kind of application.

In the last two decades, the interest on induction machines
with high number of phases—i.e., machines with more than
three phases—has increased considerably. This is due the
fact that this type of machine, when fed by a static inverter,
can present several relevant advantages when compared to
conventional three-phase machines. The most outstanding of
these advantages are: improved torque/volume relation, fault
tolerance, and higher degree of active material utilization.
However, some of these advantages are only obtained when
the airgap induction differs from a sinusoid and assumes
a more flattened waveform (almost trapezoidal waveform),
which can be produced by imposing a third harmonic compo-
nent to the stator current, as presented in Toliyat et al. (1991),
Jacobina et al. (2004), Scharlau et al. (2008), Pereira et al.
(2012).

To take advantage of the special characteristics of high-
phase machines, new design concepts and new strategies for
their control have been developed. However, an important
issue, not yet deeply investigated, is the determination of
the best combination of design parameters, along with the
optimal percentage of third harmonic component in the air-
gap induction, which will result in an optimized machine
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with regard to a given objective function—conductor vol-
ume, for example. In this context, the main topic of this
paper is the optimization of five-phase machines using a new
method based on genetic algorithms. The proposed optimiza-
tion model can not only be applied to define an optimized
design, but also allows to take full advantage of the addi-
tional design alternatives of high-phase machines.

In general, induction machines have been designed based
on a trial-and-error approach, seeking to meet legislation and
standards requirements, as well as other application require-
ments, at aminimum cost. The success of this approach relies
basically on the number of attempts made and also largely on
the designers experience. The first improvement in this pro-
cedure took place in the early 1960s when computers were
introduced into the design process. From then on, design-
ers became able to evaluate a significantly larger number of
design alternatives and parameter combinations in a shorter
time. As a result, the machine performance could be much
improved and the production costs reduced (Veinott 1956,
1960; Herzog et al. 1959; Godwin 1959; Andersen 1967;
Chalmers and Bennington 1967).

Significant advancements in the automated induction
machine design were possible with the formulation of design
problems using optimization models containing the defin-
ition of an objective function. In Erlicki and Appelbaum
(1965), for example, an unconstrained optimization prob-
lem is presented which allows to minimize the annual
cost while accounting for material costs, iron losses, joule
losses, along with mechanical losses. According to this
model, a parametric optimization is performed in which
each parameter is considered and adjusted individually while
keeping the others constant. Furthermore, in Ramarathnam
and Desai (1971), a mathematical formulation of a con-
strained optimization problem is presentedwhich uses eleven
independent variables and whose main objective is to min-
imize active material costs—cost of copper, aluminum, and
iron—of three-phase induction machines. In this work, the
optimization problemwas solved using a technique known as
sequential unconstrained minimization technique (SUMT).
In addition, aiming at improving the convergence character-
istics of themethod used inRamarathnamandDesai (1971), a
comparison of five differentminimization algorithms applied
to the same problem is addressed in Ramarathnam et al.
(1973). SUMT was also successfully applied together with
the Rosenbrock method of nonlinear optimization in Singh
et al. (1983) and Fetih and El-Shewy (1986).

A sequential approach to optimization problems was first
introduced in Tindall andCalvert (1977) and comprised three
stages defined as: (i) statement of the design specification and
definition of an initial design, (ii) modification of the initial
design in order to achieve a feasible design, and (iii) optimiza-
tion of the feasible design considering predefined objectives.
Although the stage (iii) is specifically dedicated to the opti-

mization of the initial design, the results produced in this
stage showed practically no differences when compared to
the initial feasible design. Furthermore, by the time Tindall
and Calvert (1977) was published, there were few concerns
regarding the convexity of the optimization models. Due to
this fact, great part of the effortswas directed to the nonlinear-
ity of the model and how it could be mathematically treated.
On the other hand, the discrete nature of some variables has
raised concerns in such away that part of the effortswas spent
in handling these variables. In such a context, an approxima-
tion to the solution obtained with optimization models was
proposed inAppelbaum et al. (1987) which accounted for the
constructive feasibility of three-phase induction machines.
The authors stated the optimization problem by classifying
the design parameters into three different groups: variables,
variable constants, and constants. Variable constants were
used to handle parameters which described very compli-
cated constraints or discrete variables, whose representation
was considered difficult for the approach adopted by the
time Appelbaum et al. (1987) was published. In addition,
an auxiliary procedure was employed to update the vari-
able constants during the optimization process. Therefore,
the optimization model actually used continuous variables,
and the generated solutions were externally adjusted to fit
them into the allowable range of the discrete variables.

In the late 1980s, a detailed multi-criteria approach to
the design of three-phase machines was presented, yet
using classical optimization methods based on successive
quadratic programming (Jazdzynski 1989). Later, multi-
objective methods were also applied to design optimization
of three-phase machines, thus making possible obtaining a
set of solutions known as Pareto-optimal solutions (Liuzzi
et al. 2003; Le Besnerais et al. 2008; Chun et al. 2008).
Based on these solutions, the decision-maker can choose the
best solution applying a criterion to quantify the relevance of
each objective. When the weight of each objective is known
beforehand, the solution selected by the decision-maker is
the same obtained for an equivalent problem with only one
objective function, which is defined as the weighted sum-
mation of the objectives, as described in Duan and Harley
(2011).

A significant change in the methods for design optimiza-
tion took placewith the introduction of heuristic optimization
methods (Moses et al. 1994; Bianchi and Bolognani 1998;
Idir et al. 1998; Liuzzi et al. 2003; Le Besnerais et al. 2008;
Chun et al. 2008; Duan and Harley 2011). Compared to clas-
sical methods, they have several advantages: It is possible
to work with non-convex functions with multiple local min-
ima; the discrete nature of variables can be considered in
the problem formulation; it is possible to include arbitrary,
nonlinear relationships between the variables. However, con-
structive constraints can lead to creation of new local minima
in the objective function, as shown inDuan andHarley (2011)
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based on an examplewhich uses the number of statorwinding
coils as a constraint. Given that the existence of local min-
ima was already known to the authors in Ramarathnam and
Desai (1971), Ramarathnam et al. (1973), Appelbaum et al.
(1987), Moses et al. (1994), Bianchi and Bolognani (1998),
two strategies were basically used to avoid local minima,
which are based on: (i) the use of different initial solutions,
as for example in Ramarathnam and Desai (1971), Rama-
rathnam et al. (1973), and (ii) the experience of the designer,
as in Singh and Sarkar (1992).

Motivatedby thepossibility of avoiding localminima, sev-
eral heuristic techniques have been successfully applied to
the design of induction machines; among others, the follow-
ing techniques deserve mention: Monte Carlo (Moses et al.
1994), error-based search (Idir et al. 1998), genetic algorithm
(Bianchi andBolognani 1998; LeBesnerais et al. 2008;Duan
and Harley 2011), controlled random search (Liuzzi et al.
2003), and particle swarm optimization (Duan and Harley
2011).

Different from the works cited above, the present paper
presents amethod for theoptimizationoffive-phasemachines
which accounts for the specific aspects of this type of
machine such as the use of the third harmonic airgap induc-
tion to improve the machine performance. The underlying
steady state model used to describe the machine behavior is
described in Pereira et al. (2015), where an experimental val-
idation under several working conditions is also presented.
The optimization method proposed is based on genetic
algorithms in which three different objective functions are
considered: efficiency, costs, and a combination of both using
weighting factors. In addition, geometrical constraints and
specific loading limits are also taken into account (e.g., peak
airgap induction, stator and rotor current density).

The main contributions of this paper are as follows:

i. the main machine dimensions—such as the stator inner
radius, the airgap length, the shape of the slots of stator
and rotor—are described in such a way that only geomet-
rically viable solutions are evaluated. As a consequence,
the parametrization does not require any dimensional
adjustments during the optimization process. This helps
reduce the search space significantly, as only attractive
and feasible solutions are effectively evaluated;

ii. besides the main dimensions, the optimization model
also optimizes the winding characteristics (e.g., wind-
ing pitch, number of winding turns, number of stator and
rotor slots, inclination angle of the rotor bars, cross sec-
tion of the rotor end-rings), along with the relationship
between fundamental and third harmonic induction, used
to modulate the spatial distribution of the induction in the
airgap;

iii. according to the proposed approach, it is possible to
consider objective functions of different nature, includ-

ing multi-objective functions as described, for instance,
in Jazdzynski (1989), Moses et al. (1994), Liuzzi et al.
(2003), Le Besnerais et al. (2008), Chun et al. (2008);

iv. based on concepts of genetic algorithms, a new algo-
rithm is developed to solve the optimization model. This
algorithm uses integer codification so that all defined
operators are capable of handling integer variables. Fur-
thermore, it has an explicit diversity control of the
population to prevent premature convergence. Finally, the
algorithm does a local search around the best solutions
(intensification).

2 Variables Used for the Machine Design

In the approach followed here, the design of the induction
machine is based on a large number of variables, which will
be referred as design variables; the most part of them are
related to the machine dimensions and slot shapes, whereas
one variable is related to the stator voltage waveform (K31),
which is used to impose thewaveformof the airgap induction.
The variables which define the stator dimensions are shown
in Fig. 1. Further, to reduce the number of possible solutions
to be evaluated during the optimization process, the stator
winding is assumed to be of low-voltage type; consequently,
the slot shape of the stator is assumed to be trapezoidal with
rounded base (see Fig. 1). In what follows, the design vari-
ables are described.

b1s—stator slot width at the base;
b3s—stator slot width at the bottom of the region containing

conductors;
bos—stator slot opening;
bzs—stator tooth width;
D—stator inner diameter;
De—stator outer diameter;
h1s—stator slot height in the region containing conductors;
h3s—height of the stator slot in the transition region;
hcs—stator yoke height;
hmin
cs —minimum value of stator yoke height;

hos—height of the opening channel of the stator slot;
hzs—stator tooth height;
m—stator phase number;
Ns—number of stator slots;
Nc—number of stator winding layers;
p—number of pole pairs;
q—number of slots per phase and pole of the stator;
Yp—stator winding pitch given in slots;
τns—stator slot pitch.

The variables used for the design of the rotor cage, which
has a triangular slot closure as shown in Fig. 2, are defined
as follows:
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Fig. 1 Dimensions of the stator
with trapezoidal shape slots and
rounded base

Fig. 2 Dimensions of the rotor
with triangular slot closure

b1r—rotor slot width at the base;
b3r—rotor slot width;
bzr—rotor tooth width;
bar—width of the rotor end-ring;

Dex—shaft diameter;
h1r—rotor slot height in the region containing

conductors;
h3r—rotor slot height;
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hcr—rotor yoke height;
hmin
cr —minimum value of the rotor yoke height;

hzr—rotor tooth height;
har—height of the rotor end-ring;
Nr—number of rotor slots;
Nir—number of inclined rotor bars;
τnr—rotor slot pitch;
δ—airgap length.

In a similar way, other stator or rotor slot shapes can be
represented as well; this, however, would require changing
the dimensional constrains accordingly. Besides the variables
already introduced, there are additional variables which are
used to describe the cross-sectional profile of the machine
(i.e., the drawing of each stamped magnetic sheet used to
axially stack both stator and rotor), the induction waveform
in the airgap, and the rated values. They are described in the
sequel:

̂Bn—peak induction in the airgap for the n-order
harmonic;

f—stator frequency;
Pn—rated output power;
Pe—sum of the stator and rotor joule losses;
Pmag—magnetic losses;
Pmec—mechanical losses;
sn—rated rotor slip;
ωn—rated rotor speed;
Tn—rated output torque;
Vn—rated voltage;
VCu—copper volume of the stator winding;
VAl—aluminum volume of the rotor cage;
η—efficiency in per unit (pu), defined as η =

Pn
Pn+Pe+Pmag+Pmec

;
�p—magnetically equivalent axial length.

3 Optimization Model

The optimized design of five-phase induction machines can
be classified as amixed-integer nonlinear programmingprob-
lem, to which several different solution methods can be
applied. However, the quality and the number of solutions,
as well as the processing time, depend largely on the particu-
lar method chosen. The optimization procedure described
here aims to improve the performance while keeping the
costs as low as possible. On the other hand, the model has a
highly nonlinear characteristic, which can be observed not
only in the objective function itself, but also in the way
how the design variables are related to each other. Since in
some cases there is no simple way to express the relationship
between twoormore variables, the use of iterative procedures
is required. In addition, in an attempt to make the problem

easier to solve, some of the design variables are defined as
continuous (e.g., the airgap length, the rotor external diam-
eter), while others are defined as discrete (e.g., the number
of winding layers, the number of stator slots, winding). The
specific aspects of this kind of optimization problem suggest
that heuristic methods can succeed in generating viable solu-
tions (Wieczorek et al. 1998; Tutelea and Boldea 2010; Vaks
et al. 2010; Sakthivel and Subramanian 2011a, b; Zhang et al.
2012; Pereira and Haffner 2011).

In its original form, the problem of finding the best
cross-sectional design and the best waveform for the stator
voltage is described by nearly thirty variables, demanding
a considerable processing time to find the possible solu-
tions. However, the number of design variables can be
reduced to only fourteen if some of these variables, namely
Pn, Vn, f, p, m, De, �p, and Dex , are kept constant for the
optimization process. A further simplification also results
from considering the machine running at steady state, as the
model describing the machine behavior becomes then sim-
pler (Pereira et al. 2015). All the cited simplifications lead
to a considerable reduction in the processing time, as the
number of feasible solutions is reduced significantly, with-
out changing the quality of the solutions.

In order to handle the variables in an effective way, to
define practical limits in a way easier to understand, and at
the same time to avoid the generation of unfeasible solutions,
the set of design variables which describe the dimensional
quantitieswas all normalized, taking as base for each variable
a closely related actual machine dimension. Using such a
description, the machine dimensions are now expressed in
per unit values (pu) and represented by an equivalent set of
design variables, described in what follows:

q—number of slots per pole and phase for the stator, with
Ns = 2p·m ·q and Nr ≈ 211Ns

30 (integer value defined
by approximation);

puD—stator inner diameter normalized as a function of
the stator outer diameter, resulting in D = puD · De;

puh1s—relative height of the stator slot in the region
containing conductors in relation to the distance
available in the stator, resulting in:

h1s = puh1s
(

De−D
2 − h3s − hos − hmin

cs − b1s
2

)

;

pub3s—relative width of the stator slot in relation to the
stator slot pitch, resulting in b3s = pub3s × τns , with
τns = πD

Ns
;

Nc—number of layers of the stator winding;
puYp—relative winding pitch considering the full

windingpitch as reference, resulting inYp ≈ puYp
Ns
2p

(integer value defined by an approximation
procedure);

δ—airgap length;
puh1r—relative height of the rotor slot in the region

which contains the conductors in relation to the
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distance available in the rotor, resulting in h1r =
puh1r

(

D−Dex
2 − δ − h3r − hmin

cr − b3r
2

)

;

pub3r—relative width of the rotor slot in relation to the
rotor slot pitch, resulting in b3r = pub3rτnr , where
τnr = π(D−2δ)

Nr
;

bar—width of the end-ring of the rotor cage;
puhar—relative height of the rotor end-ring

considering the available rotor height, resulting in
har = 10 + puhar

( D
4 − 10

)

;
Nir—number of inclined rotor bars;
Bdo—maximum induction in the airgap at no load;
K31—relationship between third harmonic component

and the fundamental airgap induction, defined as

K31 = ̂B3
̂B1
.

3.1 Objective Function

Given the flexibility of the optimization model propose here,
it becomes possible to define different objective functions.
Thus, to illustrate the use of the model, solutions were
obtained for the three objective functions described below.
They allowus to evaluate the performance and the production
costs associated with each objective.

1. efficiencymaximizationwith no regard for cost andmate-
rial volume;

2. cost minimization by minimizing the volume of winding
material including the copper volume (stator winding)
and the aluminum volume (rotor cage); to help exclude
unpractical solutions, a lower bound for the efficiency
can be given as a constraint;

3. a weighted combination of the two preceding objective
functions; the solutions represent a compromise between
high efficiency and minimum production costs. In this
case, a lower bound on the efficiency can be defined as
an additional constraint.

3.2 Design Constraints

In addition to the variables described in the previous sec-
tion, the optimized design also involves a large number
of constraints, expressed by mathematical equalities and
inequalities and written in terms of the design variables.
Since the major part of such constraints are nonlinear, they
cannot be represented by simple, analytical expressions, as
for example the constraint which relates the rotor slip with
the output torque. Numerical procedures are thus applied to
handle this type of constraints. It should be remembered that
classical optimization methods have well-known difficulties
with these type of constraints. In this respect, the optimization
method proposed here is able to consider nonlinear con-
straints in a straightforward manner. This can be regarded

as one of its most prominent advantages over classical
methods.

4 Proposed Genetic Algorithm

In this work, the solution to the optimization model will be
obtained through a specialized genetic algorithm that has the
following characteristics (they are further explained later):

i. integer codification;
ii. tournament selection;
iii. four kinds of recombination mechanisms;
iv. elitism with explicit control of the population diversity;
v. search intensification around the best elite member.

The optimization algorithm consists of the steps described
below. They are based on common concepts of genetic algo-
rithms. However, important changes in the basic operations
were implemented tomake the algorithmmore efficientwhen
applied to the particular case addressed here.

1. Start the optimization the basic control parameters are
defined: the number of individuals in the population and
in the elite (npop and neli, respectively); the maximum
number of generations (nmax

ger ); the recombination and
mutation rates (trec and tmut, respectively); the minimum
distance between elite members (dmin

eli ); the minimum
distance between population members (dmin

pop ); and the
interaction counter (nger = 0).

2. Generation of the initial population 3npop members are
randomly generated, resulting in a set of npop members
with distinct characteristics.

3. Iterate through the following stepswhile nger < nmax
ger do:

(a) determine the fitness of each populationmember, per-
form a sorting of the population, and select the npop
best members with different characteristics (i.e., dis-
tance greater than dmin

pop );
(b) select the neli best members with different char-

acteristics (distance greater than dmin
eli ) aiming at

composing the elite group;
(c) perform the recombination, taking into account the

probability defined as trec (an excessive number of
members are produced);

(d) perform the mutation, considering the probability
defined as tmut;

(e) generate a new population including only a group of
members which have different characteristics (i.e.,
distance greater than dmin

pop );
(f) update the generation counter (nger = nger + 1).

4. Results output generate a report with all the solutions
found.

5. End.
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In step 3(a), before the adaptation of each member, the
current densities of both stator windings and rotor cage are
checked against the prescribed limits. In case of any viola-
tion of these limits, adjustments are undertaken in the slot
number and in the slot dimensions to ensure the technical
and economical viability of the solution.

4.1 Codification

Continuous and integer variables, which describe the con-
structive and operational machine characteristics, are rep-
resented through an integer codification. The conversion
transforming the codified variables back to the original vari-
ables is defined as:

xi = xmin
i + yi�xi

yi ∈ Z, 0 ≤ yi ≤ xmax
i − xmin

i

�xi
(1)

where the values of xmax
i or �xi are defined in such away

that an integer number results for the expression
xmax
i −xmin

i
�xi

.
The vector that represents each candidate solution is com-

posed by fourteen integer variables given in Table 1. In this
table, the variable name is placed in the first column, the
variable unit in the second column, and the minimum and
maximum values in the third and fourth columns, respec-
tively; the variable increment is shown in the fifth column,
while the highest value of the integer variable employed in
the codification is shown in the last column. The minimum
value for all the variables in Table 1 is zero.

Theoption to represent continuous quantities through inte-
ger variables is mostly based on the practical dimensional

Table 1 Design variables

Variable Unit xmin
i xmax

i �xi ymax
i

puD pu 0.5 0.76 0.02 13

δ mm 0.4 1 0.1 6

puh1s pu 0.4 0.95 0.05 11

pub3s pu 0.3 0.7 0.02 20

q – 1 5 1 4

puh1r pu 0.4 0.95 0.05 11

pub3r pu 0.3 0.7 0.02 20

Nc – 1 2 1 1

Bdo T 0.6 0.9 0.025 12

bar mm 5 30 1 25

puhar pu 0 1 0.05 20

Nir – 0 3 0.2 15

puYp pu 0.3 1 0.05 14

K31 pu 0 0.19 0.01 19

limitations imposed by the machine geometrical construc-
tion. Furthermore, using this approach, it is estimated that
the search space contains approximately 2.1 × 1015 solu-
tions. This estimation is obtained with the values in Table 1.
However, it should be observed that a variable with the maxi-
mumvalue equal to 13 represents in fact 14 solutions because
zero should also be included.

4.2 Determination of the Initial Population

The initial population is generated on a random basis seeking
to maintain a normal distribution around the mean value of
each variable.With this strategy, the probability of producing
intermediate values for each variable is higher than that of
producing values near the limits. As a consequence, those
geometrical proportions commonly used for the design of
induction machines will predominate in the population. In
addition, the form used to parameterize the machine using
the variables in Table 1 ensures that all solutions represent
feasible design alternatives.

In the initial population, as well as in the subsequent gen-
erations, the number of individuals generated is greater than
the number of members in the population (population size)
defined at the beginning; this excess of members allows to
retain npop different members and discard all the remaining.
The process employed for the generation of the initial popu-
lation can be divided into five steps, which are described in
the sequel.

1. random creation of a temporary population with 3npop
members;

2. considering the 3npop temporary population members,
select 2npop distinct members; note that two members
are considered distinct if the difference in their euclidian
norms is greater than a predefined value (dmin

pop );
3. determine the fitness of all 2npop members, and sort them

from the best to the worst member using the value of the
fitness;

4. select the npop best members to compose the initial pop-
ulation;

5. select the neli first distinct members, whose difference in
their norms is greater than dmin

eli , to compose the initial
elite.

The values of the minimal differences (dmin
pop and dmin

eli ),
used to compare population members, are defined when the
optimizationprocess starts and canbeupdatedduring the exe-
cution of the optimization process to adjust the population
diversity. The minimum differences start with their maxi-
mum values and are, in the sequence, linearly reduced to the
minimum, thus providing a large search space at the begin-
ning of the process. The subsequent populations are obtained
as described in the following:
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1. generate a temporary population with a number of mem-
bers greater than npop and composed of the following
members:

– neli historical elite members containing the best solu-
tions obtained until this point;

– nrec members resulting from the recombination of
members of the last population;

– all members of the last population ordered from the
best member to the worst.

2. npop distinct members from the temporary population are
selected so that the euclidean norm between these mem-
bers is greater than the lower bound (dmin

pop ).

4.3 Fitness Functions

In the context of optimization using genetic algorithms, it is
common practice to use fitness functions instead of objec-
tive functions. A fitness function can be obtained from a
given objective function; in some cases, it can even coin-
cide with an objective function—like the function fit1 given
below. Thus, the fitness function plays the same role as the
objective function in classical optimization methods, since
it allows to obtain optimal solutions, which are also asso-
ciated with maximal and minimal values. Therefore, fitness
functions describe the quality of each member concerning
specific aspects. In the particular case addressed here, the
quality of the population members is assessed using three
different fitness functions, which correspond to three objec-
tives. The first fitness function considers only the efficiency
(fit1), the second considers only material costs (fit2), and the
last considers simultaneously a weighted combination of the
efficiency and material costs (fit3).

fit1 = η (2)

fit2 = 1

2vCu + vAl
(3)

fit3 = k · η

k + 2vCu + vAl
(4)

The factor k in expression (4) is necessary to match the
efficiency (expressed in pu) and the volume (expressed in
cm3) in such a way that both are expressed in the same unit.

It must also be stressed that the results obtained with each
fitness functions are significantly different, as will be demon-
strated later through examples.When the functionfit1 is used,
for instance, the machine efficiency is optimized with no
regard to material costs. In contrast, when the function fit3
with k = 107 is used, the solutions will represent a balance
between efficiency and material costs. In an analogous way,
new fitness functions can be defined, which can combine dif-
ferent aspects (qualities) considered relevant usingweighting
factors.

4.4 Selection by Tournaments

The selection of parents for a recombination—namedparent1
and parent2—is carried out by tournaments, which are a
common form to select population members when genetic
algorithms are used. Each parent is the winner of several
tournaments occurring between ntour members selected at
random. Further, to prevent the selection of two identical
parents, the first parent selected (parent1) is excluded from
the selection of the second parent (parent2).

4.5 Recombination

The recombination process used in the algorithm consists of
generating eight offsprings for each pair of parents selected.
Four different types of recombination are defined and can
be used (Eiben and Smith 2003; Pereira and Haffner 2011):
(a) simple recombination, (b) flat recombination, (c) arith-
metic recombination, and (d) discrete recombination. Finally,
the population is completed with the best members from the
previous generation.

4.6 Mutation

During the mutation process, some members of the popula-
tion are randomly selected. Since integer variables are used,
the mutation process will change only the value of the ran-
domly defined allele according the probability distribution
described in the sequel:

– 30% are increased by one;
– 30% are decreased by one;
– 40% are randomly changed, assuming a value between
the minimum and maximum value permitted for that
allele.

For the operations which increase the allele by one, the
lower limit is assumed whenever the upper limit is reached.
Analogously, for the operations which decrease the allele by
one, the upper limit is assumed whenever the lower limit is
reached.

4.7 Local Search and Intensification

Since genetic algorithms are essentially non-deterministic
and little is known about the neighborhood of a valid solu-
tion, exploring the neighborhood of any valid solution can not
only improve the quality of the final optimal solution, but also
prevent that an interesting solution be lost in the course of the
optimization process. Thus, an intensification of the search
procedure, i.e., a local search around an assumed best solu-
tion, is carried out.Additionally, in order to retain the possible
best solutions already determined, the historical elite—elite
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Table 2 Current density limits for the stator and rotor windings

Winding Current density (A/mm2)

Lower bound Upper bound

Stator winding 3.0 7.5

Rotor cage bar 3.0 6.5

Rotor end-ring 3.0 5.2

members of previous generations—is independently stored.
Besides, when the best solution is updated—which is equiv-
alent to find a new solution—an intensification is performed
around the new solution. The procedure of intensification is
shortly described by the following steps:

1. starting from the current best solution obtained thus far, a
temporary population is formed containing all the neigh-
boring solutions differing by one from the current best
solution;

2. if a member of the temporary population is also the over-
all best solution, then it becomes the new current best
solution.

Generally, the number of members of the temporary pop-
ulation is twice the number of the variables which describe
the problem; in the case considered here, there are 14 vari-
ables. Two members of temporary population are generated
for each variable; therefore, they represent the first neighbors
of each variable. For the problem considered here, however,
one of the variables can assume two different values, result-
ing in a temporary population of 27 members.

4.8 Additional Constraints

To avoid the generation of unattractive solutions, which rep-
resent either poorly designed machines concerning material
utilization rates or a machine with excessive losses, addi-
tional constraints are added to the problem to restrain the
current densities of the stator and rotor windings. These con-
straints define the allowable range for the current density of
each winding by defining its maximum and minimum val-
ues. Furthermore, these limits are based on values observed
in similar well-designed machines and on the thermal char-
acteristics of the winding and insulating material, along with
the heat exchange capacity of the cooling system. Therefore,
operatingwithin these limits leads in general to an acceptable
design, preventingwinding overheating, lowmaterial utiliza-
tion, and high costs. The limits of current densities assumed
here are given in Table 2 (Ion and Syed 2010).

It must be observed that, at the beginning of the opti-
mization process, violations of the limits given in Table 2
are allowed. After some initial steps, however, the limits are

gradually adjusted until they eventually attain values within
the ranges in Table 2.

5 Practical Results and Discussion

To illustrate the use in a practical case of the algorithm
described in the preceding sections, it is applied to obtain
three optimized design variants of an existing prototype
machine whose main data are (Pereira et al. 2015):

– frame size 112M, De = 182mm, �p = 140mm,
Dex = 42mm;

– four poles (p = 2) and five phases (m = 5);
– rated values: Pn = 5.5 kW, Vn = 220V, and f = 60Hz;
– stator and rotor yoke limits: hmin

cs = 9mm and hmin
cr =

6mm;
– stator slot dimensions: bos = 2.5mm, hos = 0.6mm,
and h3s = 0.3mm.

The control parameters assumed for the genetic algorithm
are:

– population: npop = 150 members and neli = 8;
– maximum number of generations: nger = 500;
– mutation probability: varying from 10 to 40%;
– recombination probability: trec = 40%;
– number of members by tournament: ntour = 3;
– minimal distance between population members:
dmin
pop = 5;

– minimal distance between two elite members: dmin
eli = 6.

The output power (Pn), being the most important output
characteristic, was kept constant for the design optimiza-
tion process. Under this assumption, the best results obtained
using the fitness functions fit1, fit2, andfit3, defined in Sect. 4
by (2), (3), and (4), respectively, can be seen in Tables 3
and 4.

In the first column of Table 3, the name of the design
variable appears, whereas the solutions obtained using the
fitness functions fit1, fit2, and fit3 appear in the second, third,
and fourth columns, respectively. Table 4 contains the main
operational and design data, namely the efficiency (η) in per-
centage, the volume of the conductor material, copper (vCu),
and aluminum (vAl), the output torque (Tnr ), the rotor speed
in rpm (ωn), and the rotor slip in percentage (sn). This table
also contains the current densities of the stator winding (Js),
together with that of the rotor bars and end-rings (Jbr and
Jar ).

The values shown in Table 4 correspond to the original
machine—not optimized version, referred as orig—and also
to the optimized machine versions obtained using fit1, fit2,
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Table 3 Optimization results—design variables

Variable fit1 fit2 fit3

y∗
i x∗

i y∗
i x∗

i y∗
i x∗

i

puD 6 0.62 4 0.58 6 0.62

δ 0 0.4 0 0.4 0 0.4

puh1s 6 0.70 1 0.45 2 0.50

pub3s 10 0.50 5 0.4 7 0.44

q 1 2 1 2 1 2

puh1r 6 0.70 0 0.40 2 0.50

pub3r 9 0.48 2 0.34 5 0.40

Nc 1 2 0 1 1 2

Bdo 5 0.725 12 0.900 10 0.850

bar 2 7 0 5 1 6

puhar 20 1.00 8 0.40 19 0.95

Nir 0 0.0 0 0.0 0 0.0

puYp 12 0.90 14 1.00 12 0.90

K31 4 0.04 16 0.16 7 0.07

Table 4 Optimization results—performance

Variable orig fit1 fit2 fit3

η (%) 89.21 90.25 87.59 89.52

vCu (cm3) 389.43 456.97 264.36 290.80

vAl (cm3) 369.23 367.55 147.34 252.93

Tnr (Nm) 29.94 30.04 30.36 30.01

ωn (rpm) 1754 1749 1730 1750

sn (%) 2.54 2.85 3.88 2.78

Js (A/mm2) 5.999 4.848 7.472 6.647

Jbr (A/mm2) 3.394 3.405 6.409 4.223

Jar (A/mm2) 2.237 3.053 5.183 3.019

and fit3. In order to make possible a visual comparison of
each solution, cross-sectional views of the stator and rotor of
all machines are given in Figs. 3, 4, and 5.

To illustrate the differences in the performance, Fig. 6
shows the torque curve versus speed for the original machine
and for all optimized design variants. It can be recognized
that each machine has a different torque characteristic; the
differences in the curve shape and the values of typical
torques—starting, minimum, peak, and rated torque—result
from the particular choice of the design variables in each
case. The differences in the curves are bigger for low speeds,
which can be explained from the fact that the optimization
process accounts only the operation at the rated power, which
for all machines corresponds to a speed around 1750 rpm. On
the other hand, the starting and peak torques depend on sev-
eral factors, such as the stator and rotor leakage inductances,
which have been chosen to optimize the performance at the
rated condition; no constraint regarding the value of the peak

or starting torque was considered. However, the differences
in the curves in the neighborhood of the rated torque are
smaller, yet important.

The efficiency as a function of output load is plotted in
Fig. 7 for the original machine and also for the optimized
variants; the output load is given in percentage of the rated
load. Unlike the torque curves, the efficiency of all machines
seems to be not much different from each other when the
loading range 60–100% is regarded. Nevertheless, even a
small difference in the efficiency implies, in general, a signif-
icant difference in the losses and in the volume of conducting
material. This similarity in the curves can be explained by
recalling that the constraints defined for this practical case
favor designs with relations between the design variables not
far from those relations known as acceptable, resulting in
machines with acceptable efficiencies. For example, impos-
ing an upper and lower bound on the stator current density
practically excludes designs with extremely low copper vol-
ume in the stator winding. Consequently, machines with very
low efficiency are thus excluded from the feasible solutions
during the optimization.

As can be seen from the data in Table 4, the overall results
are significantly different for each fitness function. Using
the fitness function fit1 leads to a machine with a higher
efficiency, which is basically achieved by increasing the vol-
ume of stator conductor material; nonetheless, the volume
of the rotor conductors practically equals that of the original
machine. In addition, the higher efficiency is also achieved
by lowering the current densities of stator and rotor to values
close to the lower limits. On the other hand, lower current
densities also indicate lower utilization rates of the conductor
material. For the optimized machine, the efficiency is about
1% better than the original machine, taken here as reference.
In practice, the improvement in the efficiency should be com-
pared with the consequent increase in the production cost.

In contrast to fit1, the objective function fit2 aims at min-
imizing the cost of conductor material. Thus, when fit2 is
used, the conductor volume of the stator is reduced to 68%,
while the conductor volume of the rotor is reduced to only
40% of the corresponding volumes of the original machine.
In this case, the solution represents amachinewith lower pro-
duction costs when compared with the original machine, and
also when compared with the other optimized alternatives.
In addition, this solution can be regarded as the one with the
minimum volume of conductor needed to build the machine
without exceeding the current density limits and yet deliver-
ing 5.5kW. As a consequence of the reduction described, a
lower efficiency and a larger rotor slip are obtained. This
design variant also implies higher stator and rotor losses
resulting in an efficiency almost 2% lower than the origi-
nal machine.

When the conductor material volume and the machine
efficiency are simultaneously considered through the func-
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Fig. 3 Optimized stator and
rotor obtained through the
efficiency maximization (fit1). a
Stator slots. b Rotor slots

Fig. 4 Optimized stator and
rotor obtained through the
minimization of the conductor
material volume (fit2). a Stator
slots. b Rotor slots

tion fit3, a significant reduction in conductor material volume
is achievedwhen comparedwith the results obtainedwith the
fitness function fit1 and with the original machine. As shown
in Table 4, the conductor volumes are reduced to 75% (sta-
tor) and to 68% (rotor) of the corresponding volumes of the
original machine. Furthermore, there is no penalty in the effi-
ciency. On contrary, it is even slightly higher (about 0.3%)
than the original machine. On the other hand, it is lower than
the efficiency obtained with the fitness function fit1. This
design variant represents an interesting balance between pro-
duction cost and efficiency, as it leads to a machine with low
material costs and at same time with a high efficiency. In
addition, Fig. 6 reveals that the torque curve is practically
the same as the original machine, which implies a similar
performance.

It is worthwhile to mention that all the optimized variants
shown in Table 3 represent machines with 40 slots in the
stator (q = 2) and 30 slots in the rotor, which is the best
combination for the practical case considered. Further, the
stator winding pitch is either shortened by one slot or with-
out shortening. In fact, in what respects the stator winding,
the optimized designs do not support the common concep-
tion that the stator winding of five-phase machine should be
always designed for q = 1 and without pitch shortening.
As stated in several published papers, for example in Toliyat
et al. (1991), Xu et al. (2002), Toliyat andLipo (1994), choos-
ing q = 1 could potentially lead to torque improvements. In
addition, the results in Table 3 also indicate that a flattened
airgap induction, obtained for K31 = 0.15, cannot always
be considered the best choice. This is the case for the opti-
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Fig. 5 Optimized stator and
rotor obtained through the
efficiency maximization and
minimization of the conductor
material volume (fit3). a Stator
slots. b Rotor slots

Fig. 6 Torque versus speed for the original machine and the optimized
variants

mized versions obtained using fit1 and fit3. Such results can
be explained by recalling that the optimizationmodel include
several design variables which can be freely varied, besides
the consideration of losses and saturation, to achieve the opti-
mal design. This situation is different from the common case
where only the factor K31 is allowed to change aiming at
increasing the output torque, as stated, for example, in Schar-
lau et al. (2008), Toliyat et al. (1991), de Silva et al. (2006),
Abdel-Khalik et al. (2011).

Given that the model describing the machine behavior
considers only the steady state operation at rated condition
and that it does not include the effect of parasitic torques, the
optimized machines have no inclination in the rotor bar. Fur-
thermore, losses introduced by the high frequency converter
switching are not included as well. These effects could be
considered through the inclusion of new constraints in the

Fig. 7 Efficiency versus load in percentage for the original machine
and the optimized variants

optimization model or adaption of the machine model. For
reason of space, these effects are not addressed here.

Based on the practical optimization results obtained, the
main advantages of the proposed algorithms can be summa-
rized as:

(a) a large number of design alternatives can be evaluated in
a short time;

(b) only feasible design alternatives are generated and effec-
tively evaluated;

(c) constructive and geometrical constrains can be included
in the optimization model;

(d) practical limits of well-designed machines can be
included in the model using upper and lower bounds in
some design variables (for example, current densities);
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(e) the optimization process can produce good solutions in
terms of quality and diversity, as the diversity is con-
trolled during the execution of the optimization process;

(f) the execution time can be limited by the user so that
a number of viable solutions is generated in a limited
amount of time.

Finally, the major drawback of the proposed approach
is that parameterization of the slots must be accordingly
adapted when the slot shapes differ from the ones considered
here. A new slot parameterization can be done in a similar
manner as done for the slot shape considered here. However,
in practice, for low-voltage machines, the slot shape changes
very little, especially the stator slot shape. Therefore, the
parameterization of the slots is in principle valid for a large
class of similar machines.

6 Conclusion

A new procedure to optimize five-phase induction machines
was presented. The model is based on concepts taken from
genetic algorithms. Basic operations to explicit control of the
generation of solutions were defined in such a way that only
feasible solutions are retained and evaluated, being this one of
the important advantages of the proposed procedure. Differ-
ent kinds of constrains as well fitness functions can be easily
attached to the description of the problem, leading to designs
which come in favor of performance, production costs, or
even a combination of both. The choice of the constrains
allows us to improve the quality of the solutions, as practical
values for some of the design variables can be imposed, mak-
ing the optimization process faster. The procedure proposed
was then applied to obtain design alternatives for an exist-
ing prototype machine using three different fitness functions.
The practical results obtained show that the algorithm imple-
mented can give design alternatives which not only allow us
to reduce material costs and increase the efficiency but also
allow us to determine the best harmonic combination for
the airgap induction. The three optimized machines result-
ing from the optimization represent viable design alternatives
with different production costs and similar performance; it
was shown that using the proper objective functions it is pos-
sible to reduce production costs and at the same time improve
efficiency, as the design obtained with fit3 shows. The prac-
tical case analyzed also highlights the fact that to take full
advantage of five-phase machine, several design parame-
ters have to be accounted for their optimization; the choice
of an adequate harmonic combination for airgap induction
alone does not necessarily lead to an optimized machine
when losses and saturation are accounted. The drawback
of the procedure presented is that the slot parameteriza-

tion must be adapted when slots with different shapes are
considered.

As high-phase machines become more and more a prac-
tical alternative to ordinary three-phase machines, design
procedures which aim to optimize them become at same time
essential to their further development and application.
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