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Abstract In this paper, the problem of delay-dependent
robust stability of uncertain load frequency control (LFC)
systems with multiple time-delays and exogenous power
system disturbance has been considered. Using Lyapunov–
Krasosvskii functional method, less conservative delay-
dependent stability criteria are proposed in linear matrix
inequality formulation to compute the maximum value of the
time-delays within which the LFC system under considera-
tion remains asymptotically stable in the sense of Lyapunov.
Compared to the existing result in the literature, the proposed
result takes into account the effect of unknown exogenous
load disturbance into the stability analysis, imparting more
applicability and usefulness to the resulting stability criterion
in real-time conditions.

Keywords Load frequency control · Delay-dependent
stability · Lyapunov stability analysis · Linear matrix
inequality · Multiple time-delays

1 Introduction and Problem Formulation

It is well known that load frequency control of multi-area
power systems through communication network introduces
time-delays in the feedback path Bevrani (2009). In real-
time condition, these delays account for the transfer of sys-
tem information (output or state variables) from power plant
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(RTUs) to the control center at remote where the control
algorithm is embedded and the subsequent transfer of the
control effort from the controller back to the plant. The pres-
ence of time-delays in a physical system is detrimental to
the system performance as well as stability. Excessive time-
delays often pave way to system instability Gu et al. (2003).
Hence, it becomes necessary to compute the maximum value
of the time-delays within which the closed-loop LFC system
remains asymptotically stable in the sense of Lyapunov. This
is called delay-dependent stability of time-delayed LFC sys-
tems Jiang et al. (2012).

Generally, a power system is subjected to sudden unknown
load disturbances that perturb the system from its equilibrium
point. If system is capable of regaining the same equilibrium
point where it was operating at and before the time of pertur-
bation, then it is said to be asymptotically stable (in the sense
of Lyapunov). On the other hand, in an unstable system, any
perturbation from equilibrium point drifts the system com-
pletely away from it. If the system, by itself, regains the equi-
librium point upon perturbation from it, then the system is
said to be autonomously stable or open-loop stable; else, if it
does regain the original equilibrium condition with the aid of
a controller, then the system is said to be closed-loop stable.

Time-delays appear in a system either due to the physical
characteristics like backlash or dead zone, or from external
environment like networked control through open communi-
cation channels Bevrani and Hiyama (2009). In either case,
in a time-delayed system, the tendency of the system to drift
away from the equilibrium point is more when perturbed
from it; this, in turn, makes stability of the system susceptible
to the size of the time-delay. The delay-dependent stability
criteria, which computes the maximum value of the delay
within which a system remains asymptotically stable, are
basically sufficient conditions that derived using Lyapunov–
Krasovskii (LK) functional methodWu et al. (2010). The cri-
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teria are expressed as a set of solvable linear matrix inequali-
ties (LMIs)YuandTomsovic (2014). The conservativeness of
the delay-dependent stability criteria depends on the choice
of the LK functional used in the stability analysis and the
techniques employed for bounding the time derivative of the
functional. The computational efficiency, on the other hand,
depends on the number of decision variables involved in the
stability criterion (LMI) Gahinet et al. (1995). Preferably,
the delay-dependent stability criterion should both be less
conservative as well as computationally less expensive.

In Jiang et al. (2012), a less conservative delay-dependent
stability criterion is presented for a class of multi-area LFC
systems with PI control closed through a communication
channel (that introduces time-delay in the closed-loop sys-
tem) using LK functional approach in LMI formulation. But
in the stability criterion, the effect of exogenous power sys-
tem disturbance is not taken into consideration, and hence,
the criterion can be only employed for ascertaining delay-
dependent stability for LFC systems under nominal system
conditions. This invariably restricts the applicability of the
criterion for ascertaining delay-dependent stability of LFC
systems that are subjected to unknown exogenous load dis-
turbances. In addition, the stability criterion presented in
Jiang et al. (2012) is taken from the main result of He et al.
(2006) that involves more number of decision variables in
the LMI. This, in turn, makes the result of Jiang et al. (2012)
computationally more expensive. In order to alleviate these
drawbacks, in this paper, using LK functional approach and
Jenson integral inequality Zhang et al. (2005), a less con-
servative robust stability criterion is proposed for multi-area
LFC systems with load disturbances. In the proposed delay-
dependent stability analysis, the effect of unknown exoge-
nous load disturbance onto the system output is minimized
in H∞ sense.Hence, the proposed criterion hasmore applica-
bility than that of Jiang et al. (2012) in real-time operating
conditions. The use of Jenson integral inequality to bound the
time derivative of the LK functional in the delay-dependent
analysis helps to reduce the total number of decision vari-
ables in the LMI yielding a computationally less expensive
stability criterion. To present the proposed result in a lucid
manner, we have considered a typical two-area LFC system,
though an extension to higher area systems is very much
possible. The state-space model of two-area PI controlled
LFC system with multiple time-delays and exogenous load
disturbance Jiang et al. (2012) is given by

ẋ(t) = Ax(t)+A1x(t−h1)+A2x(t−h2)+Bωω(t), (1)

y(t) = Cx(t), (2)

where the state vector x(t) = [� f1(t) �Pm1(t) �Pv1(t)∫
ACE1(t)dt �P12(t) � f2(t) �Pm2(t) �Pv2(t)

∫

ACE2(t)dt]T ; the corresponding system matrices are given
below:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− D1
M1

1
M1

0 0 − 1
M1

0 0 0 0
0 − 1

Tch1
1

Tch1
0 0 0 0 0 0

− 1
R1Tg1

0 − 1
Tg1

0 0 0 0 0 0

β1 0 0 0 1 0 0 0 0
2πT12 0 0 0 0 −2πT12 0 0 0

0 0 0 0 1
M2

− D2
M2

1
M2

0 0
0 0 0 0 0 0 − 1

Tch2
1

Tch2
0

0 0 0 0 0 − 1
R2Tg2

0 − 1
Tg2

0

0 0 0 0 −1 β2 0 0 0
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⎥
⎥
⎥
⎥
⎥
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0 0 0 0 0 0 0 0 0
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,

A2 =

⎡
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⎢
⎢
⎢
⎢
⎣
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0 0 0 0 KP2
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− β2KP2
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⎥
⎥
⎥
⎥
⎥
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⎥
⎥
⎥
⎥
⎥
⎦

,

Bω =
[

− 1
M1

0 0 0 0 0 0 0 0
0 0 0 0 − 1

M2
0 0 0 0

]T

,

C =
[
1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

]

.

The initial condition for the delayed system is given by
x(t) = �(t), t ∈ [−max(h1, h2), 0]. The power system
load disturbance vector is ω(t) = [�PD1(t) �PD2(t)]T ∈
R
2, and output vector is y(t) = [� f1(t) � f2(t)] ∈ R

2. The
notations used for the i th area, i = 1, 2 are given in Table 1.

The objective of this paper was to derive a new delay-
dependent stability criterion to compute themaximumallow-
able bound of the delays h1 and h2 such that the two-areaLFC
system under consideration remains asymptotically stable in
the sense of Lyapunov in the presence of unknown exoge-
nous load disturbance. For deriving the proposed result, fol-
lowing lemma (based on Jenson integral inequality Zhang
et al. (2005)) is required:

Lemma 1 For any constant symmetric positive definite
matrix X ∈ R

n×n, a scalar γ > 0 and vector function ẋ :
[−γ, 0] �→ R

n such that the integration
∫ t
t−γ

ẋ T (s)X ẋ(s)ds
is well defined, then the following inequality holds:

− h
∫ t

t−h
ẋT (s)X ẋ(s)ds ≤

[
x(t)

x(t − h)

]T [−X X
� −X

]

×
[

x(t)
x(t − h)

]

. (3)
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Table 1 Notations

�Pvi (t) Governor valve position

�Pmi (t) Turbine/generator output

� fi (t) Frequency deviation

ACEi (t) Area control error

�P12(t) Tie-line power transfer between area 1 and area 2

T12 Tie-line synchronizing coefficient between area 1
and area 2

βi Frequency bias factor

KIi Integral gain of local PI controller

KPi Proportional gain of local PI controller

hi Time-delay between controller and power plant in
i th area

Di Generator damping constant

Mi Moment of inertia of generator

Tchi Turbine time constant

Tgi Governor time constant

Ri Speed droop

�PDi (t) Load disturbance

2 Main Result

The proposed result is stated in the form of following theo-
rem:

Theorem 1 The system (1) with output equation (2) is
asymptotically stable in the sense of Lyapunov satisfying
||y(t)||2 < γ ||ω||2 with zero initial condition and a pre-
scribed H∞ performance level γ > 0, if there exist real
symmetric positive definite matrices P, Q1, Q2, R1, R2 and
R3 such that the following LMI holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 PA1 + R1 PA2 + R2 PBω ATU CT

� −Q1−R1−R3 R3 0 AT
1 U 0

� � −Q2−R2−R3 0 AT
2 U 0

� � � −γ 2 I BT
ωU 0

� � � � −U 0
� � � � � −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0,

(4)

where �11 = AT P + PA + Q1 + Q2 − R1 − R2 and
U = h21R1 + h22R2 + (h1 − h2)2R3.

Proof Consider the LK functional:

V (x(t)) = xT (t)Px(t) +
2∑

i=1

∫ t

t−hi
xT (s)Qi x(s)ds

+
2∑

i=1

hi

∫ 0

−hi

∫ t

t+θ

ẋ T (s)Ri ẋ(s)dsdθ

+(h2 − h1)
∫ −h1

−h2

∫ t

t+θ

ẋ T (s)R3 ẋ(s)dsdθ, (5)

where P , Q1, Q2, R1, R2 and R3 are symmetric positive def-
inite matrices. The time derivative of (5) along the trajectory
of (1) is given by

V̇ (x(t)) = 2xT (t)Pẋ(t)

+
2∑

i=1

(xT (t)Qi x(t) − xT (t − hi )Qi x(t − hi ))

+ẋ T (t)U ẋ(t) −
2∑

i=1

hi

∫ t

t−hi
ẋ T (s)Ri ẋ(s)ds

−(h2 − h1)
∫ t−h1

t−h2
ẋ T (s)R3 ẋ(s)ds. (6)

Now, by applying Lemma 1 to the integral terms −∑2
i=1 hi∫ t

t−hi
ẋ T (s)Ri ẋ(s)ds and−(h2−h1)

∫ t−h1
t−h2

ẋ T (s) R3 ẋ(s)ds,
we obtain the following quadratic condition:

V̇ (x(t)) ≤ ξ T (t)(� + ĀTU Ā)ξ(t), (7)

where ξ(t) = [xT (t) xT (t − h1) xT (t − h2) ωT (t)], and

� =

⎡

⎢
⎢
⎣

�11 PA1 PA2 PBω

� �22 R3 0
� � �33 0
� � � 0

⎤

⎥
⎥
⎦ ,

Ā = [
A A1 A2 Bω

]T
.

For a prescribed scalar γ > 0, define a performance index J
as follows:

J =
∫ ∞

0
(yT (s)y(s) − γ 2ωT (s)ω(s))ds. (8)

Now, if

� + ĀTU Ā + yT (t)y(t) − γ 2ωT (t)ω(t) < 0, (9)

then, from (7), following inequality holds good:

V̇ (x(t)) + yT (t)y(t) − γ 2ωT (t)ω(t) < 0. (10)

For ω(t) �= 0, by integrating (9) from 0 to t and letting
t → ∞, with zero initial condition, we get

∫ ∞

0
yT (s)y(s)ds < γ 2

∫ ∞

0
ωT (s)ω(s)ds, (11)

which, in turn, implies that ||y(t)||2 < γ ||ω(t)||2. This
ensures that J < 0. On the other hand, (4) implies that fol-
lowing LMI holds:
⎡

⎢
⎢
⎣

�11 PA1 + R1 PA1 + R1 ATU
� −Q1 − R1 − R3 R3 AT

1U
� � −Q2 − R2 − R3 AT

2U
� � � −U

⎤

⎥
⎥
⎦ < 0.

(12)
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Thus, V̇ (x(t)) < λ||x(t)||2 for a sufficiently small scalarλ >

0. Therefore, the system (1) with ω(t) = 0 is asymptotically
stable in the sense of Lyapunov Gu et al. (2003). Hence,
the proof is completed. Now, by substituting (2) in (9), and
subsequently applying Schur complement Boyd et al. (1994),
we deduce the LMI (4) stated in Theorem 1. �	
Remark 1 Further reduction in conservatism can be achieved
by delay-partitioning technique Han (2009), wherein the
delays h1 and h2 are partitioned into N segments (N ≥ 2)
of equal width; subsequently, the segmental information is
employed while constructing the LK functional. One such
result (for N = 2) using the following LK functional is pre-
sented in Corollary 1.

V (x(t)) = xT (t)Px(t)

+
∫ t

t− h1
2

[
x(s)

x
(
s − h1

2

)
]T [

Q11 Q12

� Q22

] [
x(s)

x
(
s − h1

2

)
]

ds

+
∫ t

t− h2
2

[
x(s)

x
(
s − h2

2

)
]T [

R11 R12

� R22

] [
x(s)

x
(
s − h2

2

)
]

ds

+
2∑

i=1

hi
2

∫ 0

− hi
2

∫ t

t+θ

ẋ T (s)Zi ẋ(s)dsdθ

+ (h2 − h1)
∫ −h1

−h2

∫ t

t+θ

ẋ T (s)Z3 ẋ(s)dsdθ, (13)

where in addition to P , Z1, Z2 and Z3 being symmetric and
positive definite, following conditions should also hold good:
[
Q11 Q12

� Q22

]

≥ 0, (14)

[
R11 R12

� R22

]

≥ 0. (15)

Corollary 1 The system (1) with output equation (2) is
asymptotically stable in the sense of Lyapunov satisfying
||y(t)||2 < γ ||ω||2 with zero initial condition, and a pre-
scribed H∞ performance level γ > 0, if there exist real
symmetric positive definite matrices P, Z1, Z2, and Z3;[
Q11 Q12

� Q22

]

≥ 0 and

[
R11 R12

� R22

]

≥ 0 such that the fol-

lowing LMI holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̄11 Q12 + Z1 PA1 R12 + Z2 PA2 PBω AT Ū CT

� Q22 − Q11 − Z1 −Q12 0 0 0 0 0
� � −Q22 − Z3 0 Z3 0 AT

1 Ū 0
� � � R22 − R11 − Z2 −R12 0 0 0
� � � � −R22 − Z3 0 AT

2 Ū 0
� � � � � −γ 2 I BT

ω Ū 0
� � � � � � −Ū 0
� � � � � � � −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (16)

Table 2 Parameters of two-area LFC systems

Parameter Tch(s) Tg(s) R D M M(s)

Area 1 0.3 0.1 0.05 1.0 21 10

Area 2 0.4 0.17 0.05 1.5 21.5 12

T12 = 0.1986

with �̄11 = AT P + PA + Q11 + R11 − Z1 − Z2 and Ū =( h1
2

)2
Z1 + ( h2

2

)2
Z2 + (h2 − h1)2Z3.

The case study on a benchmark LFC system to corroborate
the effectiveness of the proposed results is presented in the
next section.

Remark 2 For a given information on the time-delays, the
minimum value of H∞ attenuation level γ > 0 can be
obtained from Theorem 1 through the following minimiza-
tion problem:

min γ

subject to P > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0 and
R3 > 0; and LMI (4).

3 Case Study

In this section, case study is carried out on a typical bench-
mark two-area LFC systemwith multiple time-delays. Using
Theorem 1 and Corollary 1, the maximum bound of the
time-delays is computed. Since Corollary 1 is obtained by
delay partition, it is less conservative than Theorem 1. How-
ever, Corollary 1 involves more number of decision variables
(6n2 + 4n) than Theorem 1 (3n2 + 3n) making it computa-
tionally more expensive than Theorem 1. Being sufficient
conditions, further reduction in conservatism of the pro-
posed delay-dependent stability criteria can be achieved at
the expense of computational efficiency using higher num-
ber of delay partitions. The parameters of the benchmark
two-area LFC system are taken from Jiang et al. (2012); they
are given in Table 2.

The stability margin obtained by the proposed stability
criteria stated in Theorem 1 and Corollary 1 is presented
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Table 3 Maximum upper delay
bound of h

θ Method KI (KP = 0.05) KP (KI = 0.3)

0.05 0.1 0.2 0.3 0 0.05 0.1 0.2

0o Theorem 1 13.954 6.649 3.035 1.761 1.715 1.761 1.694 1.280

Corollary 1 16.503 7.539 3.272 1.857 1.782 1.857 1.816 1.385

10o Theorem 1 14.460 6.785 3.080 1.785 1.741 1.785 1.711 1.127

Corollary 1 16.964 7.683 3.325 1.880 1.808 1.880 1.826 1.141

20o Theorem 1 15.123 7.109 3.228 1.865 1.823 1.865 1.764 0.626

Corollary 1 17.698 8.045 3.484 1.962 1.892 1.962 1.845 0.629

30o Theorem 1 16.322 7.707 3.501 1.913 1.943 1.913 1.454 0.447

Corollary 1 19.035 8.706 3.779 1.965 2.000 1.965 1.484 0.450

40o Theorem 1 18.022 8.673 3.927 1.544 1.612 1.544 1.152 0.353

Corollary 1 20.684 9.720 4.155 1.579 1.641 1.579 1.177 0.355

45o Theorem 1 18.169 8.885 3.593 1.409 1.469 1.409 1.049 0.322

Corollary 1 20.606 9.753 3.790 1.442 1.497 1.442 1.077 0.324

50o Theorem 1 17.888 8.341 3.318 1.303 1.358 1.303 0.975 0.298

Corollary 1 20.215 9.180 3.503 1.331 1.383 1.331 0.996 0.300

60o Theorem 1 16.140 7.396 2.936 1.154 1.203 1.154 0.869 0.265

Corollary 1 18.256 8.146 3.098 1.179 1.224 1.179 0.887 0.266

70o Theorem 1 14.936 6.820 2.706 1.067 1.111 1.067 0.808 0.244

Corollary 1 16.915 7.516 2.856 1.090 1.130 1.090 0.824 0.246

80o Theorem 1 14.273 6.509 2.582 1.022 1.063 1.022 0.775 0.234

Corollary 1 16.167 7.176 2.726 1.044 1.080 1.044 0.791 0.235

90o Theorem 1 13.622 6.390 2.545 1.008 1.047 1.008 0.764 0.230

Corollary 1 15.620 7.050 2.687 1.031 1.066 1.031 0.781 0.232

in Table 3 where h =
√
h21 + h22 and θ = cos−1

( h1
h

)
. In

order to minimize the effect of load disturbance onto the sys-
tem output, the constraint ||y(t)||2 < γ ||ω(t)||2 is imposed
while deducing the stability criteria; to guarantee robustness
against exogenous disturbance signal, a value of γ = 0.1
has been selected Dey et al. (2012). From the table, it is clear
that Corollary 1, being derived using the delay-partitioning
approach, is less conservative than Theorem 1. Since the
effect of load disturbance is taken into the stability analy-
sis, the delay margin provided by the proposed criteria is
more accurate than that of Jiang et al. (2012). The number
of decision variables involved in Theorem 1 and Jiang et al.
(2012) are compared in Table 4. From the table, it is clear
that the proposed criterion involves less number of decision
variables than Jiang et al. (2012), and hence, it is computa-
tionally less expensive. For time-delays in stable region, the
evolution of system frequency � f1(t) and � f2(t) when the
load is perturbed by a per unit change is shown in Fig. 1.
From the figure, it is clear that the asymptotic convergence
of the variables illustrates that the delayed LFC system is
delay-dependently stable.

Table 4 Number of decision variables

Method Number of decision variables

Jiang et al. (2012) 25.5n2 + 7.5n

Theorem 1 3n2 + 3n

4 Conclusion

In this paper, robust delay-dependent stability criteria are
presented for a class of uncertain LFC systems with multiple
time-delays using Lyapunov–Krasovskii functional method
in LMI formulation. To reduce conservatism in the delay-
dependent stability analysis, delay-partitioning technique is
employed, and to reduce the number of decision variables
in the LMI, Jenson integral inequality is employed. Since
proposed criteria are derived by taking into account the
effects of unknown exogenous power system disturbance,
they are more effective for ascertaining delay-dependent sta-
bility of LFC systems in real-time conditions than a recently
reported result in the literature which is deduced without tak-
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Fig. 1 Evolution of system frequency for perturbed load condition

ing into account the effect of load disturbance. The possibility
of analyzing the delay-dependent stability of LFC systems
with multiple time-varying delays and exogenous load dis-
turbance will be explored as a future work.
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