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Abstract In this paper, a robust adaptive finite time slid-
ing mode control method is proposed for the attitude con-
trol of a rigid spacecraft. The proposed control method is
derived using a novel fast terminal sliding surface with reach-
ing law. To eliminate the prior requirement of disturbances
and uncertainties bounds, the proposed controller gains are
derived by the adaptive estimate laws. The presented adaptive
non-singular fast terminal sliding mode controller is faster,
robust, and continuous. Finite time stability with faster con-
vergence speed is proved using the Lyapunov stability. Sim-
ulations are conducted under the presence of external distur-
bances, inertia uncertainties, and constrained control input,
and results are illustrated to show the effectiveness of the pro-
posed method. Additionally, to show the efficacy of proposed
control method over the recently reported control method,
comparative analysis is presented also.

Keywords Attitude control · Non-singular fast terminal
sliding mode · Finite time convergence · Adaptive control

1 Introduction

Attitude control system (ACS) plays a very important role
in the success of space mission. The performance of ACS is
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measured in terms of the pointing accuracy, the convergence
time to achieve desired attitude, the robustness against para-
metric uncertainty and external disturbances, and the energy
consumption. As yet, different control methods have been
explored to tackle this highly non-linear behaved problem
(Abdelrahman and Park 2013; Chen and Huang 2009; Joshi
et al. 1995; Kristiansen and Gravdahi 2009; Show et al. 2003).

Sliding mode control (SMC) is a well-known robust con-
trol method, and it has proven its efficiency in weeding out
the effects of system parameter uncertainty and external dis-
turbances (Gao and Hung 1993; Utkin 1977). The initial
applications of SMC for the attitude control purpose could
be seen in (Fuyuto 1998; Jan and Chiou 2003; Lo and Chen
1993; Vadali 1986). In the conventional SMC design, the con-
trol law is derived using a linear sliding surface, and hence
the asymptotic convergence is the major limitation of this
approach.

Recently, a finite-time control method, terminal sliding
mode (TSM) has been introduced in (Venkat and Gulati 1991;
Yu and Man 1996). The TSM control, in addition to bear
the robustness similar to SMC, does promise the finite time
convergence and the improved steady precision (Feng and
Yu 2013). Since its emergence, the TSM-based control has
drawn the extensive attention for solving the different control
problems (Man and Yu 1997; Wang et al. 2009; Yu and Man
1996; Yang 2012). Nevertheless, the earlier version of TSM
control is handicapped by the two limitations. Firstly, the sin-
gularity in control; and secondly, the slower convergence rate,
while the system states are starting from the far away point.
To ensure the faster convergence speed regardless to the states
position, the fast terminal sliding mode (FTSM) control has
been presented in (Yu and Man 2002). Then, non-singular
terminal sliding mode (NTSM) control has been proposed to
overcome the singularity problem, and its efficacy has been
validated on robotic manipulator problem (Feng et al. 2002;
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Yu et al. 2005). More recently, in (Yang and Yang 2011), the
concept of non-singular fast terminal sliding mode (NFTSM)
is presented; in which, both limitations of the originally pro-
posed TSM have been eliminated together.

TSM-based attitude control design first appeared in
(Erdong and Zhaowei 2008). However, singularity, slow con-
vergence rate, and significant chattering can be seen. Then,
NTSM-based attitude controls have been proposed in (Ding
and Li 2009; Li et al. 2011). For the attitude stabilization, first
time FTSM-based control appeared in (Tiwari et al. 2010).
However, in all these efforts, both limitations of the originally
proposed TSM could not be eliminated together. As a result,
NFTSM-based attitude control method has been reported in
(Tiwari et al. 2012).

In the above-mentioned finite time attitude control meth-
ods, the control design works on the assumption that the
upper bounds of external disturbances and inertia matrix
uncertainty are known in advance. As a result, the conser-
vative approach has been adopted, and the controller’s gain
has been linked with the upper bounds of the external dis-
turbances and the inertia uncertainty. However, in practical
situations, the upper bounds are not known in advance, and
by the conservative approach may aggravate chattering.

Therefore, in recent years, efforts by combining together
the TSM variants and the adaptive control have been tried (Lu
and Xia 2013a, b; Xiao et al. 2013; Zhu et al. 2011). In (Xiao
et al. 2013; Zhu et al. 2011), FTSM and adaptive control have
applied together, but the singularity possibility does persist.
In (Lu and Xia 2013a), an adaptive NTSM control has been
applied for the rigid spacecraft attitude stabilization. More
recently, in (Lu and Xia 2013b), by a new fast terminal sliding
surface and adaptive control together, an attitude tracking
control law been presented. In conclusion, spacecraft attitude
control design using adaptive terminal sliding mode control
is not very rich; and to enhance further, the convergence speed
and the steady-state precision, scope is available in selection
of the sliding surface or in the design of an adaptive law.

Therefore, in the presented work, by the adaptive non-
singular fast terminal sliding mode (ANFTSM), an attitude
control law has been proposed. The proposed attitude control
law has been derived by using a novel non-singular fast ter-
minal sliding surface working together with a reaching law.
The applied reaching law serves two purposes; first is to con-
trol the convergence speed in reaching phase, and second is
to alleviate the chattering. Additionally, to eliminate the need
of advance information of the uncertainty and external dis-
turbance upper bounds, the proposed controller gains have
been derived by newly formulated adaptive estimate laws.
Additionally, adaptive law-derived gain helps in chattering
alleviation.

The paper is organized as follows. Section 2 reviews the
rigid spacecraft attitude tracking problem using the quater-
nion representation. In Sect. 3, the proposed ANFTSM con-

trol law is derived, and the adaptive estimate law has been
formulated. In Sect. 4, the stability concern of the proposed
control method is discussed in the Lyapunov sense. Next, to
verify the effectiveness of the derived control law, simula-
tions are performed for different initial conditions, and are
reported in Sect. 5. Finally, the paper ends with conclusions.

2 System Description

The attitude kinematics of rigid spacecraft is defined as

q̇bv = 1

2
(qb0 I + q×

bv)ωb

q̇b0 = −1

2
qT

bvωb, (1)

where ωb = [ω1 ω2 ω3]T ∈ R
3 is the body frame angular

velocity with respect to inertial frame, I is the 3 × 3 iden-
tity matrix, qb = [qb0, qT

bv]T ∈ R
4 is the unit quaternion

that satisfies the constraint qT
bvqbv + q2

b0 = 1, and repre-
sents the body frame attitude orientation with respect to the
inertial frame, qbv = [qb1 qb2 qb3]T ∈ R

3 and qb0 ∈ R
1

are the vector and scalar components of the unit quaternion,
respectively. For any vector x = [x1 x2 x3]T , x× is a skew-
symmetric matrix, defined as

x× =
⎡
⎣

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ .

The attitude dynamics equation of the rigid spacecraft is
modeled as

Jω̇b = −ω×
b Jωb + uc + ud , (2)

where J ∈ R
3×3 is the spacecraft inertia matrix with the

nominal component J0 and the bounded uncertain compo-
nent ΔJ, uc = [u1, u2, u3]T ∈ R

3 represents the control
input, and ud ∈ R

3 is the total external disturbances affect-
ing the spacecraft dynamics.

To define the attitude kinematics and dynamics equa-
tions for the tracking control problem, the relative atti-
tude error between reference frame and a desired reference
frame is required to be established. The error quaternion
qe = [qe0, qT

ev]T ∈ R
4 and angular velocity error ωe ∈ R

3

are measured from body fixed reference frame to the desired
reference frame, and the defining equations are as follows
(Lu and Xia 2013b):

qev = qd0qbv − q×
dvqbv − qb0qdv

qe0 = qT
dvqbv + qb0qdv

ωe = ωb − Cωd , (3)

where qev = [qe1 qe2 qe3]T and qe0 are the vector and
scalar part of the error quaternion, respectively. The desired
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attitude frame quaternion vector and scalar components are
qdv = [qd1 qd2 qd3]T ∈ R

3 and qd0 ∈ R, respectively;
and the desired frame angular velocity is ωd ∈ R

3. Both
qe and qd = [qd0, qT

dv]T ∈ R
4 satisfy the constraint

qT
evqev + q2

e0 = 1 and qT
dvqdv + q2

d0 = 1, respectively.
C = (q2

e0 − 2qT
ev)I + 2qevqT

ev − 2qe0q×
ev ∈ R

3×3 repre-
sents the the rotation matrix between body fixed reference
frame and desired reference frame.

Then, using (3), the attitude kinematics and the dynamics
equation for the tracking problem could be written as

q̇ev = 1

2
(q0e I + q×

ev)ωe

q̇e0 = −1

2
qT

evωe (4)

Jω̇e = −(ωe + Cωd)× J(ωe + Cωd) + J(ω×
e Cωd

− Cω̇d) + uc + ud. (5)

For the control design purpose, the following assumptions
are made.

Assumption 1 In the spacecraft mission, the quaternion qb

and the angular velocity vector ωb are measurable and avail-
able throughout the space mission for attitude control design.

Assumption 2 The desired attitude frame angular velocity
ωd and its first time derivative ω̇d are bounded, and the
bounds are known.

Assumption 3 External disturbances torque ud is bounded,
but the bound limit is not known in advance.

3 Control Design

In this section, first the control objective is given, and then the
control design steps are evolved with necessary derivation.

3.1 Control Objective

The aim is to propose a control law to guarantee that tracking
error in attitude states achieves to zero in finite time t f i.e.

⎧⎪⎨
⎪⎩

lim
t→t f

(qb − qd) = 0

lim
t→t f

(ωb − ωd) = 0.
(6)

3.2 Design Steps

Like the SMC design, in finite time sliding mode control, the
first step is the selection of proper sliding surface. Therefore,
to ensure the faster finite time convergence with the non-
singular control, a novel sliding surface with the following
structure is proposed

s = sigρωe + αsigρqev + βqev, (7)

where s = [s1 s2 s3]T ∈ R
3,α = diag[α1, α2, α3] with

αi=1,2,3 > 0,β = diag[β1, β2, β3] with βi=1,2,3 > 0, ρ ∈
(1, 2), and for any vector x = [x1 x2 x3]T , sigρx =
[|x1|ρsignx1, |x2|ρsignx2, |x3|ρsignx3]T .

In second step, the aim is to design the suitable control
that ensures the reaching phase crossing in finite time and
subsequently helps to attain zero in finite time. For this, the
proposed control structure is

uc = ueq + ureach, (8)

here the first component ueq is the equivalent control (Utkin
1977). It is responsible for steering the attitude states on the
sliding surface, and is derived using the invariance principle.

Therefore, using (7)

J ṡ = ρ diag(|ωe|ρ−1)
(

− (ωe + Cωd)× J0(ωe

+ Cωd) + J0(ω
×
e Cωd − Cω̇d) + uc

)

+ J0

2

(
ραdiag(|qev|ρ−1) + β

)(
qe0 I

+ q×
ev

)
ωe + Lu(ΔJ,ωe, qe), (9)

where

Lu = ρ diag(|ωe|ρ−1)
(
(ωe + Cωd)×ΔJ (ωe

+ Cωd) + ΔJ(ω×
e Cωd − Cω̇d)

+ΔJ

2ρ
(ρ α diag|qev|ρ−1

+β)
(
qe0 I + q×

ev

)
ω2−ρ

e + ud

)
, (10)

represents the lumped uncertainty. For any vector x =
[x1, x2, x3]T , diag(|x|)ρ−1 is defined as diag(|x1|ρ−1,

|x2|ρ−1, |x3|ρ−1) ∈ R
3×3.

Now, with invariance principle ṡ=0, the equivalent control
is

ueq = (ωe + Cωd)× J0(ωe + Cωd) − J0(ω
×
e Cωd − Cω̇d)

− J0

2ρ
(α diag|qev|ρ−1 + β)

(
qe0 I + q×

ev

)
ω2−ρ

e . (11)

The second component, ureach, is the control input applied
in the reaching phase, and is accountable to bring the attitude
states on to the neighborhood of sliding surface in finite time.
In addition, it should work also to ensures chattering dimin-
ishing.

Therefore, to accomplish the above-mentioned character-
istics in the reaching phase, it is proposed here to apply the
reaching law-based control (Gao and Hung 1993)

ureach = −τ s − k sigγ s, (12)
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where τ > 0 and k > 0 are the reaching control gains, and
0 < γ < 1.

Remark 1 Evidently, in (11), two terms are having with frac-
tional power ρ. Since ρ ∈ (1, 2), the fractional power will
be nonnegative, and so, the control structure would be non-
singular.

Remark 2 Both τ and k play an important role in the chatter-
ing alleviation and in the convergence speed control. It is seen
that in the conventional TSM and in its variants based attitude
control design both τ and k are invariable, and are linked also
with upper bounds of disturbances and uncertainties. How-
ever, in practical cases, advance knowledge of these upper
bounds are not available. Therefore, the use of conservative
approach may be the another cause of aggravated chattering
and poor attitude accuracy.

3.2.1 Adaptive Estimate Law

To address the aforesaid issue, the reaching phase control is
designed in adaptive nature. Therefore, to estimate the gains,
the proposed adaptive laws are

˙̂k =
{

ρ η sT diag(|ωe|ρ−1)sigγ (s), if ||s|| ≥ ||σ ||
0, if ||s|| < ||σ ||, (13)

˙̂τ =
{

ρ θ sT diag(|ωe|ρ−1)s, if ||s|| ≥ ||σ ||
0, if ||s|| < ||σ ||, (14)

where k̂ ∈ R and τ̂ ∈ R, with k̂(0) ≥ 0 and τ̂ (0) ≥ 0, are the
estimates of k and τ , respectively, σ is the design parameter,
and η > 0 and θ > 0 are the adaptation gains used to tune
the convergence speed of k̂ and τ̂ , respectively.

Therefore, with the gain estimates (13) and (14), the adap-
tive nature reaching control is

uada = −τ̂ s − k̂ sigγ s. (15)

Consequently, the proposed ANFTSM control structure is

uc = ueq + uada. (16)

Remark 3 Obviously, adaptive estimate laws (13 and 14) are
de-linked from the bounds of disturbances or inertia uncer-
tainty; and, in fact, designed adaptive laws are dependent on
attitude states and sliding vector.

Remark 4 With the control law (15) in practical conditions,
s cannot be exactly zero. Therefore, to avoid the unbound
growth in k and τ estimates, the dead zone technique has
been adopted in (13 and 14).

Remark 5 In the adaptive estimate laws (13 and 14), η, θ ,
and the initial conditions k̂(0) and τ̂ (0) are the parameters to

be selected carefully. The higher the selected value for these
parameters, the higher the convergence speed in reaching
phase. More specifically, the parameters η and k̂(0) are linked
with term sigγ s, and θ and τ̂ (0) are linked with continuous
term s. So, if the parameters η and k̂(0) are very high, then,
the discontinuous term control would be dominant, and in
result unwanted chattering may appear in the control input.
Therefore, in fixing these parameters, best compromise in
chattering and speed should be done.

4 Stability Analysis

Before entering into stability analysis, one useful lemma is
given here.

Lemma 1 (Yu et al. 2005) For a continuous system ẋ =
f (x), f (0) = 0, x ∈ Rn, suppose there exists a continuous
positive definite function V : Rn → R, real numbers a >

0, b > 0, and m ∈ (0, 1) and an open neighborhood U0 ⊆
Rn of the origin such that the following inequality is satisfied

V̇ (x) + aV (x) + bV m(x) ≤ 0, x ∈ U0 \ {0} (17)

Then the origin is a finite time stable equilibrium. If U0 = Rn,
then the origin is a globally finite time stable equilibrium.
Further, depending on the initial state x(0) = x0, the origin
can be achieved in finite time t given by

t ≤ 1

a(1 − m)
ln

aV 1−m(x0) + b

b
(18)

Theorem 1 Consider the spacecraft attitude tracking con-
trol system (4 and 5). With the sliding surface (7), the adaptive
estimate laws (13) and (14), and the controller (16), the atti-
tude error states (qe,ωe) will be reached to the neighborhood
of s = 0 in finite time.

Proof Select the Lyapunov energy function

V1 = 1

2
sT J s + 1

2η
k̄2 + 1

2θ
τ̄ 2, (19)

where k̄ = k̂ − k and τ̄ = τ̂ − τ . The first time derivative of
(19), yields

V̇1 = sT J ṡ + k̄

η
(
˙̂k − k̇) + τ̄

θ
( ˙̂τ − τ̇ )

= sT J ṡ +
˙̂k
η
(k̂ − k) +

˙̂τ
θ

(τ̂ − τ)

= sT
(

ρ diag(|ωe|ρ−1)
(

− (ωe + Cωd)× J0

× (ωe + Cωd) + J0(ω
×
e Cωd − Cω̇d) + uc

)
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+ J0

2

(
ραdiag(|qev|ρ−1) + β

)(
q0e I + q×

ev

)

×ωe + Lu
)

+
˙̂k
η
(k̂ − k) +

˙̂τ
θ

(τ̂ − τ) (20)

Applying (13), (14) and (16); (20) yields

V̇1 = sT ρ diag(|ωe|ρ−1)
(

Lu − τ̂ s − k̂ sigγ s
)

= −sT ρ diag(|ωe|ρ−1)
(
τ̂ s + (k̂ I − diag(Lu)

× diag−1(sigγ s))sigγ s
)

(21)

and

V̇1 = −sT ρ diag(|ωe|ρ−1)
(
(τ̂ I − diag(Lu)

× diag−1s)s + k̂ sigγ s
)

(22)

In accordance to the proof given in (Tiwari et al. 2012), it
can be verified that assumption ωe = 0 in reaching phase
will results ω̇e = −τ̂ s − k̂sigγ s. Therefore, ωe = 0 is not
an attractor in the reaching phase (s �= 0). Further, if the
positive definiteness of k̂ I − diag(Lu) × diag−1sigγ s and
τ̂ I − diag(Lu) × diag−1s is ensured, then in the light of the
Lemma 1, (21) and (22) will satisfy the finite time stability
condition (17); hence, the finite convergence in the reaching
phase is guaranteed. This completes the proof. �	

Theorem 2 Once, the closed-loop (4 and 5) attitude error
states (qev,ωe) crossed the reaching phase, and reached to
the neighborhood of s = 0, the control (16) will ensure them
to reach zero in finite time.

Proof Define the another Lyapunov energy function

V2 = qT
evqev, (23)

its first time derivative is

V̇2 = 2qT
ev q̇ev

= qT
ev(qe0 I + q×

ev)ωe. (24)

It can be verified that ||(qe0 I + qev)|| ≤ 1, hence

V̇2 ≤ qT
evωe. (25)

Now, after the attitude error states crossed the reaching phase,
and entered in to the sliding phase with band s = σ ; using
(7), the inequality for ωe can be written as

ωe ≤ −α
1
ρ qev − β

1
ρ sig

1
ρ qev + σ

1
ρ . (26)

Substituting (26) into (25), we have

V̇2 ≤ qT
ev

(
−α

1
ρ qev − β

1
ρ sig

1
ρ qev + σ

1
ρ

)

≤ −qT
evα

1
ρ qev − |qT

ev|β
1
ρ |qev|

1
ρ + qT

evσ
1
ρ

≤ −λ1V2 − λ2V
ρ+1
2ρ

2 + ||σ || 1
ρ V

1
2

2 , (27)

where λ1 and λ2 are the minimum eigenvalues of α
1
ρ and β

1
ρ ,

respectively. Further, (27) could be rewritten as

V̇2 + λ1V2 +
(

λ2 − ||σ ||1/ρ

V 1/2ρ
2

)
V

ρ+1
2ρ

2 ≤ 0 (28)

and

V̇2 +
(

λ1 − ||σ ||1/ρ

V 1/2
2

)
V2 + λ2V

ρ+1
2ρ

2 ≤ 0 (29)

In (28), when (λ2 − ||σ ||1/ρ

V 1/2ρ
2

) > 0, its structure conforms

with (17), and the finite time stability is ensured. Thus, the
attitude tracking error qei converge to the region

|qei | ≤ ||σ ||
λ

ρ
2

≤ ||σ ||
min (βi=1,2,3)

≤ max

( ||σ ||
βi=1,2,3

)
, (30)

in finite time.
Similarly, in (29), when (λ1 − ||σ ||1/ρ

V 1/2
2

) > 0, its structure

conforms with the (17), and the finite time stability is ensured.
Thus, the attitude tracking error qei converge to the region

|qei | ≤ ||σ ||
λ1

≤
( ||σ ||

min (αi=1,2,3)

) 1
ρ

≤ max

( ||σ ||
αi=1,2,3

) 1
ρ

, (31)

in finite time.
Furthermore, to complete the proof, a justification is

required here to show that the angular velocity tracking error
ωe reached to zero. Therefore, in the similar to Tiwari et al.
(2012), by using both the control input expression (16) and
s = 0, the angular velocity tracking dynamics could also be
written as a finite time convergence expression. This ensure
that both the quaternion and angular velocity tracking error
converge to zero in finite time. This completes the proof. �	
Remark 6 In (30) and (31), the parameters α and β are
manipulating the attitude tracking accuracy. Additionally, in
the light of (18), it can be seen that these parameters play
a significant role also in deciding the convergence speed.
So, with the higher selected values of these parameters, both
better tracking accuracy and higher convergence speed could
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Table 1 Controller parameters

ρ = 1.1 γ = 0.50

η = 10 k̂(0) = 15

τ̂ (0) = 5 θ = 0.8

||σ || = 8 × 10−4 α = diag(0.80, 0.80, 0.80)

β = diag(3, 3, 3)

be achieved. Nevertheless, α and β effect is evident also on
the control input (11). So, the selection of very high value
of these parameters may cause also an undesired oscillation.
Therefore, for fixing the α and the β value, should consider
these parameter’s roles in the convergence speed, the tracking
accuracy, and the control input, simultaneously.

Remark 7 From (31), we noticed that the parameter ρ is also
affecting the tracking accuracy . Obviously, in (31), if the
selected ρ value is closer to one in its defined range ρ ∈
(1, 2), the better tracking accuracy would be achieved.

5 Simulations and Discussion

To substantiate the effectiveness of the proposed controller
(16), simulations have been conducted and results are illus-
trated in this section. The entire analysis is presented in two
classes, stabilization and tracking. In addition, the proposed
controller performance has been compared with the recently
reported two finite time controllers. The controller parame-
ters have been mentioned in Table 1.

5.1 Stabilization Response Analysis

The example spacecraft nominal mass inertia matrix is
J0 = diag(800.027, 839.93, 289.93) kg m2, and ΔJ =
diag(100, 60, 30) kg m2 (Lu and Xia 2013a). The initial
conditions of quaternion, body angular velocity, and desired
attitude quaternion are mentioned in Table 2. The stabiliza-
tion investigation is done in two steps named Case 1 and

Case 2. In Case 1, the spacecraft initial body angular veloc-
ity is ωb(0) = [1, 0,−1]T , and the external disturbance is
ud(t) = 5(||ωb||2 + 0.3)[cos(0.2t), sin(0.5t), cos(0.8t)]T

N-m.
On contrary to Case 1, in Case 2, the initial angular

velocity is ωb(0) = [0.06,−0.04, 0.05]T , the actuator limit
is constrained, and the external disturbance is ud(t) =
5[sin(0.1t), sin(0.2t), sin(0.3t)]T N-m.

Case 1 Stabilization performance under inertia uncer-
tainty and external disturbances:

For Case 1, stabilization performance of the proposed
controller (16) is presented in Figs. 1, 2. Figure 1 shows
that attitude states come to the sliding surface in finite time.
Evidently, the equilibrium is also achieved in finite time
with faster convergence speed. Figure 1 bottom frame illus-
trates that the control input is chattering-free. To examine
the steady precision, enlarged frames are displayed. These
frames demonstrate that the quaternion, the body angular
velocity, and the sliding variables are achieving the steady
precision in ±7.72e − 6,±1.40e − 5,±2.50e − 5, respec-
tively. The time evolution of the adaptive gains estimate are
illustrated in Fig.(2).

Case 2 Stabilization performance under inertia uncer-
tainty, external disturbances, and control input constraints:

In Case 2, the proposed controller stabilization perfor-
mance has been checked under the constrained control input
with external disturbance and inertia uncertainty. The control
input constraint is fixed to uc ≤ 20 N-m.

Simulation responses are shown in Figs. 3, 4. The time
evolution of quaternion, body angular velocity, and sliding
surface are shown in Fig. 3. The obtained results depicted
that in spite of control input constraint inclusion, the robust-
ness is intact, and the desired attitude equilibrium is achieved
in finite time. In more specific, it is seen that the proposed
controller speedily satisfies |qi,for i=1,2,3| ≤ 2e − 2 and
|ωi,for i=1,2,3| ≤ 1e − 2 in finite time 15.19 and 17.03
seconds, respectively. The zoomed frames in Fig. 3 shows
that steady precision of quaternion, body angular velocity,
and sliding variables are maintained in ±1.76e − 4,±1.11e
− 4,±5.41e − 4, respectively.

Table 2 Simulation cases
Stabilization (Lu and Xia 2013a) Tracking (Lu and Xia 2013b)

qb(0) = [0.8832, 0.3, − 0.2, − 0.3]T qb(0) = [0.8832, 0.3, − 0.2, − 0.3]T

qd (0) = [1, 0, 0, 0]T qd (0) = [1, 0, 0, 0]T

ωd = [0, 0, 0]T rad/s ωb(0) = [0.06, − 0.04, 0.05]T rad/s

Case1: ωb(0) = [1, 0, − 1]T rad/s ωd =
⎡
⎣

sin(π t/100)

sin(2π t/100)

sin(3π t/100)

⎤
⎦ × 0.05 rad/s

uc is unconstrained

Case2: ωb(0) = [0.06, − 0.04, 0.06]T rad/s |uc| ≤ 3 N-m

|uc| ≤ 20 N-m
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Fig. 1 Control response: stabilization case 1

Figure 4 illustrates the time history of control input and
gains estimate. It is noticed from the top frame that the con-
trol input components attain to the actuator maximum limit
for short duration only. More specifically, u1 , u2, and u3

are using the actuator maximum limit only for the duration
7.55, 5.40, 3.09 seconds, respectively. It is important also to
mention that the control input is free from chattering in spite
of all odd conditions applied together. The gain estimates are
depicted in bottom frame.

Additionally, the proposed controller effectiveness is com-
pared with the recently reported ANTSM controller (11) (Lu
and Xia 2013a). For both controllers, the performance sum-
mary is given in Table 3. The proposed controller conver-

gence speed is more than four times faster than the ANTSM
controller. In terms of steady precision also the proposed
controller is better.

5.2 Tracking Response Analysis

Further, the proposed controller (16) performance is evalu-
ated in attitude tracking scenario. The nominal inertia matrix
of the example spacecraft is J0 = [20 1.2 0.9; 1.2 17 1.4;
0.9 1.4 15] kg.m2, and the inertia uncertainty is ΔJ =
diag(2, 2, 3) kg m2 (Lu and Xia 2013b). The external dis-
turbances mathematical model is ud(t) = [2 sin(1.5t), 2 sin
(2t), 2 sin(2t)]T N-m.

Simulation is conducted under the initial conditions sum-
marized in Table 2. The time evolution of error quaternion,
error in angular velocity, and sliding surface are shown in
Fig. 5. The bottom frame illustrates that the proposed con-
troller is able to bring the attitude states to the sliding surface
in finite time. The top frame and the bottom leftmost frame
illustrates that the error quaternion and the angular veloc-
ity error reaches to zero in finite time, respectively. More
explicitly, conditions |qei | ≤ 5e–3 and |ωei | ≤ 2e–2, for
i = 1, 2, 3, are achieved in finite time 8.56 and 8.09 seconds,
respectively. The enlarged frames show that the steady-state
precision of error quaternion, error in angular velocity, and
sliding surface are ±6.05e−4,±7.63e–4, and ± 7.16e–4,
respectively. Additionally, Fig. 6 illustrates the body quater-
nion time response for tracking the desired quaternion. Time
response of control input and gains estimate are presented in
Fig.(7). From the top frame, it is seen that the control input is
chattering-free. The bottom frame shows the gains estimate
time evolution.

Further, the proposed controller (16) tracking perfor-
mance has been compared with the ANTSM controller (28)
(Lu and Xia 2013b), and is summarized in Table 4. It is

Fig. 2 Control gains estimate:
stabilization case 1
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Table 3 Stabilization performance comparison

Control law Steady precision Time to satisfy
(|qbi |, |ωi |) <

(2e–2, 1e–2)qb ωb

ANFTSM (16) 1.76e−4 1.11e−4 17.03

ANTSM (11) 3.9e−4 1.9e−4 72.0

(Lu and Xia 2013a)
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Table 4 Tracking performance comparison

Control law Steady precision Time to satisfy
(|qei |, |ωei |) <

(5e–3, 2e–2)|qei | |ωei |
ANFTSM (16) 6.05e−4 7.63e−4 8.56

AFNTSM (28) 6.23e−3 2.36e−2 8.50

(Lu and Xia 2013b)

noticed that the proposed controller tracking speed is simi-
lar to the ANTSM speed. However, steady precision perfor-
mance is far better for the proposed controller.

6 Conclusion

Finite time attitude tracking control for a rigid spacecraft
has been investigated in this paper. An ANFTSM method
is used here to design the attitude controller. To derive the
proposed control law, a novel fast terminal sliding surface
with a reaching law has been used. Further, to circumvent
the requirement of upper bounds of uncertainty and external
disturbances, novel adaptive estimate laws have been pro-
posed; and are applied to derive the controller gains. The
derived control is faster, helps in the chattering removal, and
avoids the singularity. The proof for finite time convergence
has been given using the Lyapunov theorem. The simula-
tion results have been shown to illustrate the effectiveness
of proposed control method. The results show that in spite
of unknown bounded disturbances and inertia uncertainties,
the proposed control method is efficient to improves the con-
vergence speed and accuracy, and works also to alleviate the
chattering. In addition, simulation results have been shown
also for constrained input case, and it is found that robustness
and quick convergence speed have been ensured.
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