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Abstract This paper addresses the local stabilization prob-
lem of nonlinear discrete-time systems subject to energy-
bounded disturbances by means of T–S fuzzy models. A
fuzzy state feedback controller is designed such that the
input-to-state stability in the �2 sense of the original non-
linear system is guaranteed in a bounded region of the state
space. Such a region is related to the exactness of the T–S
model and describes the domain around the origin where the
convexity property remains valid. In addition, an estimate of
the closed-loop reachable set is provided for a given class
of �2 disturbances. Three (convex) optimization problems
are proposed to either minimize the estimate of the reach-
able set, improve the disturbance tolerance or minimize the
�2-gain from the disturbance input to the regulated output.
Numerical examples are considered to illustrate the approach
demonstrating the effectiveness of the proposed technique for
the control synthesis of nonlinear discrete-time systems.

Keywords Nonlinear T–S models · Local stability ·
Energy-bounded disturbances · �2-gain

1 Introduction

Takagi–Sugeno (T–S) fuzzy models have been extensively
investigated over the last decade to develop the so-called
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fuzzy model-based (FMB) control techniques (see, for
instance, Dong et al. 2009, 2010; Ding 2011; Esfahani and
Sichani 2011; Campana et al. 2012). Basically, this type of
models allows the representation of nonlinear systems in
terms of local linear models that are smoothly connected
by means of nonlinear fuzzy membership functions (MFs)
so that it is possible to apply, for instance, well-established
Lyapunov and LMI-based tools for parameter varying con-
trol systems (Tanaka and Wang 2001; Mozelli and Palhares
2011). Thus, T–S fuzzy models provide a systematic frame-
work for dealing with fundamental issues in modern control
theory for complex nonlinear systems.

However, in order to obtain numerically tractable solu-
tions for the stability analysis and control design of nonlinear
systems, the available T–S fuzzy modeling techniques can
only locally guarantee the stability properties of the orig-
inal nonlinear systems. Notice when deriving a T–S fuzzy
model that a normalizing step is used in the defuzzifica-
tion process which requires that the premise variables are
bounded in some chosen compact set. In other words, there
exists a bounded region X of state space containing the ori-
gin associatedwith a regionΞ in the normalizedmembership
functions space. Hence, when applying convex methods to
solve fuzzy-based stability conditions on the Ξ space, it is
required to take into account that the stability conditions hold
only if the state trajectory of the original nonlinear system
does not leaveX . From this reasoning, we refer to the region
X as the T–S domain of validity.

Nonetheless, the inherent local characteristic of T–Smod-
eling techniques is often not considered in most of FMB con-
trol design results which may lead to poor performance or
even instability of the closed-loop system (consisting of the
original nonlinear plant and the designed fuzzy controller).
The local stability issue in T–S fuzzy models may also be
related to the natural existence of constraints in the state
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variables of real systems, due, for example, to safe opera-
tional conditions, physical limitations or some desired level
of energy consumptions, as discussed in Klug et al. (2014),
or related to the presence of time derivatives of the MFs in
the stability analysis when dealing with continuous-time sys-
tems, as inGuerra et al. (2012), Tognetti et al. (2013). Further,
in the presence of exogenous disturbances, the input-to-state
stability properties as well as input-to-output performance
criteria of nonlinear systems may hold only locally (Rapa-
port and Astolfi 2002). However, most of the available FMB
results do not consider performance and stability analysis in
a local context (see, e.g., Chang and Yang 2014; Figueredo
et al. 2014; Qiu et al. 2013; Chang 2012; Golabi et al. 2012;
Su et al. 2012). For instance, the references Figueredo et al.
(2014) and Su et al. (2012) deal with the H∞ cost for systems
with time-varying delays without considering the domain of
validity X , and therefore, performance and stability cannot
be effectively guaranteed.

Most of the FMB control design results have employed
a common quadratic Lyapunov function (Tanaka and Wang
2001) because of the simplicity on deriving numerical and
tractable conditions. However, a common quadratic Lya-
punov function may lead to a considerable conservatism,
since the Lyapunov matrix should be found for all T–S local
models. Recently, fuzzy Lyapunov functions (FLF) have
been used to obtain less conservative design conditions at
the cost of extra computations as proposed, for instance, in
Guerra and Vermeiren (2004). In this context, the number of
local models required for the T–S model representation may
turn the FLF–FMB control design problem computationally
untractable. To avoid a large number of rules, approximate
models as described in Teixeira and Zak (1999) might be
employed but adding some model inaccuracy. Alternatively,
the number of fuzzy rules can be reduced without compro-
mising the model exactness by applying the nonlinear T–
S fuzzy modeling technique as proposed in the references
Dong et al. (2009), Dong et al. (2010), Klug et al. (2013). In
this approach, some nonlinear terms may explicitly appear
in the T–S fuzzy models at the cost of losing the linearity
of classical fuzzy models. Nevertheless, when the nonlinear
terms (locally) satisfy sector-bounded conditions, the well-
establishedmathematicalmachinery of absolute stability the-
ory (Liberzon 2006) can be applied to derive FMBcontrollers
(Klug et al. 2014).

In light of the above scenario, this paper addresses the
state feedback input-to-state stabilization problem for non-
linear discrete-time systems subject to energy-bounded dis-
turbances by means of (sector bounded) nonlinear T–S fuzzy
models and FLF. More precisely, LMI control design con-
ditions are proposed to locally ensure the input-to-state sta-
bility (ISS) and a certain input-to-output performance (i.e.,
an upper bound for the system �2-gain) of the original non-
linear discrete-time systems subject to a class of �2 distur-

bances. In addition, the design conditions provide an estimate
of the closed-loop reachable set (that is, a region inside the
T–S domain of validity which bounds the state trajectories
driven by the admissible class of �2 disturbances). Three con-
vex optimization problems demonstrate the effectiveness of
the proposed approach as a control design tool for nonlin-
ear discrete-time systems subject to energy-bounded distur-
bances.

The rest of this paper is organized as follows. The problem
of interest and some preliminary results are stated in Sect. 2,
and the main result is derived in Sect. 3. Section 4 provides
three convex optimization problems for computing nonlinear
state feedback control laws. Section 5 presents two numerical
examples to illustrate the approach, and some concluding
remarks are given in Sect. 6.
Notation: let A, B be two symmetric real matrices and v, s
be two real vectors. A > B means that A − B is positive
definite, A

′
denotes the transpose of A, A(i) denotes the i th

row of A, v(i) is the i-th component of v, and vk is the vec-
tor v at the k-th sample. v(s) ∈ S[0,Ω] represents a cone
sector conditions, that is, v

′
(i)(s)(v(i)(s) − Ω(i)s) ≤ 0. The

componentwise inequality v � s means that v(i) ≥ s(i).
For symmetric block matrices, � stands for block matrices
deduced by symmetry. In denotes an n-dimensional identity
matrix. diag(A, B) is a block diagonal matrix. The �2-norm
of a discrete vector sequence {wk, k = 0, 1, 2, . . .} is defined
as ‖wk‖�2 =

(∑∞
k=0 w

′
kwk

) 1
2
.

2 Problem Statement

Consider the following class of nonlinear systems:

xk+1 = f (xk) + g(xk)uk + h(xk)wk

zk = fz(xk) + gz(xk)uk + hz(xk)wk (1)

where xk ∈ 	nx , uk ∈ 	nu , wk ∈ W ⊂ 	nw and zk ∈ 	nz

are the state, the control input, the exogenous disturbance
vector and the regulated output, respectively. The functions
f (·) : 	nx → 	nx , with f (0) = 0, fz(·) : 	nx → 	nz , with
fz(0) = 0, h(·) : 	nx → 	nx ×nw , hz(·) : 	nx → 	nz×nw ,
g(·) : 	nx → 	nx ×nu and gz(·) : 	nx → 	nz×nu are con-
tinuous and bounded for all xk . The disturbance input vector
wk is assumed to lie inside the following class of square
summable sequences:

W := {wk : ‖wk‖2�2 ≤ δ−1}. (2)

where δ is a positive scalar defining the size of W (i.e., the
energy bound of wk). The setW will be often referred as the
class of admissible disturbances.

In order to design a state feedback control law uk = κ(xk),
the nonlinear system (1) will be represented by means of a
nonlinear T–S fuzzy model (which we refer as the N-fuzzy
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model) having Ri , i = 1, . . . , nr , fuzzy rules defined by
(Dong et al. 2010):

Ri :
⎧⎨
⎩

IF νk(1) is Mi
1, νk(2) is Mi

2, . . . , νk(ns ) is Mi
ns

THEN
xk+1 = Ai xk + Bi uk + Bwiwk + Giϕk

zk = Czi xk + Bzi uk + Bzwiwk + Gziϕk

(3)

with Mi
j , j = 1, . . . , ns , representing the fuzzy sets,

νk := [νk(1), νk(2), . . . , νk(ns )] the premise variables, and
(Ai , Bi , Bwi , Gi , Czi , Bzi , Bzwi , Gzi ) the matrices defining
the fuzzy local models. Furthermore, the number of fuzzy
rules nr is associated with the number of premise vari-
ables ns by the relation nr = 2ns to derive a precise rep-
resentation of nonlinear system (1). The vector function
ϕk = ϕ(Lxk) ∈ 	nϕ , with ϕ(0) = 0 and L ∈ 	nϕ×nx , is
a known nonlinear function of xk satisfying a (local) cone
sector condition ϕ(·) ∈ S[0,Ω] for all xk ∈ X ⊂ 	nx with
X to be defined later. Thus, as in Jungers andCastelan (2011),
Klug et al. (2014), consider the existence of a free positive
diagonal matrix 
 ∈ 	nϕ×nϕ such that

ϕ
′
k


−1[ϕk − ΩLxk] ≤ 0 , ∀ xk ∈ X . (4)

From the definition of 
, we see that if (4) is verified, then
j independent classical conditions, ϕk(j)[ϕk − Ωxk](j) ≤ 0,
are also assured. Therefore,
 represents a degree of freedom
for the purpose of design and optimization.

The above N-fuzzy model is based on the representation
proposed in Dong et al. (2009) andDong et al. (2010). Notice
if ϕk = 0 that the rules R1, . . . ,Rnr recover the classical
definition of T–S fuzzy models (Takagi and Sugeno 1985).

Let αk ≡ α(xk) ∈ Ξ be the vector of normalized grades
of membership functions with simplex structure (Feng 2010)
with Ξ defined as follows:

Ξ =
{

αk ∈	nr :
nr∑

i=1

αk(i) =1, αk(i) ≥0, i = 1, . . . , nr

}
.

(5)

Hence, the N-fuzzy model (3) can be rewritten as the follow-
ing nonlinear fuzzy system:

xk+1 = A(αk)xk + B(αk)uk + Bw(αk)wk + G(αk)ϕk

zk =Cz(αk)xk + Bz(αk)uk + Bzw(αk)wk + Gz(αk)ϕk (6)

where
[

A(αk) B(αk) Bw(αk) G(αk)

Cz(αk) Bz(αk) Bzw(αk) Gz(αk)

]

=
nr∑

i=1

αk(i)

[
Ai Bi Bwi Gi

Czi Bzi Bzwi Gzi

]
.

Remark 1 It is important to emphasize that constraining the
membership function αk to a polytope, i.e., α(xk) ∈ Ξ , is an
essential step for solving the control algorithms (thanks to
convexity properties). However, when deriving the member-
ship function of the T–S fuzzy model, a normalizing step
is used in the defuzzification process which requires that
premise variables are bounded in some chosen compact set.
As a result, there exists a related region of state space, con-
taining the origin, 0 ⊂ X ⊂ 	nx , where the convexity of
(6) is guaranteed. In other words, xk ∈ X ⇒ αk ∈ Ξ , as
illustrated in the numerical examples later in this paper.

Assuming that the normalized membership functions αk

can be computed in real time, a nonlinear controller can be
proposed with the same fuzzy rules as the nonlinear T–S
model in (6). In this case, the following nonlinear state feed-
back control law is proposed:

uk = κ(xk) = K (αk)xk + Γ (αk)ϕk (7)

where K (αk) =
nr∑

i=1

αk(i)Ki , Ki ∈ 	nu×nx , and Γ (αk)

=
nr∑

i=1

αk(i)Γi , Γi ∈ 	nu×nϕ .

Now, taking into accountRemark1, theT–Smodel domain
of validity X is for convenience defined by means of the
following polyhedral set:

X = {xk ∈ 	nx : |N xk | � φ}, (8)

whereφ ∈ 	nφ and N ∈ 	nφ×nx are constant and given, with
nφ ≤ nx , representing the constraints which characterize the
region X .

Taking (6) and (7) into account, the closed-loop T–S fuzzy
model is as follows:

xk+1 = A(αk)xk + Bw(αk)wk + G(αk)ϕk

zk = C(αk)xk + Bzw(αk)wk + F(αk)ϕk (9)

with A(αk) = A(αk) + B(αk)K (αk), G(αk) = G(αk) +
B(αk)Γ (αk), C(αk) = Cz(αk)+ Bz(αk)K (αk) andF(αk) =
Gz(αk) + Bz(αk)Γ (αk). The closed-loop matrices A(αk),
G(αk),C(αk) andF(αk) can be generically rewritten, through
summation properties, as

T (αk)=
nr∑

i=1

nr∑
j=i

μi jαk(i)αk( j)
Ti +Xi Y j +Tj +X j Yi

2
(10)

where the tuple (T , T, X, Y ) represents either (A, A, B, K ),
(G, G, B, Γ ), (C, Cz, Bz, K ) or (F , Gz, Bz, Γ ), and

μi j =
{
2, i �= j,
1, otherwise.

(11)
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Notice that the ISS stability of system (9) for all αk ∈ Ξ

implies that the original nonlinear system in (1) with (7) is
also ISS stable. This is satisfied if the trajectory xk of (9)
driven by wk ∈ W remains in X for all k ≥ 0. In order
to obtain LMI constraints guaranteeing the state trajectory
boundness insideX , the following problemwill be addressed
in this paper.

Problem 1 Determine the gain matrices Ki and Γi , for
i = 1, . . . , nr , such that the trajectories of system (9) remain
bounded in some region D containing the origin such that
D ⊂ X for any wk ∈ W and for all αk ∈ Ξ . In addition,
determine a positive constant γ which bounds the induced
�2-norm from wk to zk .

To end this section, we provide some preliminary results
which will be instrumental to derive the main contributions
of this paper.

Let V (xk, αk) be a fuzzy Lyapunov function (FLF)

V (xk, αk) : 	nx × Ξ → 	+, V (0, αk)=0 ∀ αk ∈Ξ (12)

and the set D defined as follows

D �= {xk ∈ 	nx : V (xk, αk) ≤ δ−1,∀ αk ∈ Ξ} , (13)

where δ is the positive scalar defining the bound ofW in (2).
In the following, we define the notion of �2 input-to-state

stability for nonlinear discrete-time systems to be considered
in this paper.

Definition 1 Consider the system (1), with x(0) = 0, and
the level setD as defined in (13) for a given positive scalar δ.
The unforced system in (1) is said to be �2-ISSD (input-to-
state stable with respect toD), if for any wk ∈ W the system
state xk remains bounded in D for all k ≥ 0.

Observe that the above definition implies that D is a pos-
itively invariant set. Thus, x(0) ∈ D implies that

V (xk, αk) ≤ δ−1, ∀ k ≥ 0 , αk ∈ Ξ. (14)

Lemma 1 The unforced system (1), with x(0) = 0, is �2-
ISSD and there exists an upper bound γ on the �2-gain from
wk to zk if the following holds for all xk ∈ D, αk ∈ Ξ and
wk ∈ W:


Vk
�= V (xk+1, αk+1) − V (xk, αk)

+ γ −2z
′
k zk − w

′
kwk < 0 (15)

Proof Assume that (15) holds ∀ xk ∈ D, αk ∈ Ξ, wk ∈ W .
Then, for any k̄ > 0, we get:

k̄−1∑
k=0


Vk = V (xk̄, αk̄) − V (x0, α0)

+ γ −2
k̄−1∑
k=0

z
′
k zk −

k̄−1∑
k=0

w
′
kwk < 0 (16)

Thus, in view of (2) and (12), the above implies:

(i) �2 input-to-state stability: note that V (x0, α0) = 0,
since x(0) = 0. Then, we have V (xk̄, αk̄) ≤ ‖wk‖22 ≤
δ−1, ∀ k̄ > 0. That is, D is a positive invariant set.

(ii) input-to-output performance: taking k̄ → ∞, it follows
that ‖zk‖2 < γ ‖wk‖2. That is, γ is an upper bound on
the system �2-gain.

(iii) internal stability: let k̃ be a positive integer. If wk = 0
for all k ≥ k̃, then the condition in (15) implies that
V (xk+1, αk+1) − V (xk, αk) < −γ −2z

′
k zk < 0 guaran-

teeing that xk → 0 as k → ∞. In other words, D is
a contractive positive invariant set whenever the distur-
bance wk vanishes (see, e.g., Klug et al. 2011). ��

3 Main Results

In this paper,we consider theN-fuzzymodel (9) for designing
the control law (7) which ensures that the nonlinear system
(1) is locally �2-ISSD in closed loop. To this end, let the
following FLF:

V (xk, αk) = x
′
k Q−1(αk)xk, Q(αk) =

nr∑
i=1

αk(i)Qi , (17)

with Qi = Q
′
i > 0 ∈ 	nx ×nx , i = 1, . . . , nr , to be deter-

mined.
In light of the above, notice that we have to additionally

considerD ⊂ X for all αk ∈ Ξ in Lemma 1 to guarantee the
convexity of the fuzzy model in (9). Furthermore, it can be
shown that the level set D as defined in (13) with (17) will
be the intersection of nr ellipsoidal sets (Hu 2002; Jungers
and Castelan 2011). In this paper, we consider the following
definition for D:

D �=
⋂

i∈{1,...nr }
E(Q−1

i , δ−1) (18)

where E(Q−1
i , δ−1) =

{
xk ∈ 	nx : x

′
k Q−1

i xk ≤ δ−1
}
is the

i-th ellipsoidal set.
In the sequel, we present sufficient design conditions

based on LMIs to determine the control law (7) which
locally stabilizes the nonlinear system (1) in the �2-ISSD
sense.

Theorem 1 Suppose there exist symmetric positive definite
matrices Qi ∈ 	nx ×nx , i = 1, . . . , nr ; a diagonal posi-
tive definite matrix 
 ∈ 	nϕ×nϕ ; matrices Y1i ∈ 	nu×nx ,
Y2i ∈ 	nu×nϕ , i = 1, . . . , nr , and U ∈ 	nx ×nx ; and positive
scalars δ and γ satisfying the following LMIs:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Qq Π1
i j Π3

i j
Bwi + Bw j

2
0

� Π2
i j U

′
L

′
Ω 0 Π4

i j
� � −2
 0 Π5

i j

� � � −γ 2 I
B

′
zwi + B

′
zw j

2
� � � � −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

∀ q, i = 1, . . . , nr and j = i, . . . , nr (19)[
−Qi Qi N

′
(l)

� −δφ2
(l)

]
≤0 , ∀ i =1, . . . , nr and l =1, . . . , nφ,

(20)

where

Π1
i j = 0.5

(
AiU + Bi Y1 j + A jU + B j Y1i

)
,

Π2
i j = 0.5

(
Qi + Q j

) − U − U
′
,

Π3
i j = 0.5

(
Gi
 + Bi Y2 j + G j
 + B j Y2i

)
,

Π4
i j = 0.5

(
U

′
C

′
zi + Y

′
1i B

′
z j + U

′
Czj + Y

′
1 j B

′
zi

)
,

Π5
i j = 0.5

(

G

′
zi + Y

′
2i B

′
z j + 
G

′
z j + Y

′
2 j B

′
zi

)
. (21)

Let Ki = Y1iU−1 and Γi = Y2i

−1, i = 1, . . . , nr . In

addition, consider the nonlinear system (1), with (7), and its
exact N-fuzzy representation in (9). Then, the following holds
for zero initial conditions:

(a) xk remains bounded in D for any wk ∈ W;
(b) ‖zk‖2 ≤ γ ‖wk‖2 for all wk ∈ W;
(c) xk → 0 as k → ∞ if there exists k̃ > 0 such that wk = 0

for all k ≥ k̃;
d) D ⊆ E(Q−1

i , δ−1) ⊂ X , for i = 1, . . . , nr .

Proof Assume that (19) is verified for all q, i = 1, . . . , nr

and j = i, . . . , nr . Replace Y1i and Y2i , respectively, by KiU
and Γi
. Multiply the resulting inequalities successively by
αk(i), αk( j), αk+1(q), and sum up on i, q = 1, . . . , nr and
j = i, . . . , nr . Thus, the inequality M(αk) < 0 holds if
αk ∈ Ξ with

M(αk)

=

⎡
⎢⎢⎢⎢⎣

−Q(α+
k ) A(αk)U G(αk)
 Bw(αk) 0

� U
′
Q−1(αk)U U ′L ′Ω 0 U

′C(αk)

� � −2
 0 
F(αk)

� � � −γ 2 I B
′
zw(αk)

� � � � −I

⎤
⎥⎥⎥⎥⎦

and the shorthands α = αk and α+
k = αk+1. Note that the

matrices Q(αk), Bw(αk) and Bzw(αk) can bewritten as (Silva
et al. 2014)
⎡
⎣

Q(αk)

Bw(αk)

Bzw(αk)

⎤
⎦=

nr∑
i=1

nr∑
j=i

μi jαk(i)αk( j)

⎛
⎝1

2

⎡
⎣

Qi + Q j

Bwi + Bw j

Bzwi + Bzw j

⎤
⎦
⎞
⎠.

and that U
′
Q−1(α)U ≥ −Q(α) + U

′ + U is verified since
U is full rank from the (2, 2) block of the left-hand side of
(19).

Further, let the congruence transformation ΠM(α)Π
′

with

Π =

⎡
⎢⎢⎢⎢⎣

0 I 0 0 0
0 0 0 (U

′
)−1 0

0 0 
−1 0 0
I 0 0 0 0
0 0 0 0 I

⎤
⎥⎥⎥⎥⎦

.

Thus, applying the Schur’s complement to ΠM(α)Π
′
< 0

yields:

MS(αk) = ϑ
′
1,k Q−1(α+

k )ϑ1,k +
⎡
⎢⎣

C ′
(αk)

B
′
zw(αk)

F ′
(αk)

⎤
⎥⎦

⎡
⎢⎣

C ′
(αk)

B
′
zw(αk)

F ′
(αk)

⎤
⎥⎦

′

−
⎡
⎣

Q−1(αk) 0 −L
′
Ω
−1

0 γ 2 I 0
−
−1ΩL 0 2
−1

⎤
⎦ < 0. (22)

with ϑ1,k = [
A(αk) Bw(αk) G(αk)

]
. Now, let ϑ2,k =[

x
′
k w

′
k ϕ

′
k

]′
. Then, we obtain the following in view of (22):

ϑ
′
2,kMS(αk)ϑ2,k = 
Vk −2ϕ

′
k


−1(ϕk −ΩLxk) < 0 , (23)

if αk ∈ Ξ .
Hence, the condition (23) implies that
Vk < 0 whenever

αk ∈ Ξ and the sector condition (4) is verified. Assuming
that xk does not leave X , for all k ≥ 0, we can infer that
condition (16) is also satisfied. In this way, the properties a),
b) and c) in Theorem 1 are guaranteed, and consequently i),
ii) and iii) from Lemma 1.

Now, we need to show that xk ∈ X , for all k ≥ 0, and
consequently αk ∈ Ξ . To this end, assume that (20) is ver-
ified. Then, multiplying (20) by αk(i) and summing up on
i = 1, . . . , nr leads to:

Λ =
[
−Q(αk) Q(αk)N

′
(l)

� −δφ2
(l)

]
≤ 0.

LetF = diag{Q−1(αk), 1}. Hence, the congruence transfor-
mation F ′

ΛF = Λ̃ yields

Λ̃ =
[
−Q−1(αk) N

′
(l)

� −δφ2
(l)

]
≤ 0.

By applying the Schur’s complement to Λ̃, we obtain:

N
′
(l)(δφ

2
(l))

−1N(l) − Q−1(αk) ≤ 0.

Pre- and post-multiplying the above, respectively, by x
′
k and

xk and considering the S-procedure lead to:
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x
′
k N

′
(l)φ

−2
(l) N(l)xk ≤ 1, ∀ xk ∈ D,

D = {x : x
′
k Q−1(αk)xk ≤ δ−1}

That is, E(Q−1
i , δ−1) ⊂ X , ∀i = 1, . . . , nr . Recalling from

(18) that D ⊆ E(Q−1
i , δ−1), we can ensure the property d)

and infer from Lemma 1 that xk ∈ D, for all k ≥ 0, which
concludes the proof. ��
Remark 2 We can apply Theorem 1 to systems represented
by classical T–S fuzzy models (without the nonlinear term)
by eliminating the third row and column block of the matrix
on the left-hand side of (19).

Remark 3 It is interesting to note that the stabilization con-
dition (19) has a reduced number of LMIs when compared
to other techniques in the literature. This is due to the use
of the property (10) and the definition of the variable μi j in
(11). See, for instance, Theorem 6.6 of Feng (2010), where
the resulting LMIs are required to be verified ∀ i, j, q =
1, . . . , nr .

4 Design Issues

Now, we propose three extensions of Theorem 1 in order to
demonstrate the potential of the proposed approach as a con-
trol design tool for nonlinear discrete-time systems subject
to energy-bounded disturbances.

4.1 Disturbance Tolerance

The disturbance tolerance criterion consists in maximizing
a bound on the disturbance energy for which we can ensure
that the system trajectories remain bounded (and inside the
domain of validity). This can be accomplished by the follow-
ing optimization problem.

min δ

Qi ,
, Y1i , Y2i , U

{
subject to

LMIs (19) and (20).
(24)

Notice that the minimization of δ implies in maximizing
the set of admissible disturbances W .

4.2 Disturbance Attenuation

For a given disturbance energy level δ−1, the disturbance
attenuation criterion consists in minimizing an upper bound
on the �2-gain fromwk to zk while guaranteeing that xk ∈ X ,
which can be obtained from the solution of the following
optimization problem:

min γ

Qi ,
, Y1i , Y2i , U

{
subject to

LMIs (19) and (20).
(25)

4.3 Reachable Set Estimation

The reachable set estimation criterion consists in minimizing
the setD (an estimate of the reachable set) for a specific dis-
turbance energy level δ−1 and a guaranteed bound γ on the
system �2-gain. This objective can be accomplished by con-
sidering the inclusion E(Q−1

i , δ−1) ⊂ βX , ∀i = 1, . . . , nr ,
β ∈ (0, 1], which is obtained by modifying the condition in
(20) as follows:

[
−Qi Qi N

′
(l)

� −β2δφ2
(l)

]
≤ 0 ∀i = 1, . . . , nr and l = 1, . . . , η

(26)

Then, the objective is to obtain the lowest value for β

which will be useful in practice whenever the effects of the
disturbances over the system trajectories are to beminimized.
These criteria can be obtained by the following optimization
problem:

min β

Qi ,
, Y1i , Y2i , U

{
subject to

LMIs (19), (26) and 0 < β ≤ 1.

(27)

5 Numerical Examples

In this section, we present two numerical examples. The first
one demonstrates some stability issues that can occur when
the domain of validity is not considered. In this sense, a non-
linear plant is modeled by the classical T–S form and the
region X , where the model convexity is guaranteed, is not
taken into account in the design phase. In the second exam-
ple, it is shown the effectiveness of the proposed technique
considering the optimization problems described in the pre-
vious section.

5.1 Example 1

Consider the control problem of backing-up a truck-trailer as
studied in Feng and Ma (2001), Lo and Lin (2003), Tanaka
and Wang (2001). The state space representation of the sys-
tem is described by

x1,k+1 = x1,k − vT

L sin(x1,k) + vT

l
uk

x2,k+1 = x2,k + vT

L sin(x1,k) + 0.2wk

x3,k+1 = x3,k + vT cos(x1,k) sin

(
x2,k + vT

2L sin(x1,k)

)

+ 0.1wk

zk = 7x1,k − vT x2,k + 0.03x3,k − vT

l
uk (28)
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where x1,k represents the angle between the truck and the
trailer, x2,k denotes the angle of the trailer, x3,k is the vertical
position of the rear, and l and L represent the length of the
vehicle and of the trailer, respectively. T is the sampling time,
and v the constant reverse speed. In particular, we consider
l = 2.8m, L = 5.5m, v = −1.0m/s and T = 2.0 s. Due
to physical limitations and/or to guarantee a safe operation
of the system, such as preventing the jack-knife effect that
occurswhen x1,k = ±π/2, the considered domain of validity
X in (8) is defined as follows (Lo and Lin 2003)

N =
[
1 0 0
0 1 0

]
and φ =

[
π

3

170π

180

]′

.

In order to demonstrate the problems that can occur in
practice when the model validity domain is not considered
(usually assumed in the literature), we consider the classical
T–S model of the system (28) with eight linear local rules,
given by the following equation (Tanaka and Wang 2001)

xk+1 =
8∑

i=1

αk(i) (Ai xk + Bi uk + Bwiwk)

zk = Cz xk + Bzuk + Bzwwk (29)

where

Ai = A jkl =
⎡
⎢⎣

1 − vT
L b j 0 0

vT
L b j 1 0

v2T 2

2L b j dk gl vT dk gl 1

⎤
⎥⎦,

i = l+2(k − 1)+4( j − 1)
j, k, l = {1, 2}

Bi = B =
⎡
⎣

vT
l
0
0

⎤
⎦ , Bwi = Bw =

⎡
⎣

0
0.2
0.1

⎤
⎦ ,

Cz = [
7 −2 0.03

]
, Bz = −vT

l
, and Bzw = 0,

with b1 = 1, b2 = 0.827, d1 = 1, d2 = 0.5, g1 = 1 and g2 =
10−2/π . The membership functions αk(i), i = 1, . . . , 8, are
the binary product between functions Mi

j , j = {1, 2} and
i = {1, 2, 3}, defined as:

M1
1 =

⎧⎨
⎩

sin(x1,k) − b2x1,k
x1,k(b1 − b2)

, x1,k �= 0

1, x1,k = 0
, M1

2 = 1 − M1
1 ,

M2
1 = cos(x1,k) − d2

d1 − d2
, M2

2 = 1 − M2
1 and

M3
1 =

⎧
⎨
⎩

sin(ρ) − g2ρ

ρ(g1 − g2)
, ρ �= 0

1, ρ = 0
, M3

2 = 1 − M3
1 ,

with ρ = x2,k + vT
2L sin(x1,k)

For comparison purposes, the following control approac-
hes using classical T–S fuzzy models are taken into account:

– case 1: Theorem 6.6 of Feng (2010);
– case 2: Remark 2without the inclusion constraint in (20).
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Fig. 1 a Domain of validity and trajectories for different disturbances;
b �2-gain from wk to zk

By solving an optimization problem aiming theminimization
of the upper bound on the �2-gain from wk to zk , we have,
respectively, obtained the upper bounds γ = 0.4171 and
γ = 0.3430 for the cases 1 and 2. Notice that the bound
obtained in case 2 is less conservative than the one obtained
in case 1.

In Fig. 1a, we observe the projections of the closed-loop
system trajectories1 on the plane x1, x2 and �2-gains using the
results obtained in case 1, for the following three different
disturbance signals with

∥∥w1,k
∥∥

�2
= 7.8731,

∥∥w2,k
∥∥

�2
=

10.3923 and
∥∥w3,k

∥∥
�2

= 24,

w1,k =
{

ek, 1 ≤ k ≤ 2
0, k < 1, k > 2

, w2,k =
{−6, 1 ≤ k ≤ 3

0, k < 1, k > 3
,

w3,k =
{
8, 1 ≤ k ≤ 9
0, k < 1, k > 9

1 The simulations were performed considering the closed-loop system
composed of the designed fuzzy controller and the original nonlinear
plant.
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Figure 1b shows that the closed-loop state trajectory may
either remain bounded or diverge to infinity. Precisely, the
trajectories driven byw1,k andw2,k are bounded and byw3,k

goes to infinity. However, it is important to emphasize that
although the trajectory imposed by w2,k is bounded and ver-
ifies the required performance, it reaches an impracticable
jack-knife condition for the system. The instability and jack-
knife condition problems stem from the fact that the fuzzy
model domain of validity X has not been considered in the
design phase leading to undesirable systembehaviors. Notice
by applying optimization problem (25) that we are able to
determine control laws which ensure that the state trajec-
tory is confined to the domain of validity while guaranteeing
upper bounds on the �2-gain for the exogenous signals w1,k ,
w2,k and w3,k .

5.2 Example 2

Consider the following discrete-time nonlinear system (Klug
et al. 2013):

xk+1 =
[− 13

20
11
20

1
5

6
5

]
xk +

[
0
5
4

]
uk +

[
0
51
100

]
wk

+
[ 9

40 x21,k + 3
40 x1,k x2,k + 3

10 x2,k(1 + sin(x2,k))

1
5 x21,k + 1

20 x1,k x2,k + 1
40 x1,kuk + 39

200 x1,kwk

]

zk = x1,k + 23

20
uk + 7

40
x1,kuk (30)

where xk = [
x(1,k) x(2,k)

]′
.

Assume that the domain of validity X as given in (8) is

defined by means of N = I2 and φ = [
2 1.5

]′
. Addition-

ally, defining the premise variable νk = x1,k , and the sector
nonlinearity ϕk = ϕ(Lxk) = 3

10 x(2,k)(1 + sin(x(2,k))), with
L = [

0 1
]
, the system dynamics in (30) can be cast as fol-

lows:

xk+1 =
{[− 13

20
11
20

1
5

6
5

]
+ νk

[ 9
40

3
40

1
5

1
20

]}
xk +

[
1
0

]
ϕk

+
{[

0
5
4

]
+νk

[
0
1
40

]}
uk

+
{[

0
51
100

]
+νk

[
0
39
200

]}
wk

zk = x1,k +
(
23

20
+ 7

40
νk

)
uk (31)

Note that the nonlinearityϕk can be globally encompassed
into a sector bounded nonlinearity, i.e., ϕk ∈ S[0 , 0.7], as
well as νk ∈ [d1, d2], with d1 = −2 and d2 = 2 being the
extreme points of νk . Thus, the system in (31) can be exactly
described by the following N-fuzzy model:

Table 1 Disturbance tolerance

γ 1.5 2 2.5 3

δ 0.4530 0.1860 0.1037 0.0671

Table 2 Disturbance attenuation

δ 0.1 0.2 0.5 1

γ 2.5367 1.9487 1.4595 1.3273

xk+1 =
2∑

i=1

αk(i) {Ai xk + Bi uk + Bwiwk + Giϕk}

zk =
2∑

i=1

αk(i) {Czi xk + Bzi uk + Bzwiwk + Gziϕk} (32)

with αk(1) = d2 − νk

d2 − d1
, αk(2) = νk − d1

d2 − d1
, and the following

system matrices according to (3), for i = 1, 2:

Ai =
[− 13

20 + 9
40di

11
20 + 3

40di

1
5 + 1

5di
6
5 + 1

20di

]
, Bi =

[
0

5
4 + 1

40di

]
,

Bwi =
[

0
51
100 + 39

200di

]
, Gi = G =

[
1
0

]
,

Czi = Cz = [
1 0

]
, Bzi = 23

20
+ 7

40
di ,

Bzwi = 0 and Gzi = 0.

Firstly, applying the disturbance tolerance problem in (24)
for a given set of �2-gain values, we obtain the results shown
in Table 1. Notice that smaller is the upper bound γ on the
system �2-gain, larger is the value of δ (i.e., the set of admis-
sible disturbances is smaller).

On the other hand, considering that the bound on the
admissible disturbances is known a priori, we apply the
disturbance attenuation optimization problem in (25). The
results are described in Table 2 showing that larger values of
δ will lead to smaller upper bounds on the �2-gain.

These two experiments clearly demonstrate that the dis-
turbance attenuation properties of the original nonlinear sys-
tem are state dependent contrasting with standard T–S fuzzy
approaches which assume a constant �2-gain regardless the
disturbance energy. To emphasize this point, Fig. 2a, b show
the estimates of the reachable set (given by D) and the state
trajectory evolution of the closed-loop system considering
controllers derived from (24) and (25), respectively, for the
pairs {γ , δ} = {2.5 , 0.1037} and {δ , γ } = {0.1 , 2.5367}.
The disturbance signals are, respectively, similar to the w2,k

andw1,k signals considered in Example 1, but with a reduced
amplitude to achieve the desired energy level, where xw1 and
xw2 means state trajectories driven, respectively, by w1 and
w2. Notice in both cases that i) the state trajectories remains
bounded in X for all samples; ii) a certain duality between
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Fig. 2 a Regions for disturbance tolerance algorithm; b regions for
disturbance attenuation algorithm

the optimization problems (24) and (25) since they led to
similar estimates of the reachable set.

Finally, consider δ = 1, γ = 2 and the reachable set
estimation algorithm in (27). Thus, the following controller
matrices are obtained:

K1 = [−0.4215 −0.6371
]
, K2 = [−0.5453 −0.7070

]
,

Γ1 = 0.3949, and Γ2 = 0.4186.

In Fig. 3a, we observe the region estimated for this partic-
ular case with an optimal β = 0.4313 ≤ 1. To evaluate the
method conservativeness, the state trajectory driven by the
following signal (which respects the energy bound)

wk =
{
0.7, 1 ≤ k ≤ 2
0, elsewhere

is also plotted in Fig. 3a, demonstrating that the reachable set
estimate is tight. For illustrative purposes, the time response
of the state trajectories and the control effort are also shown
in Figs. 3b and 4, respectively.
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Fig. 3 a Regions for disturbance attenuation algorithm; b state trajec-
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6 Concluding Remarks

We have proposed a convex approach for the design of fuzzy
controllers that locally stabilizes nonlinear discrete-time sys-
tems considering either classical or N-fuzzy T–S models.
Considering fuzzy Lyapunov functions, three optimization
problems in terms of LMI constraints are proposed to design
a nonlinear state feedback control law which is a function of
the membership fuzzy functions and cone sector nonlineari-
ties. It turns out that the proposed approach locally ensures
the �2-ISS of the original nonlinear system while guarantee-
ing a certain input-to-output performance for a given class of
disturbance signals. Numerical examples have demonstrated
the potentialities of the proposed technique as a tool for the
control design of nonlinear discrete-time systems. As inKlug
et al. (2014), the proposed approach can be extended to deal
with the local �2-ISS stabilization problem in the presence
of control saturation (Tarbouriech et al. 2011). Our future
research is concentrated in extending the proposed frame-
work for considering persistent disturbances.
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