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Abstract This paper presents a feedback resonance com-
pensator designed in a simple and yet efficient way to
suppress the effects of resonant modes of voice coil motor
actuator used in hard disk drive (HDD) servo system.
A velocity feedback controller is chosen as the feedback
resonance compensator. Resonant modes of the actuator pro-
hibit bandwidth to be pushed to higher frequencies and it
causes large oscillations to the closed-loop system response.
Therefore, effective compensation of mechanical resonant
modes is one of the design challenges in HDD servomech-
anism. The proposed design is based on a mixed passivity,
negative-imaginary and small-gain approach in discrete time
which results in a robust stable controller. Firstly, stabil-
ity of discrete-time interconnected system is analyzed using
mixed passivity, negative-imaginary and small-gain proper-
ties. These results are analogous to previously established
continuous-time case. Nowadays most of the control design
is done in discrete time. Hence, this paper provides a base
for discretization of mixed system with passivity, negative-
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imaginary and small-gain properties. Secondly, a velocity
feedback controller for resonance compensation is designed
using this mixed approach. Simulation and experimental
results substantiate the effectiveness of the controller.
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Negative-imaginary · Small-gain · Discrete time · Stability

1 Introduction

The magnetic components, i.e., the media and the head of a
hard disk drive (HDD) are the major components that enable
storage and writing or retrieval of binary information. Data
bits are stored in concentric data tracks on a rotating disk
coatedwithmagneticmedia. The read/write head (R/Whead)
fabricated on a single piece of slider is used for recording as
well as retrieving data bits. The slider is positioned on the
tracks by a head-positioning servomechanism. The head is
controlled to move from one track to another track in mini-
mum possible of time and then it is maintained as close to the
center of the track as possible. Nowadays, HDD servomech-
anism uses dual-stage actuationwhich consists of a voice coil
motor (VCM) and a piezoelectric secondary actuator (PSA).
The VCM is used to provide coarse motion, and the PSA is
used for fine positioning. Therefore, for both single stage and
dual-stage HDD, resonance of VCM actuator is a issue to be
solved. This problem with resonance of the VCM actuator is
addressed in this paper.

The HDD industry has experienced tremendous growth
in recording density over the years and presently the den-
sity is around 1Tbits per square inch. It is projected to
exceed the 10Tbits per square inch barrier in the near
future. This will require increase in both density of tracks
(track density) and density of bits on a track (bit density).
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Increased track density means smaller track width and thus,
improved accuracy in positioning the R/W head in spite of
various disturbances. The high track density needs a servo
controller with high bandwidth for eliminating the effects
external disturbances. But resonant modes of the actua-
tor prohibit bandwidth to be pushed to higher frequencies
and it causes large oscillations to the closed-loop system
response.

Open-loop design approach is a popular method of sup-
pressing resonance by cascading notch filters with the plant
(Al Mamun et al. 2006; Thum et al. 2010; Lan et al. 2010;
Suthasan et al. 2004). In this approach, a pre-compensator for
resonant modes is designed in such a way that the frequency
response of the pre-compensated plant bears resemblance to
that of a rigid-body model. However, this approach is less
effective when model uncertainty is taken into considera-
tion. If a pre-compensator notch filter is designed for finite
number of resonantmodes, imperfect cancelation of resonant
modes may occur. On the contrary, feedback controllers can
provide robustness in the presence of variations of the reso-
nant modes. Optimal robust controller design methods such
as LQG/LTR control Chang and Ho (1999) and H2 optimal
controller Li et al. (2004) can be used to suppress mechanical
resonance.However, the order of controllers usingLQG/LTR
or H2/H∞ methoddepends on the order of the systems. Since
large number of resonant modes are found in actuators used
in HDD, a high-order plant model is required to include all
resonances. Therefore, LQG/LTR or H2/H∞ method results
in a controller of very high order. An adaptive notch filter
is proposed in Kang and Kim (2005), comprising of a tun-
able finite-duration impulse response (FIR) filter. A tuner is
designed to identify the resonance frequency rapidly, and the
center frequency of the filter is adjusted automatically.A sim-
ilar method is used in Ohno and Hara (2006), in which the
center frequency follows the change in resonance frequency
based on the balance of two types of frequency weighted
variances of the control input signal. However, in almost
all the adaptive methods, finding the adaptive law is non-
trivial and choosing the adaptive law parameters is tedious.
Besides, adaptive methods are often complex and computa-
tionally expensive.

In this paper, a velocity feedback controller (VFC) is
designed to increase damping of the first major resonant
mode of the VCM actuator. The method is simple and easy
to implement. A mixed passivity, negative-imaginary and
small-gain approach in discrete time is followed to achieve
large damping of the resonant mode with robust finite-
gain stability. To the best knowledge of the authors, the
mixed negative-imaginary, passivity and small-gain theory
for resonance compensator design were never analyzed and
implemented before for the HDD servo systems. Besides,
this paper is not a direct implementation of the mixed the-
ory in continuous time. This paper establishes a base for the

mixed system to be analyzed in discrete time and then the
discrete-time approach is implemented in the HDD.

The small-gain theorem, passivity theorem and negative-
imaginary theorem are important results in the theory of
stability of input-output systems. The small-gain theorem
confirms the finite-gain stability of the feedback interconnec-
tion of two stable systems if the product of the gain of the sys-
tems at each frequency is<1 (Desoer and Vidyasagar 1975).
Passivity theorem states that the negative feedback intercon-
nection between two stable linear time invariant systems is
stable when both systems are passive and one of them is
strictly passivewith finite gain (Desoer andVidyasagar 1975;
Green andLimebeer 1996).According to negative-imaginary
theorem, the positive feedback interconnection between two
systems where one system is negative-imaginary and other
system is strictly negative-imaginary is stable if and only if
the DC loop gain is <1 (Lanzon and Petersen 2007, 2008).

However, it is often seen that many practical systems do
not always belong to the specific class, i.e., only passivity
or only negative-imaginary over the whole frequency range
(Griggs et al. 2007, 2009; Patra and Lanzon 2011; Das et al.
2013). There are many other systems which may have mixed
passivity and small-gain (Griggs et al. 2007, 2009) proper-
ties or mixed negative-imaginary and small-gain (Patra and
Lanzon 2011) properties. An unconditional stability analy-
sis for negative feedback interconnected systems with mixed
passivity and small-gain properties is presented in Griggs
et al. (2007), whereasDas et al. (2013) shows conditional sta-
bility between systems with mixed negative-imaginary and
small-gain properties using positive feedback. Only Small-
gain stability analysis can be applied and implemented to
any kind of mixed system where the system does not hold
only negative-imaginary or passivity property. However, the
use of the small-gain theorem makes the controller gain low
which leads to low level of damping of the structures reso-
nant modes in vibration control applications. Therefore, use
of mixed theorem is very essential for the controller design.

Nowadays, most of the feedback control systems are
implemented digitally using microcontroller or digital sig-
nal processors. In order to implement the control design for
high-speed system through some RTI tool like dSPACE, a
discrete-time representation of the system is required. Thus,
it is to be settled whether the discretization of continuous-
time systems can preserve the fundamental properties after
discretization. Several papers Pietrus and Veliov (2009),
Zappavigna et al. (2012), Borrelli et al. (2006), Falcone
et al. (2008), Shorten et al. (2011), Sanfelice and Teel
(2010) have recently discussed on this topic of system dis-
cretization, particularly in the switched systems community.
Characterization of mixed passivity and small-gain prop-
erty in discrete time is discussed in Griggs et al. (2013).
However, the purpose of our paper is to establish the foun-
dation for the discretization of mixed systems with passivity,
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negative-imaginary and small-gain properties and establish-
ing a stability analysis on discrete time for these types of
mixed systems. These results are analogous to previously
established continuous-time case (Das et al. 2013, 2015).

The rest of the paper is organized as follows. Section 2
presents the mathematical definitions of passivity, negative-
imaginary and mixed properties and also highlights some
preliminary results. Feedback stability analysis is presented
in Sect. 3. Identification of VCMactuator model using exper-
imental frequency response is given in Sect. 4. Section5
presents the controller design methodology. Simulation and
Experimental results are shown in Sect. 6, and finally, a con-
clusion is drawn in Sect. 7.

2 Mathematical Definitions and Preliminary
Results

Considering y = xe jθ is a complex number where x = |y|
and θ = � y and assuming that θ = ωTs where Ts and ω

are the sampling interval in seconds and signal frequency in
rad/s, respectively. The largest and smallest singular values
of a matrix A is denoted by σ̄ (A) and σ(A).

Finite-gainA bounded-input bounded-output (BIBO) sta-
ble, discrete-time system with square, proper, real-rational
transfer function matrix M(z) is said to have the finite-gain
property bounded by K > 0 over [−m,−n] ∪ [m, n] if

K := in f
{
k ∈ R+ : −M∗ (

e jθ
)
M

(
e jθ

)
+ k2 I

}
≥ 0 (1)

for all θ ∈ [−m,−n] ∪ [m, n] where 0 ≤ m ≤ n ≤ π and
k ≥ 0

Passivity (1) A BIBO stable system with square, proper,
real-rational transfer functionmatrixG(z) is said to be input–
output strictly passive over [−m,−n] ∪ [m, n] if

− αG∗ (
e jθ

)
G

(
e jθ

)
+ G∗ (

e jθ
)

+ G
(
e jθ

)
− β I ≥ 0

(2)

for all θ ∈ [−m,−n] ∪ [m, n] where 0 ≤ m ≤ n ≤ π and
α, β ≥ 0

(2) A BIBO stable system with square, proper, real-
rational transfer function matrix H(z) is said to be input–
output strictly negative passive over [−m,−n] ∪ [m, n] if

− αH∗ (
e jθ

)
H

(
e jθ

)
− H∗ (

e jθ
)

− H
(
e jθ

)
− β I ≥ 0

(3)

for all θ ∈ [−m,−n] ∪ [m, n] where 0 ≤ m ≤ n ≤ π and
α, β ≥ 0

The systems G(z) and H(z) are called input strictly pas-
sive and input strictly negative passive, respectively, if (2)

and (3) are satisfied, respectively, for α = 0; output strictly
passive and output strictly negative passive, respectively, if
(2) and (3) are satisfied, respectively, for β = 0; and passive
and negative passive, respectively, if (2) and (3) are satisfied,
respectively, for α = β = 0.

Negative-imaginary A BIBO stable system with square,
proper, real-rational transfer function matrix G(z) is said to
be input–output strictly negative-imaginary over [−m,−n]∪
[m, n] if

−αθ2G∗ (
e jθ

)
G

(
e jθ

)
+ jθG∗ ( jω)− jθG ( jω)−β I ≥ 0

(4)

for all θ ∈ [−m,−n] ∪ [m, n] where 0 ≤ m ≤ n ≤ π and
α, β ≥ 0

The systems G(z) is called input strictly negative-
imaginary if (4) is satisfied for α = 0; output strictly
negative-imaginary if (4) is satisfied for β = 0; and negative-
imaginary if (4) is satisfied for α = β = 0.

Mixed passivity, negative-imaginary and small-gain (1)
A BIBO stable, discrete-time system with square, proper,
real-rational transfer function matrix G(z) is said to have
themixed passivity, negative-imaginary and small-gain prop-
erties if for each frequency θ ∈ [−π, π ] there exists a)
−αG∗(e jθ )G(e jθ ) + G∗(e jθ ) + G(e jθ ) − β I ≥ 0 or
b)−δθ2G∗(e jθ )G(e jθ ) + jθG∗( jω) − jθG( jω) − γ I ≥ 0
and/or c) −G∗(e jθ )G(e jθ ) + k2 I ≥ 0 where α, β, δ, γ, k ≥
0

(2) A BIBO stable, discrete-time system with square,
proper, real-rational transfer function matrix G(z) is said to
have the mixed negative-passivity, negative-imaginary and
small-gain properties if for each frequency θ ∈ [−π, π ],
there exists a)−αG∗(e jθ )G(e jθ )−G∗(e jθ )−G(e jθ )−β I ≥
0 or b)−δθ2G∗(e jθ )G(e jθ )+ jθG∗( jω)− jθG( jω)−γ I ≥
0 and/or c)−G∗(e jθ )G(e jθ )+k2 I ≥ 0whereα, β, δ, γ, k ≥
0

Let us now consider the following example fromDas et al.
(2013)

M(s) = −186.6s2 + 1.348 × 106s − 2.412 × 1010

s3 + 1955s2 + 3.452 × 107s + 4.459 × 1010
(5)

M(s) is a system with mixed negative-imaginary and pas-
sivity properties (Das et al. 2013; Glad and Ljung 2000).
Now using zero-order hold discretization method, M(s) is
discretized to M1(z) and M2(z) for sampling interval T =
0.0002 sec and T = 0.02 s, respectively.

M1(z) = −0.03z2 − 0.046z − 0.066

z3 − 1.519z2 + 1.458z − 0.676
(6)

and
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Fig. 1 a Nyquist plot of M(s), b Nyquist plot of M1(z), c Nyquist plot of M2(z)

Fig. 2 Interconnection of system with positive feedback

M2(z) = −0.541z2 − 0.0019z − 1.88 × 10−6
z3 + 0.0034z2 + 3.29 × 10−6 − 1.045 × 10−17

(7)

The nyquist plots in Fig. 1 shows that M1(z) is a discrete-
time systemwithmixedpassivity, negative-passivity, negative-
imaginary and small-gain properties where M2(z) is a
discrete-time systemwithmixedpassivity, negative-passivity
and small-gain properties. M1(z) holds the same properties
as the M(s) where M2(z) fails to preserve the same prop-
erties after discretization. Thus, discretization may change
the properties of a system from its continuous-time case.
This leads to the motivation of designing the controller in
discrete-time approach.

Now some preliminary results are presented to establish
the main results

Theorem 1 According to Zhou et al. (1996), if M(z) and
N (z) are strictly proper, real-rational transfer function
matrices, then feedback interconnection of Fig. 2 is stable if
the nyquist plot of det[I − M(e jθ )N (e jθ )] for −π ≤ θ ≤ π

does not make any encirclements of the origin.

The nyquist plot of det[I − M(e jθ )N (e jθ )] is included
in the group of nyquist plots of det[I − 1



M(e jθ )N (e jθ )],

where 
 ∈ [1,∞). Suppose the nyquist plot of det[I −
1


M(e jθ )N (e jθ )] encircles the origin at least once which

means that if 
 is continuously decreased from a large
value toward 1, then there must be at least one 
0 and one
θ0 for which det[I − 1


0
M(e jθ0)N (e jθ0)] = 0. Therefore,

to avoid the encirclement of the origin, the sufficient con-
dition is that for all 
 ∈ [1,∞) and all θ ∈ [−π, π ],
det[I − 1



M(e jθ )N (e jθ )] �= 0.

Lemma 1 Suppose that M(z) and N (z) are BIBO stable,
square, strictly proper, real-rational transfer function matri-
ces. At some θ0 ∈ [−π, π ], if M∗(e jθ0) + M(e jθ0) > 0 and
−N∗(e jθ0)−N (e jθ0) ≥ 0, then det[I −M(e jθ0)N (e jθ0)] �=
0

Proof : Since M∗(e jθ0) + M(e jθ0) > 0 and −N∗(e jθ0) −
N (e jθ0) ≥ 0, hence real parts of λi [M(e jθ0)] > 0 and real
parts of λi [−N (e jθ0)] ≥ 0, where λi [.] denotes the ith eigen
value (Lancaster andTismenetsky 1985). Therefore,M(e jθ0 )
is nonsingular.

Since M∗(e jθ0) + M(e jθ0) and M−∗(e jθ0) + M−1(e jθ0)
are Hermitian congruent (Noble and Daniel 1988), hence
M−∗(e jθ0) + M−1(e jθ0) > 0 which therefore implies that
M−∗(e jθ0)− N∗(e jθ0)+ M−1(e jθ0)− N (e jθ0) > 0. There-
fore, the real parts of λi [M−1(e jθ0) − N (e jθ0)] > 0 for all
λi and det[M−1(e jθ0) − N (e jθ0)] �= 0 which entails that
det[I − M(e jθ0)N (e jθ0)] �= 0. 	


Since det[I − M(e jθ0)N (e jθ0)] = det[M(e jθ0)det[M−1

(e jθ0) − N (e jθ0)]], hence M(e jθ0) is nonsingular.

Lemma 2 Suppose that M(z) and N (z) are BIBO sta-
ble, square, strictly proper, real-rational transfer func-
tion matrices. At some θ0 ∈ [−π, π ], if j (M(e jθ0) −
M∗(e jθ0)) > 0 and j (N (e jθ0) − N∗(e jθ0)) > 0 then
det[I − M(e jθ0)N (e jθ0)] ≥ 0.

Proof The two suppositions can be written as jM(e jθ0) +
(( jM(e jθ0))∗ > 0 and ( j N (e jθ0))−1 + ( j N (e jθ0))−∗ > 0.
Hence, det[I − M(e jθ0)N (e jθ0)] = det[I + ( jM(e jθ0)
( j N (e jθ0))] = det[( jM(e jθ0)+( j N (e jθ0))−1]det[ j N (e jθ0)
] �= 0.
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(a)

(b) (c)

Fig. 3 a Experimental setup, b frequency response experiment, c controller implementation

3 Feedback Stability

Theorem 2 Let M(z) and N (z) are BIBO stable, square,
strictly proper, real-rational transfer functionmatriceswhere
M(z) and N (z) are bounded by gain k1 > σ̄(M(z = 1))
and k2 > σ̄(N (z = 1)), respectively. Then, for the feedback
interconnected system in Fig. 2, the interconnected system is
finite-gain stable if (a)k1k2 < 1, (b) there exists four sets of
frequency range: (1)φN I , a set consists of θ0 ∈ [−π, π ] over
which both M(z) and N (z) have negative-imaginary prop-
erty (2) φP−N P , a set consists of θ0 ∈ [−π, π ] over which
M(z) has passivity property and N (z) has negative-passivity
property (3) φN P−P , a set of consists of θ0 ∈ [−π, π ] over
which M(z) has negative-passivity property and N (z) has
passivity property (4) φFG, a set consists of θ0 ∈ [−π, π ]
over which M(z) is bounded by k1 and N (z) is bounded by
k2.

Proof The proof can be divided into three parts: (a) ForM(z)
and N (z) belong to set φN I , it is to be shown that det[I −
1


M(e jθ0)N (e jθ0) �= 0 for all 
 ∈ [1,∞) (b) For M(z)

and N (z) belong to set φP−N P or φN P−P , it is to be shown
that det[I − 1



M(e jθ0)N (e jθ0) �= 0 for all 
 ∈ [1,∞) (c)

For M(z) and N (z) belong to set φFG , it is to be shown
that det[I − 1



M(e jθ0)N (e jθ0) �= 0 for all 
 ∈ [1,∞) if

k1k2 < 1.

Part (a): Since M(z) and N (z) belong to set φN I , there
existsαi , βi > 0, i = 1, 2 such that−α1θ

2
0M

∗(e jθ0)M(e jθ0)

Table 1 Parameter values P(s) Parameter Value

N 4

Kv 1.952 × 109

K 8.18 × 1011

+ jθ0M(e jθ0)− jθ0M(e jθ0)−β1 I ≥ 0 and−α2θ
2
0 N

∗(e jθ0)
N (e jθ0) + jθ0N (e jθ0) − jθ0N (e jθ0) − β2 I ≥ 0, respec-
tively, which entails that jθ0M(e jθ0)− jθ0M(e jθ0) > 0 and
jθ0N (e jθ0)− jθ0N (e jθ0) > 0.Therefore, 1√



jθ0(M(e jθ0)−

M∗(e jθ0)) > 0, for 
 > 0. Hence, according to Lemma 3,
det[I − 1



M(e jθ0)N (e jθ0) �= 0.

Part (b): Let us consider M(z) and N (z) belong to set
φP−N P , then there exists αi , βi > 0, i = 1, 2 such that
−α1M∗(e jθ0M(e jθ0) + M∗(e jθ0) + M(e jθ0) − β1 I ≥ 0
and −α2N∗(e jθ0N (e jθ0) + N∗(e jθ0) + N (e jθ0) − β2 I ≥ 0,
respectively, which implies that M∗(e jθ0) + M(e jθ0) > 0
and −N∗(e jθ0) − N (e jθ0) ≥ 0. Therefore, 1



[M∗(e jθ0) +

M(e jθ0)] > 0 and 1


[−N∗(e jθ0)−N (e jθ0)] > 0, for 
 > 0.

Hence, from Lemma 2, det[I − 1


M(e jθ0)N (e jθ0) �= 0. If,

M(z) and N (z) belong to set φN P−P , the above proof is vice
versa.

Part (c): Since M(z) and N (z) belong to set φFG , hence
there exists k1, k2 > 0 such that −M∗(e jθ0)M(e jθ0) +
k21 I ≥ 0 and −N∗(e jθ0)N (e jθ0) + k22 I ≥ 0 . Now, since
k1 > σ̄(M(z = 1)) and k2 > σ̄(N (z = 1)) and M(z)
and N (z) are bounded by k1 and k2, respectively, hence
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Table 2 Parameter values for Hr,i

i ωr,i (rad/s) ζi Ai

1 2π × 3.14 × 103 0.0058 1.154 × 10−4

2 2π × 3.36 × 103 0.0103 2.30 × 10−3

3 2π × 4.29 × 103 0.0099 2.302 × 10−5

4 2π × 7.29 × 103 0.0104 2.083 × 10−5
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Fig. 4 Frequency response of VCM actuator

det[I − 1


M(e jθ0)N (e jθ0) �= 0 if and only if k1k2 < 1 for

all 
 ∈ [1,∞).

4 Plant Model

The experimental setup used for measuring the frequency
response consists of a dynamic signal analyzer (DSA), a
driver for the VCM actuator and Laser Doppler Vibrometer
(LDV) OFV 5001. The sweep sine excitation signal gen-
erated by the DSA is applied to the driver which provides
required voltage-to-current conversion to drive the VCM
actuator. Displacement is measured using the LDV. The laser
beam from the LDV is focused on the tip of actuator, and
the difference between frequencies of the incident beam and
reflected beam is used to measure the velocity of the tip.
The built-in decoder of the LDV generates displacement data
from the measured velocity. The resolution of displacement
measurement is set to 50nm/V in all experiments reported in
this paper. This measurement setup is illustrated in Fig. 3.

The excitation signal (sweep sine) applied to the VCM
driver circuit is generated by LabV I EWTM (National
Instrument) virtual instrument. The same signal is also con-
nected to one of the input channels ofDSA.The displacement
signal from the LDV is connected to the second input chan-

Fig. 5 Closed-loop stabilized VCM plant, M(s)

Fig. 6 Overall block diagram of the design for experimental imple-
mentation

nel of DSA. The analyzer produces the frequency response
data, and the result is saved for further processing. Modeling
method used in Yamaguchi and Hirata (2011), Rahman et al.
(2014), Rahman and Mamun (2014) is used to identify the
resonant modes and overall linear model of the system. In
general, the guidelines for constructing a

∑
-type model are

(1) begin with the modes with larger gain before proceeding
to the modes with smaller gain (2) set the modal angular fre-
quency to match the frequency of the peak gain (3) tune the
modal damping ratio by using the half value method in order
to fit frequencywidth of the peak gain at half of themaximum
and shape of phase change and (4) adjust the absolute value
and sign of the residue to match the peak gain and direc-
tion of phase change in the data, respectively. The frequency
response data are used to identify a linear model in the form
of

P(s) = K × Kv

s2
×

N∑
i=1

Hr,i (8)

where K and Kv are the gains. N is the number of resonant
modes modeled as lightly damped complex conjugate poles
as is

Hr,i = Ai

s2 + 2ζiωr,i s + ω2
r,i

(9)

The identified parameters are shown in Tables1 and 2.
Experimental frequency response and identified model
response are shown in Fig. 4. Note that the high-frequency
part of the identified model is not exactly matched with the
experimental response which is the case of neglecting high-
frequency resonant modes in the identified model. As there
is always a high-frequency roll-off in the actuator response,
the controller can be designed in such a way that the high-
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Fig. 7 Comparison of step responses between system with continuous-time designed controller and system with discretized model of continuous-
time designed controller

frequency region satisfies the small-gain theorem; therefore,
this high-frequency mismatch between the identified model
and the experimental response does not affect much in the
design.

Remark 1 Themeasured frequency response relates an input
signal measured in volts to an output signal also measured in
volts. So the transfer function is unit-free. The output signal
can be converted into displacement unit by multiplying it by
the scaling factor of 50nm/V.

5 Controller Design

Since the rigid body dynamics of the actuator is a double
integrator, a lead compensator is used to stabilize it. A lag
compensator is also designed to increase the low-frequency
slope of the Bode (magnitude) plot which is required for bet-
ter tracking. The lag–lead compensator is designed according
to the bode-stability criteria (Al Mamun et al. 2006). The
overall controller is,

C(s) = Kd

(
s

ω2
+ 1

) (
s

ω3
+ 1

)
(

s
ω1

+ 1
) (

s
ω4

+ 1
) (10)

The gain Kd is chosen to satisfy the following condition

∣∣∣∣
1

C( jω)P( jω)

∣∣∣∣
ω=ωv

= 1 (11)

The design is further simplified by considering the prede-
fined relationship between the frequency crossover points as
ω1 = 10π,ω2 = 2 × ωv



, ω3 = 2 × ωv

3 and ω4 = 3 × ωv

where 
 can be chosen between 3 and 5. Then with these
relationships, the gain Kd can be obtained as

Kd =
∣∣∣∣∣∣

( 1
10π s + 1

) (
1

3ωv
s + 1

)

(
ωv



s + 1

) (
3
ωv
s + 1

)
∣∣∣∣∣∣

(12)

Now, the transfer function M(s) in Fig. 2 is the closed-
loop transfer function of VCMwith lag–lead controller (Fig.
5) where P(s) is the VCM actuator and C(s) is the lead–lag
controller . Then M(s) is discretized to M(z) using the zero-
order hold method and a VFC N (z) is then designed based
on M(z).

Before designing N (z), a VFC is designed in continuous
time and then discretized using the ’tustin approximation’
method. The corresponding step responses for continuous-
time controller and discretized controller are shown in Fig. 7.
The figure shows the performance degradationwhen the con-
troller is designed in continuous time and then discretized by
using some standard approximation methods.

In this paper, the VFC is designed in discrete time and
the controller parameters are tuned to find the best suitable
resonance compensator. The general transfer function for the
discrete-time resonant controller is as follows:

N (z) = Kr
b1z2 + b2

a1z2 + a2z + a3
(13)

In this design, the parametersa1, a2, a3, b1, b2 are selected
in such a way that the VFCwill act as the resonance compen-
sator for the first major resonantmode and the interconnected
system betweenM(z) and N (z) satisfies theorem2. Since the
bandwidth of the system is fixed by the nominal controller,
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Fig. 8 Bode plot of the velocity feedback controller N (z)

the high-frequency resonant modes do not have any effects
on the system response and therefore first resonant mode can
be considered as the dominant one.

First of all, the frequency intervals are obtained where
M(z) has negative-imaginary (NI) or passivity properties.
When M(z) and N (z) have no intersecting region where the
stability is satisfied by either negative-imaginary or passivity
property, the gain k1 is chosen such that M(z) is bounded
by gain k1. Then the controller gain Kr is selected as large
as possible and k2 is selected accordingly. If k1k2 < 1 then
the parameters a1, a2, a3, b1, b2 are tuned such that (1) N (z)
has NI property where M(z) has NI property. (2) N (z) has
negative-passivity property where M(z) has passivity prop-
erty and vice versa. (3) N (z) is bounded by gain k2 where
M(z) is bounded by k1. (4) N (z) is either bounded by gain
k2 or has negative passivity at the frequency intervals where
M(z) is bounded by k1 and has passivity property and vice
versa. (5) N (z) is either bounded by gain k2 or has NI prop-
erty at the frequency intervals where M(z) is bounded by k1
and has NI property. (6) N (z) is either bounded by gain k2
or has NI property or has negative-passivity property at the
frequency intervals where M(z) is bounded by k1 and has NI
and passivity properties. Bode plot of the controller N (z) is
shown in Fig. 8.

6 Results

6.1 Simulation Results

It is observed from the closed-loop frequency response,
shown in Fig. 9, that the first major resonant mode is atten-
uated by almost 15dB with the VFC in use. The aim was
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Fig. 9 Simulated frequency response
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Fig. 13 Simulated frequency response for a perturbed model 1, b per-
turbed model 2

to increase the damping of this mode, which is achieved.
Besides this mode, few other resonant modes are also attenu-
ated. It must bementioned that the attenuation of the resonant
mode at 7.29KHz is not significant. However, as the prod-
uct ζωn for this mode is larger than that of the mode at
3.14KHz, the high-frequency oscillation is decayed much
faster than the oscillation from the major resonance. That is
why it makes sense to increase the damping of the resonance
at 3.14KHz. This argument is further verified by the negligi-
ble high-frequency oscillation observed in the step response
when VFC is used (Fig. 10).

In applications like HDD, choice of sampling frequency is
restricted by the system constraint. Sampling frequency used
for the HDD servo system is always a compromise between
the demand for higher sampling frequency and limitations
imposed by the rotational speed of the disks and the number
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Fig. 14 Simulated step response for a perturbed model 1, b perturbed
model 2

of servo sectors used. So it varies fromHDD toHDDdepend-
ing on the storage capacity of the HDD and rotation speed of
the spindle motor. And if the nyquist frequency of the digital
resonance compensator is lower than the critical resonance
frequency, then a digital resonance compensator cannot be
designed using the same sampling frequency. Therefore, its
not always useful in applications like HDD that controller is
designed for compensating all the resonant modes. By con-
sidering this issue, in this work, the VFC is designed for
compensating the first resonant mode.

It must be noted that notch filter designed by pre-
compensation method will perform better than any other
resonance compensator if the designer is free to choose any
sampling frequency to accommodate the multiple frequency
modes. However, the VFC has some advantages over the
conventional approaches which can be summarized as:

1. VFC can be designed as a low-order controller which can
perform satisfactorily.
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Fig. 15 Measured step response,awithVFC,bwithoutVFC (obtained
from experimental implementation)

2. This mixed approach of designing the VFC substantiates
the robust stability of the closed-loop systemwhich is not
the case for pre-compensation method. Pre-compensator
notch filter only performs better when the plant model
is exactly identified. This means if the resonant modes
of the plant exactly match with the designed notch filter
modes, then it performs good. On the other hand, system
can perform worse if the modes are not exactly matched.
VFC performs better over the notch filter in such case.

3. Unlike the complex adaptive resonance compensator
design, the proposed method of designing VFC is simple
and hence easy to implement.

4. On the other side, if the VFC is designed by using the
small-gain theorem which is also a popular method of
designing feedback controller, this would result in low-
gain controller. This low-gain controller would be unable
to compensate the resonant mode effectively.

To test the stability robustness of the design, two perturbed
plant models are considered by changing the resonance fre-
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Fig. 16 Zoom-in of measured step response, a with VFC, b without
VFC (obtained from experimental implementation)

quencies. According to benchmark model in Yamaguchi and
Hirata (2011), resonant modes can be shifted by 5–10%.
Therefore, here we consider two perturbed models wherein
we change the frequency of the first two major resonant
modes. In perturbed model 1, the resonance frequencies are
changed by 5 and 4% for resonant mode 1 and mode 2,
respectively. In perturbedmodel 2, resonance frequencies are
changed by 7 and 10%, respectively. The lag–lead controller
and the VFC are kept same as before. The nyquist plots of
the closed-loop system M(z) for nominal VCM model and
different models are shown in Fig. 11. Besides, nyquist plot
of VFC (N (z)) is also shown in the same figure. Bode plots of
these models and VFC are shown in Fig. 12. From these two
figures, it can be observed that different frequency regions
of M(z) [for nominal or perturbed model] and N (z) satisfy
Theorem 2. Therefore, this confirms the robust stable perfor-
mance of the system.

Two different bode plots and the step responses for dif-
ferent perturbed models are shown in Figs. 13 and 14,
respectively. These figures affirm the stability of the closed-
loop systems for both of the perturbed models. Although the
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Fig. 17 Power spectrum of the measured error signal, a With VFC,
b without VFC (obtained from experimental implementation)

designmethod confirms the robust stability of the closed-loop
system, sufficient performance improvement is achieved as
well. For each case of perturbed model (Fig. 13), significant
attenuation of the first major resonant mode is observed. The
step response (Fig. 14) for each case shows negligible or less
oscillation with VFC than that of without VFC.

Remark 2 LDV resolution is set to 50nm/V during the
time of frequency response measurement and controller
implementation, therefore the scaling factor from volts to
nanometer (nm) is 50.

6.2 Experimental Results

For real-time implementation of controller, the setup is mod-
ified by replacing the DSA with a real-time controller card
(dSPACE SD1104) (Fig. 3). The sampling interval is set to
25µs. The overall architecture of the system is shown in
Fig. 6 which includes the lag–lead controller C(z) and the
feedback resonance compensator N (z). The performance of
the proposed controller is evaluated experimentally using
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Fig. 18 Measured response for multiple frequency sinusoidal ref-
erence, a with VFC, b without VFC (obtained from experimental
implementation)

two types of reference signals. Firstly, a step input of 2V is
applied. The displacements measured with and without VFC
are shown in Fig. 15. Figure 16 shows the zoom-in of the
measured step responses. From the figures, it is evident that
the step response is less oscillatory when the feedback res-
onance compensator (VFC) is implemented. Besides, from
the power spectrums in Fig. 17, it can be observed that first
resonant mode which is considered as the dominant mode is
attenuatedwhenVFC is used.Next, a sumof sinusoids r(t) =
sin(2π × 100t)+ 0.8sin(2π × 200t)+ 0.5sin(2π × 300t) is
used as the reference input. Figure 18 shows the correspond-
ing output with and without VFC. It is clearly evident from
the results that oscillation in output becomes smaller when
the VFC is used. Therefore, it can be concluded that the pro-
posed design is able to suppress the effects of resonance.

7 Conclusion

This paper proves the stability of discrete-time intercon-
nected systemswithmixed passivity, negative-imaginary and
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small-gain properties. Discretizationmethodmay change the
properties of the system than from its continuous-time case.
Therefore, finite-gain stability theorem is presented here in
discrete time for system with mixed negative-imaginary and
passivity properties. Based on this mixed passivity, negative-
imaginary and small-gain approach in discrete time, a VFC
is designed for resonance compensation of a VCM actuator
in a HDD servo system. Simulation and experimental results
prove the effectiveness of the proposed method. The method
is simple and easy to implement. Designed VFC effectively
suppresses the resonancewhich are confirmed from the simu-
lation and experimental results. Although in this paper, VCM
actuator of HDD is used as the experimental platform, this
simplified methodology can be applied to a wide range of
applications.
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