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Abstract In this paper, a higher-order sliding mode con-
troller for a power DC–DC converter is proposed. The uncer-
tainty and disturbance are implicit to be unknown. A detailed
analysis to explore the local and global stability of a Buck
DC–DC converter was presented in this paper. Different
control schemes were implemented to regulate the output
voltage and to eliminate the high current ripples for the
proposed converter, beginning with a proportional-integral-
derivative compensation scheme, then a sliding mode con-
troller, a higher-order sliding mode controller and finally
an adaptation low with higher-order sliding mode controller
(AHOSMC). Stability and robustness of the AHOSMC are
proved by using the classical Lyapunov criterion. The sen-
sitivity of parameters variation is analyzed, and a detailed
bifurcation analysis is undertaken.

Keywords Higher-order sliding mode control · Adaptive
higher-order sliding mode control · Bifurcations · DC–DC
converters

List of Symbols

Tr Controlled switch (IGBT)
D Uncontrolled switch (diode)
L Inductor
C Capacitor
R Load resistance
rL Equivalent series resistance of L
rc Equivalent series resistance of C
iL Inductor current

A. Hadri-Hamida (B)
LMSE Laboratory, Department of Electrical Engineering, University
of Biskra, 07000 Biskra, Algeria
e-mail: am_hadri@yahoo.fr

K p, Ti , Td Parameters of the PID controller
r Degree of the sliding surface
Is Load current
TReq Equivalent control
Hv Sensor gain for the output voltage
Vref Reference voltage
k Entire number
ϑ Positive definite matrix
k1 Positive gain
Ve Input voltage
VC Output capacitor voltage
Vrc Voltage drop across rC

Vs Output voltage (the sum of VC and Vrc)

α Duty ratio
T Switching cycle
F Switching frequency
TR Switching function which can equal to 1 or 0,

the control law
S Sliding surface
λ Strictly positive constant
K Positive constant
TRn Stabilizing control
Hi Sensor gain for the inductor current
iref Reference current
σ Sliding function
v Control law
V Lyapunov function

1 Introduction

High-frequency and high-power converters are necessary in
DC–DC conversion (Tan et al. 2004a, b). However, increas-
ing the switching frequency leads to significant switching
losses, which can deteriorate all system efficiency. A huge
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step in DC–DC converter technology was taken when the DC
link converter was invented (Tan et al. 2005). Stable pulse
width modulation (PWM) DC–DC converters are deemed
necessary. This leads to analyze the bifurcation pattern of
these converters. This PWM DC–DC converter not only has
to meet the characteristics demanded by the load, but also
must process energy with high efficiency, high reliability,
high-power density and low cost (Tan et al. 2006; Hadri
Hamida et al. 2006).

The bifurcation analysis denotes for a change in the num-
ber of candidate operating conditions of a nonlinear system
when a parameter is quasi-statically varied (Tse and Adams
1992; Hadri-Hamida and Allag 2009; Nayfeh and Balachan-
dran 1995). The parameter being varied is referred to as the
bifurcation parameter (bp). A nonlinear dynamical system
can exhibit many different kinds of bifurcations as one or
more parameters are varied.

In its simplest terms, the operation of DC–DC converter
can be described as an orderly repetition of a fixed sequence
of circuit topologies. The conversion function of the con-
verter is determined by the constituent topologies and the
order in which they are repeated (Middlebrook and Cuk 1997;
Venkataramanan et al. 1985).

The major difficulty, in the analysis and modeling of PWM
DC–DC converters, lies in the fact that the manner in which
the system operates is highly nonlinear (Mazumder et al.
2001; Maity et al. 2007). To date, most analytic techniques of
modeling and analysis of these converters implement linear
feedback systems (Rosehart and Cañizares 1999).

In most of the above investigations, sampled data models
or maps of the converters have been derived, and the bifurca-
tion structures have been investigated with the discrete mod-
els. Using an exact formulation based on nonlinear maps
(Wiggins 1990), we develop a systematic method to model
PWM DC–DC converters operating with feedback control.

Here, we have investigated the behavior of the Buck PWM
DC–DC converter in the instability zones to shed light on its
associated bifurcation with the help of the software package
MATLAB (Wang et al. 2000).

To improve the performances of the PWM DC–DC con-
verter, a control strategy based on AHOSMC is proposed,
which gives the good performance robust to disturbances as
well as the fast transient responses.

The SMC is one of the popular strategies to deal with
uncertain control systems (Deane and Hamill 1990). The
main feature of SMC is the robustness against parameter
variations and external disturbances. Various applications of
SMC have been conducted, such as robotic manipulators,
aircrafts, DC motors, chaotic systems, and so on (Mattavelli
et al. 1993).

The reference Tsang and Chan (2008) presented a model-
based cascade controller for DC–DC Buck converters. A
dead band relay is introduced in the voltage loop to improve

the disturbance rejection and speed of response of the Buck
converter which is modified into an uncertain linear model
in Tsai and Chen (2007). Then, SMC technology is adopted
to suppress the input disturbance and reduce the effects from
the load variation.

In Li et al. (2013), an improved SMC method for a modular
multilevel high-voltage DC converter is presented. It merges
the merits of the PID neural network and can solve the chat-
tering problem that exists in conventional SMC on-line. The
hysteresis modulation SMC is designed in Ramash Kumar
and Jeevananthan (2012) for the inherently variable struc-
ture of the negative-output elementary boost converter by
using a state-space average-based model. In Das and Mahanta
(2014), the problem of driving stability for a hybrid vehi-
cle is discussed. The vehicle stability control is addressed
using HOSMC and observation techniques. Comparing these
works with our work, the contribution of this paper is to apply
an AHOSMC to an uncertain Buck DC–DC converter.

We first show that it is feasible to apply a PID feedback
control technique to such a system that is operated in high-
frequency regimes. Also, the effect of parameter perturbation
on the control performance is investigated. In order to elimi-
nate the bifurcations and stead-state error, an SMC control is
also introduced to the exact feedback control law. The goal
of the first-order SMC is to force the state trajectories to
move along the sliding manifold. In the HOSMC, the pur-
pose is to move the states along the switching surface and
to keep its order successive time derivatives by using a suit-
able discontinuous control action. In the AHOSMC, the time
derivative of the control input would be designed to act on
the higher-order derivatives of the sliding variable (Utkin
and Young 1978). Hence, the time derivative of the control
would be used as the control input. The new control would
be designed as a discontinuous signal, but its integral would
be continuous for the eliminating of the high-frequency chat-
tering. It is shown via simulation results that the AHOSMC
has high performance both in the transient and in steady-state
operations. A good control of the output voltage is obtained.

2 System Model Development

A power circuit of a high-frequency Buck DC–DC converter
is introduced in Fig. 1. From the detailed analysis of the PWM
Buck converter presented in Hadri-Hamida et al. (2014), we
deduce the following large-signal continuous-time system:
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Fig. 1 High-frequency buck DC–DC converter

Fig. 2 Closed-loop DC–DC buck converter with SMC

where x = [iL , VC]t .

3 Design of the Feedback Control

In this section, different linear and nonlinear controllers are
designed for Buck DC–DC converter.

3.1 PID and SMC Controllers

Control applications of PWM DC–DC converters have been
widely investigated (Mondal and Mahanta 2011; Utkin et al.
1999; Hadri Hamida et al. 2013; Dong and Tang 2014).
The main objective of research and development in this
field is always to find the most suitable control method to
be implemented in various DC–DC converter topologies. In
other words, the goal is to select a control method capable
of improving the efficiency of the converter, lessening the
effect of electromagnetic interference (EMI), and being less
effected by component variation which is the main objective
in this work. The bloc scheme in Fig. 2 gives the configura-
tion of the DC–DC Buck converter which utilizes a controller
based on a SMC law. The analysis of the PID and the SMC
controllers is presented in Appendix.

3.2 Higher-Order Sliding Mode Controller

The objective of the synthesis of a higher-order sliding mode
control is to force the trajectories of the system (22) to move

in a finished time on the whole sliding surfaces with a defined
order r by:

Sr =
{

x ∈ Rn
∣
∣ S = Ṡ = . . . . . . = Sr−1 = 0

}
(2)

The r th-order derivative of S(x) satisfies the following equa-
tion:

Sr (x) = E E (x) + Q Q TR (3)

where the matrices EE(x) and QQ(x) are the derivatives of the
smooth functions in (29). The r th-order sliding mode control
of system (22) with respect to the sliding variable S(x) can
be expressed as Benbouzid et al. (2014):

{
żi = zi+1

żr = E E (x) + Q Q (x) TR
(4)

where 1 ≤ i ≤ r − 1, and [z1z2 . . . . . . zr]t = [S(x)Ṡ(x) . . .

. . . Sr−1(x)]t . By taking the first-order time derivative of (29),
we obtain:

S̈ = Ė (x) + Q̇ TR + QṪR

= E E (x, TR) + QṪR (5)

where

E E =
(

Hi

LC
− Hir2

L

L2 + HvrL

LC

)

iL +
(

Hv

LC
− HirL

L2

)

VC

− Hi

LC
Is +

((
HirL

L2 − Hv

LC

)

Ve

)

TR .

Finally, the new control law is given by:

ṪR = −Q−1 E E (x, TR) (6)

3.3 Adaptive Higher-Order Sliding Mode Controller

Our objective is to design an adaptive HOSMC for use with
a Buck DC–DC converter having parameter but unknown R
load. With z as the state variable, and from Defoort et al.
(2009), the r th-order sliding mode control for system (22)
can be written as:

{
żi = zi+1 + � fi (z, t)
żr = E En (z) + Q Qn (z) TR + � fr (z, t)

(7)

where � f (z, t) = �E E (z) + �Q Q (z) TR , which are
the uncertain parts of the matrices EE(z) and QQ(z), and
E En (z) , Q Qn (z)are the nominal parts of matrices EE(z)
and QQ(z) respectively.
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Assuming y1 = S(z) and y2 = Ṡ(z), the system dynamics
can be written as Mondal and Mahanta (2013)

{
ẏ1 = y2

ẏ2 = �(z, TR) + � (z) v
(8)

where �(z, TR) = ˙E En (z) + Q̇ Qn (z) TR + �̇ f (z, t) ,�

(z) = Q Qn (z), and v = ṪR . Thus, the new control input
of the system (8) to be determined becomes v. The sliding
function for system (8) is considered as:

σ = y2 + K y1 (9)

The derivative of (9) is obtained as:

σ̇ = ẏ2 + K ẏ1 (10)

Now, we consider the sliding surface suggested by Defoort
et al. (2009)

S (z) = zn − zn (0) (11)

where zn(0) is the initial condition of the system. The time
derivative of (11) is:

Ṡ (z) = żn = E En (z) + Q Qn (z) TR + � f (z, t) (12)

and consequently:

S̈ (z) = ˙E En (z) + Q̇ Qn (z) TR + Q Qn (z) ṪR + � ḟ (z, t)

(13)

From Eqs. (10), (12), and (13) we can obtain:

σ̇ = ˙E En (z) + Q̇ Qn (z) TR + Q Qn (z) ṪR + � ḟ (z, t)

+ K (E En (z) + Q Qn (z) TR + � f (z, t))

= �(z, TR) + � (z) v + K (ż) (14)

The control goal is to regulate the voltage source VC and to
reduce the impact of load and component variation (Zhang
et al. 2015) with the elimination of the high current ripple.
The new control law becomes:

v = −�−1 (z) {�(z, TR) + K (ż) − σ̇} (15)

After the use of the constant plus proportional reaching law
from Utkin and Young (1978), we obtain:

σ̇ = − ρ σ − δ sign (σ) (16)

where ρ ≥ 0, and δ = 1
R − 1

Rn
. Since δ is unknown,

we replace it by its estimate δ̂ = 1
R̂

− 1
Rn

, we can rewrite

Fig. 3 Frequency response analysis of the converter for Ve =
18(−), 24(−), 40 V(. . .) respectively

Fig. 4 The asymptotic behavior of a system

equation (15) in a form that suggests an adaptive scheme for
the estimation of R load:

v = −�−1 (z)
{
�(z, TR) + K (ż) + ρ σ + δ̂ sign (σ)

}
(17)

We can determine by simulation the poles that give good
performance. By using MATLAB Control System Toolbox,
one can obtain the gain k1. We define the adaptation error e
which satisfies:

ė = k1e + W1� δ+W2
˙̂
δ (18)

where � δ = 1
R − 1

R̂
is the error estimate. The existence of

the nonlinear term W2
˙̂
δ suggests the use of the concept of

augmented error σ which puts (18) in a familiar form. We

introduce the signal ε satisfying (ε̇ = k1 ε +W2
˙̂
δ, ε(0) = 0)

and the augmented error σ by (σ = e−ε) which satisfies σ̇ =
k1 σ +W1� δ. We choose the candidate Lyapunov function
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Fig. 5 Steady states of the closed-loop system with a PID controller for different values of Ve, (1) Bifurcation diagram where Ve is the bp, (2) iL ,
(3) VC, (4) state plane and (5) power spectral density of the inductor current

V = σT P σ +� δ
T 	� δ, and then, we differentiate it, we

have:

V̇ = T
σ

(
kT

1 P + Pk1

)
σ +2�

T
δ

(
W 1T P σ 	�̇ δ

)
(19)

In defining the parameter update law under the form ˙̂
δ =

−	−1W 1T P σ, we can guarantee that V̇ = − σT Q σ ≤ 0
where P = PT 〉0 is the solution of Lyapunov equation:

kT
1 P + Pk1 = −ϑ (20)

Using a standard Lyapunov agreement, we can show that the
augmented error σ → 0 as t → ∞ and that the state z and
the error � δ remain bounded. Considering ϑ as an identity
matrix and k1, then one can find the solution of Equation
(19).

4 Simulation Results

We plot in Fig. 3 the loop gain of the closed-loop regulator
system with a PID controller for different values of the input
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Fig. 6 Bifurcation diagrams. a controller gain is the bp, b L is the bp, c Ve is the bp

Fig. 7 Bifurcation diagram, R
is the bp. a with PID controller,
b with SMC

Fig. 8 Estimation of R load

voltage. Even when the input voltage varied, the asymptotic
behavior of the converter is overall stable (see Fig. 4) accord-
ing to the frequency response analysis. In the other hand, in
Fig. 5(1), we show the bifurcation diagram with the input
voltage as a bp where the converter is not stable locally. The
period-one orbit of the closed-loop system is stable. When
Ve = 18 V, the period-one orbit becomes unstable and a
stable period-two orbit emerges. The period-doubling bifur-
cation was ascertained by computing the Floquet multipliers
of the map. When Ve = 21 V, the period-two orbit becomes
unstable and a period 3 emerges. After the period-three bifur-

cation, the period-three orbit directly bifurcates into a chaotic
orbit (Ve > 40V). Next, we present in Fig. 5(2–5) the steady-
state waveforms of the closed-loop system with a PID con-
troller applying Ve = 18, 21, 24, and 40V, respectively. The
two-dimensional projections of the phase portraits on the
iL − VC plane corresponding to these four cases are also
shown (Fig. 5(4)). They demonstrate clearly the period 1,
period 2, period 3, and chaotic orbits.

The power spectrum density for each of these cases is also
shown (Fig. 5(5)). We note that in the case of period 1, appears
in the current spectrum an harmonics series of frequency k∗ f
such as k is an entire number, on the other hand, in the case of
period 2, the spectrum of the current is enriched with a new
series of harmonics of frequency (k + 0.5) ∗ f . In period 3,
another series of harmonics of frequency (k/3) ∗ f appears
in the spectrum of the current, whereas the chaos is appeared
by the absence of an ordered series of harmonics.

In Fig. 6, we investigate the effect of the parameter per-
turbation of the Buck DC–DC converter. These parameters
are, respectively, the controller gain, the inductor L , and the
input voltage Ve.

The AHOSMC is verified by detailed using MATLAB.
A PWM DC–DC model is developed to simulate a switch-
on and change load transient conditions, with the control
scheme in Fig. 2. In Fig. 7, we show the bifurcation diagram
for the system (a) with a PID controller and (b) with an SMC,
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Fig. 9 Inductor current iL , capacitor voltage VC, and control law uc. a with PID controller. Inductor current iL , capacitor voltage VC, and the
sliding surface S. b with SMC, c with AHOSMC

where the load resistance is the bifurcation parameter. When
the load resistance is increased, inductor current decreases,
the period-one solution is stable. As R is increased beyond
19 
, the period-one solution is still stable and the period
of the response is not doubled (Fig. 7b). Note that the SMC
eliminates the bifurcation of the system orbit. Figure 8 shows
the estimation of R load.

From Fig. 9a, we show that the SMC controller ensures
finite-time convergence of the system states. However, the
high-frequency chattering is always present. In Fig. 9b,
the undesired chattering in the current and voltage signal
was removed. The dynamic performance of the designed
AHOSMC controller is found to be satisfactory compared
with that obtained with the conventional SMC and PID con-
troller.

5 Conclusion

In this paper, a nonlinear model was derived for a high-
frequency Buck DC–DC converter. The nonlinear model was
used to study the stability of this converter. Bifurcation dia-
grams were generated to study the total behavior of the sys-
tem as one of its parameters varies.

Next, to improve the performances of our system, we have
introduced a sliding mode controller. The results show that
the SMC control has fast dynamic response to external dis-
turbances than the PID control and with the SMC control
the static and dynamic performances of the output voltage
are much better than with the PID control. This technique
of control can reduce and sometimes eliminate the effect of
load and component variation (bifurcations).
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Moreover, a robust model reference AHOSMC is designed
in order to diminish the influence of the unknown load uncer-
tainties and disturbances. The advantage of the adaptive
HOSMC is translated by the reduction of chattering. The
proposed control scheme gives satisfactory simulation results
with nominal load.

It is shown through simulation results that the AHOSMC
can reduce the internal oscillations, and the performance
of the high-frequency Buck DC–DC converter based on
AHOSMC scheme is better than the ones based on classi-
cal SMC scheme and the PID feedback control scheme.

Appendix

PID and SMC Controllers

We have introduced firstly a PID feedback controller which
has the following transfer function:

Gcontr(p) = kp
1 + p · Ti + p2 · Ti · Td

p · Ti
(21)

Then, we have presented the SMC controller. In SMC, the
trajectory of the system is constrained to move or slide along
a predetermined hyper plane in the state space. Such mode
is completely robust and independent of parametric varia-
tions and disturbances (Utkin 1992; Song and Sun 2014). By
eliminating the parasitic effect of the capacitor (rC = 0),
The system is described by the following state-space equa-
tions (Mondal and Mahanta 2013):
{

ẋ = F (x) + G (x, Ve) TR

y = S (x)
(22)

where the matrices F and G are given by:

F (x) =
[− rL

L iL − 1
L VC

1
C iL − 1

RC VC

]

, G (x, Ve) =
[ Ve

L

0

]

(23)

And S(x) is the measured output function known as the slid-
ing variable. The general form of S(x) is given as follows
(Utkin 1992):

S (x) =
(

d

dt
+ λ

x

)r−1

e (x) (24)

It is the first convergence condition which permits dynamic
system to converge toward the sliding surfaces. It is a ques-
tion of formulating a positive scalar function V(x) > 0 for
the system states variables which are defined by the following
Lyapunov function (Utkin et al. 1999; Filippov 1964):

V (x) = 1

2
S (x)T S (x) (25)

V̇ (x) < 0 ⇒ S (x)T Ṡ (x) < 0 (26)

Table 1 Parameters of the buck DC–DC converter (Hadri Hamida
2011)

Input voltage 15 ÷ 50 V

Switching frequency 2.5 ∗ 103 Hz

Inductance 20 ∗ 10−3 H

Output capacitor 47μF

Equivalent series resistance rL 0.022 


Equivalent series resistance rC 0.022 


Load resistance 12 ÷ 35 


Now, we define

TR (t) = 1

2
(1 + sign (S)) = TReq (t) + TRn (t) (27)

where TReq(t) and TRn(t) represent the equivalent control
(Utkin 1992) and the nonlinear switching control and:

sign (S) =
{

1 S (x) > 0
−1 S (x) < 0

The sliding surfaces are given by the following expression
(Table 1):

S = e (Vs) + e (iL) = Vré f − HvVs + ir é f − Hi iL (28)

and consequently, their derivatives are given by:

Ṡ = E (x) + QTR (29)

where x = [iL VC]T ,

E =
(

HirL

L
− Hv

C

)

iL + Hi

L
VC + Hv

C
Is,

and

Q = − Hi

L
Ve.

Finally, the control law is given by:

TR = −Q−1 E (x) + K sign (S) (30)

Parameters of the Buck DC–DC Converter

How to Plot a Bifurcation Diagram?

Let us consider the state equation:

{
ẋ = Ax + BVe

x0
(31)

The diagram of bifurcation of this system is defined in the
following way: One represents Ve in X-coordinate (Ve rang-
ing between 15 and 50 V), and we present in ordinate, the
values obtained by the solution of the state equation, after a
certain iteration count (400 for example). For each value of
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Ve, the operation is started again a great number of times by
choosing each time a random value of the first term x0 (equi-
librium values). One thus obtains the bifurcation diagram of
our system.
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