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Abstract This paper investigates the local stability of
input- and output-quantized discrete-time linear time-
invariant systems considering static finite-level logarith-
mic quantizers. The sector bound approach together with a
relaxed stability notion is applied to derive an LMI-based
method to estimate a set of admissible initial states and its
attractor in a neighborhood of the system origin assuming that
an output feedback controller and the quantizers are given. In
addition, the stability analysis method is tailored to design an
input and an output static finite-level logarithmic quantizers
when a set of admissible initial states and an upper bound on
the volume of its attractor are known. Numerical examples
are presented to demonstrate the proposed stability analysis
and quantizer design methods.

Keywords Quantized feedback systems · Discrete-time
linear time-invariant systems · Finite-logarithmic quantizers ·
Practical stability

1 Introduction

With the increasing application of communication links to
exchange information and control signals between spatially
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distributed system components, networked control systems
(NCS) have recently attracted growing interest of the con-
trol community motivated by the fact that NCS bring a new
range of control applications (Hespanha et al. 2007; Schen-
ato et al. 2007; You and Xie 2013). Since in many situations
quantization errors are unavoidable, their effects cannot be
neglected at the cost of an inadequate closed-loop perfor-
mance and even the lost of stability. As a result, the study
of quantized feedback systems is of relevance in networked
control systems.

Originally, quantized feedback systems were studied to
evaluate and mitigate the quantization errors arising from
the digital implementation of feedback systems; see, for
instance, Kalman (1956), Slaughter (1964) and Delchamps
(1990). Nowadays, with the increasing application of NCS in
which control system components (i.e., sensor, controller and
actuator) are connected via a shared digital communication
network, the problem of limited bandwidth becomes an issue
of great interest. In this context, quantized feedback methods
can be applied to deal with the bandwidth allocation problem
by constraining the number of bits to be transmitted in the
communication link (Maestrelli et al. 2014). As a result, an
increasing number of works in the last ten or more years has
focused on the topic of quantized feedback systems, such as
the references Brockett and Liberzon (2000); Ishii and Fran-
cis (2003); Fu and Xie (2005); Coutinho et al. (2010); Wei
et al. (2014) to cite a few.

Signal quantization may be performed in several ways.
For instance, the quantization levels can be uniformly or
non-uniformly distributed, and the quantization policy can
be divided into static and dynamic constructive laws. In Elia
and Mitter (2001), it has been shown that for a quadratically
stabilizable system a logarithmic quantizer (i.e., the quanti-
zation levels are linear in a logarithmic scale) is the optimal
solution in terms of coarse quantization density. In addition,
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logarithmic quantizers can achieve superior dynamic range
for a given number of bits (Rasool et al. 2012). However,
the optimal solution requires an ideal logarithmic quantizer,
namely a quantizer with an infinite number of quantization
levels, which may be overcome via a finite-level quantizer
combined with a dynamic scaling factor (Fu and Xie 2009).
In this line, Fu and Xie (2005) have introduced the sector
bound approach for static logarithmic quantized feedback
systems, giving simple formulae to the stabilization prob-
lem via state and output feedback controllers. Since then,
the sector bound approach has been applied to solve a vari-
ety of problems such as, quantized robust control of linear
uncertain systems (Fu and Xie 2010), state estimation with
quantized measurements (Fu and de Souza 2009), local sta-
bility analysis of control linear systems with a static finite-
level quantizer (de Souza et al. 2010), and feedback control
of quantized nonlinear systems (Liu et al. 2012).

The aforementioned works assume the presence of a single
quantizer in the feedback loop either in the input channel or in
the output channel. However, since in NCS the information
(control signal and measurements) is generally exchanged
through a shared communication channel with limited band-
width, it is natural to consider that both control and measure-
ment signals are quantized (Zhai et al. 2005). To date, few
results have addressed the stability and stabilization prob-
lems for input- and output-quantized feedback systems as,
for instance, Richter and Misawa (2003); Zhai et al. (2005);
Yue et al. (2006); Picasso and Bicchi (2007); Coutinho et
al. (2010); Liu et al. (2011); Rasool et al. (2012); Yan et al.
(2013). In particular, Coutinho et al. (2010) have extended
the sector bound approach to deal with input- and output-
quantized discrete-time linear systems assuming static loga-
rithmic quantizers having an infinite number of quantization
levels. To the authors’ knowledge, the study of local stability
properties of input and output finite-level logarithmic quan-
tized linear control systems has not yet been fully addressed
in the literature despite some recent results on global stabil-
ity analysis of input and output finite-level quantized systems
(Richter and Misawa 2003; Xia et al. 2013).

The local stability of input- and output-quantized SISO
discrete-time linear time-invariant feedback systems consid-
ering static finite-level logarithmic quantizers was investi-
gated by Maestrelli et al. (2012), where LMI-based condi-
tions are proposed to estimate a set of admissible initial states
and its attractor in a neighborhood of the state-space origin
assuming a controller and a quantizer are given a priori. This
paper expands this earlier result by addressing the quantizer
design problem when the set of admissible initial states and an
upper bound on the volume of the attractor are known, which
is an important issue for bandwidth management with a pol-
icy based on limiting the amount of information (Maestrelli
et al. 2014). In addition, the main result of (Maestrelli et al.
2012) is revised and a procedure to jointly optimize the esti-
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Fig. 1 Feedback control system with input and output quantization

mates of the set of admissible initial states and its attractor is
proposed. Numerical examples are presented to demonstrate
the potentials of the proposed stability analysis and quantizer
design methods.

Notation For a real matrix S, S′ is its transpose, diag{· · · }
denotes a block-diagonal matrix and S > 0 (S ≥ 0) means
that S is symmetric and positive definite (nonnegative def-
inite). For a symmetric block matrix, the symbol ∗ stands
for the transpose of the blocks outside the main diagonal
block. For two sets A and B with B ⊂ A, A\B stand for A
excluded B. Finally, the argument k of x(k) as well as matrix
and vector dimensions are often omitted.

2 Problem Statement

Consider the quantized feedback system in Fig. 1, where the
system is represented by the following state-space model:

{
x(k + 1) = Ax(k)+ Bu(k)

y(k) = Cx(k)
, (1)

where x ∈ R
n is the state, u ∈ R is the control input, y ∈ R

is the measurement, and A, B, and C are given matrices with
appropriate dimensions. This system is to be controlled by an
output feedback controller with a state-space representation
as follows:
{
ξ(k + 1) = Acξ(k)+ Bcv(k)

w(k) = Ccξ(k)
, (2)

where ξ ∈ R
nc is the controller state, v ∈ R is the controller

input, w ∈ R is the controller output, and Ac, Bc and Cc are
given matrices with appropriate dimensions.

The system in (1) and the above controller are intercon-
nected via the following relations:

v(k) = Q1(y(k)), u(k) = Q2(w(k)), (3)

where Q1(·) and Q2(·) are static finite-level logarithmic
quantizers with quantization levels given by the sets as fol-
lows:
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Fig. 2 Logarithmic quantizer with a finite number of quantization lev-
els

Vi =
{±mi, j : mi, j =ρ j

i μi , j =0, 1, . . . , Ni −1
}

∪ {0}, ρi ∈(0, 1), i = 1, 2
, (4)

where Ni is the number of positive quantization levels and
μi >0 is the largest admissible level. Note that a small (large)
ρi implies coarse (dense) quantization. As an abuse of ter-
minology, ρi will be referred to as quantization density.

This paper is concerned with investigating the stability of
the closed-loop system of (1)–(3), where Q1(·) and Q2(·)
are quantizers with finite alphabets obeying the following
constructive law (see Fig. 2):

Qi (υ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μi , if υ >
μi

(1−δi )
, μi > 0

ρ
j
i μi , if

ρ
j
i μi

(1+δi )
< υ ≤ ρ

j
i μi

(1−δi )
,

j = 0, 1, . . . , Ni −1

0, if 0 ≤ υ ≤ εi

−Q(−υ), if υ < 0

, (5)

where

δi = 1 − ρi

1 + ρi
, εi = ρ

Ni −1
i μi

(1 + δi )
. (6)

It is assumed that the input and output quantizers are inde-
pendent and possibly different, i.e., they can have different
parameters ρi , μi , and Ni , i =1, 2.

3 Preliminaries

This section reviews a result derived in Coutinho et al. (2010)
on quadratic stability of input- and output-quantized feed-
back linear SISO systems with ideal static logarithmic quan-
tizers. To this end, consider feedback system in (1)–(3) under
the assumption that Q1(·) and Q2(·) are ideal static logarith-
mic quantizers. Note that an ideal static logarithmic quantizer
Q̄(·) is defined as follows (see Fig. 3):

Fig. 3 Logarithmic quantizer with an infinite number of quantization
levels

Q̄(υ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ jμ, if ρ jμ
(1+δ) < υ ≤ ρ jμ

(1−δ) ,
j = 0,±1,±2, . . .

0, if υ = 0

−Q̄(−υ), if υ < 0

(7)

Theorem 1 Coutinho et al. (2010) The closed-loop system
of (1)–(3), where Q1(·) and Q2(·) are static infinite-level
logarithmic quantizers, is quadratically stable if and only if
there exists a matrix P>0 such that

Ā(�1,�2)
′ P Ā(�1,�2)− P < 0,

∀�1,�2 ∈ R : |�1| ≤ δ1, |�2| ≤ δ2,
(8)

where

Ā(�1,�2)=
[

A B(1+�2)Cc

Bc(1+�1)C Ac

]
. (9)

Theorem 1 establishes that the quadratic stabilization
problem for an input–output-quantized feedback system with
infinite-level logarithmic quantizers can be transformed, with
no conservatism, into a standard robust control problem.
Specifically, the system in (1) with given static infinite-level
logarithmic quantizers Q1(·) and Q2(·) is quadratically sta-
bilizable via an output feedback controller in (2) satisfying
the interconnection relations in (3) if and only if the following
uncertain system:

{
x(k + 1) = Ax(k)+ B(1+�2)w(k)

v(k) = (1+�1)Cx(k)
, (10)

where�1 and�2 are uncertain parameters satisfying |�i | ≤
δi , i =1, 2, is quadratically stabilizable via the controller in
(2).

The result of Theorem 1 is strong in the sense that
the quadratic stability of the uncertain system x̄(k + 1) =
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Ā(�1,�2)x̄(k), with uncertain parameters�1 and�2 satis-
fying |�i | ≤ δi , i =1, 2, is a necessary and sufficient condi-
tion for the quadratic stability of the quantized closed-loop
system. In other words, the sector bound condition

[ Qi (υ)− (1 − δi )υ) ] [ Qi (υ)− (1 + δi )υ ] ≤ 0 (11)

is non-conservative to model infinite-level logarithmic quan-
tizers in the sense of quadratic stability.

4 Local Stability Analysis

The result in Sect. 3 applies to input- and output-quantized
feedback systems where the quantizers follow a logarithmic
law and have an infinite number of levels. For finite-level
quantizers, due to quantizers’ dead-zone, the convergence
of the state trajectory to the system origin (the equilibrium
point under analysis) cannot be in general guaranteed. In such
scenario, LMI-based conditions are derived in the sequel to
ascertain the state trajectory convergence, in finite time, to
a small invariant region in the neighborhood of the system
origin.

Firstly, consider the following augmented system, which
represents the closed-loop system of (1)–(3):

⎧⎨
⎩
ζ(k+1) = Aaζ(k)+ Ba p(k)

q(k) = Caζ(k)
p(k) = Qa(q(k))

, (12)

where

ζ =
[

x
ξ

]
, p =

[
p1

p2

]
=

[
v

u

]
, q =

[
y
w

]
,

Aa =
[

A 0
0 Ac

]
, Ba =

[
0 B
Bc 0

]
,

Ca =
[

C 0
0 Cc

]
, Qa(q)=

[
Q1(y) 0

0 Q2(w)

]
.

(13)

Associated to the augmented system in (12) and the quan-
tizers as in (5), let the following sets:

Bi =: {ζ ∈ R
nζ : |Cai ζ | ≤ μi/(1−δi )}, i =1, 2 (14)

Ci =: {ζ ∈ R
nζ : |Cai ζ | ≤ εi }, i =1, 2, (15)

where nζ = n+nc and Cai denotes the i-th row of the matrix
Ca, namely

Ca1 =[
C 0

]
, Ca2 =[

0 Cc
]
.

The sets Bi and Ci are related to, respectively, the largest and
smallest quantization levels of the quantizer Qi , i = 1, 2.
These sets are symmetric with respect to the origin, are
unbounded in the direction of the vectors of an orthogonal

basis of the null space of Cai , and are bounded by two hyper-
planes orthogonal to C ′

ai
. The distance between these hyper-

planes is 2μi (1−δi )
−1/

√
Cai C

′
ai

for Bi and 2εi /
√

Cai C
′
ai

for Ci .
Note that whenever the state ζ of system (12) lies inC1∩C2,

one has Qa(q) = 0, which leads to a zero input signal p
to system (12). Hence, in general, the trajectory of ζ will
not converge to the origin and thus quadratic stability will
not hold. To tackle this behavior, in the sequel we introduce
a notion of stability, which was inspired by the concept of
practical stability proposed in Elia and Mitter (2001).

To introduce the stability notion adopted in this paper, let
the quadratic functions

V (ζ ) = ζ ′ Pζ, Va(ζ ) = ζ ′ Paζ, P > 0, Pa > 0, (16)

where ζ is as in (13), and consider the sets

D = {
ζ ∈ R

nζ : V (ζ ) ≤ 1
}
, (17)

A = {
ζ ∈ R

nζ : Va(ζ ) ≤ 1
}
, (18)

Cp = {
ζ ∈ C1 ∪ C2 : DVa(ζ ) ≥ 0

}
, (19)

where the notation Dg(ζ(k)), for a real function g(·), is
defined by Dg(ζ(k)) := g(ζ(k+1))− g(ζ(k)).

Definition 1 The quantized closed-loop system in (12) is
said to be widely quadratically stable if there exist quadratic
functions V (ζ ) and Va(ζ ) as in (16) satisfying the following
conditions:

A ⊂ D, D ⊂ Bi , i = 1, 2, (20)

DV (ζ ) < 0, ∀ ζ ∈ D\(C1 ∪ C2), (21)

DVa(ζ ) < 0, ∀ ζ ∈ A\Cp, (22)

ζ(k + 1) ∈ A whenever ζ(k) ∈ Cp . (23)

Wide quadratic stability ensures that for any ζ(0) ∈ D,
the trajectory of ζ(k)will converge to the set A in finite time.
Moreover, ζ(k) ∈ A,∀ k ≥ k̄, for some finite integer k̄ > 0.
In view of that, A is said to be an attractor of D and D will
be referred to as a set of admissible initial states. Observe
that Definition 1 is similar to the notion of practical stability
proposed in Elia and Mitter (2001), where the admissible
initial states and attractor sets are ellipsoidal sets with the
same shape. On the other hand, different shapes for D and
A are allowed in the Definition 1, which may lead to less
conservative sets D and A due to the shapes of B1 and B2. In
addition, we can recover the practical stability definition by
setting Pa =βP , with β > 1, which forces the sets A and D
to have the same shape.

In order to ensure wide quadratic stability of the closed-
loop system in (12), firstly observe that the condition
DV (ζ )<0 is written as
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[
ζ

p

]′ [
A′

a P Aa − P ∗
B ′

a P Aa B ′
a P Ba

] [
ζ

p

]
< 0. (24)

Moreover, note that for all ζ ∈ (B1 ∩ B2)\(C1 ∪ C2), the
input vector p(k) of system (12) satisfies the following mul-
tivariable sector-bound condition (Coutinho et al. 2010; Tar-
bouriech et al. 2011):

[
p − �̃q

]′
T

[
p − �̂q

]
≤ 0, (25)

where T > 0 is a free diagonal matrix to be determined and

�̃ =
[
(1 − δ1) 0

0 (1 − δ2)

]
, �̂ =

[
(1 + δ1) 0

0 (1 + δ2)

]
.

Thus, considering that the second inclusion in (20) holds,
condition (21) is satisfied if (24) holds subject to (25), which
is guaranteed by the inequality

[
ζ

p

]′ [
Υ1 ∗
Υ2 Υ3

] [
ζ

p

]
< 0, (26)

where

⎧⎨
⎩
Υ1 = A′

a P Aa − P − C ′
a(�̃T �̂+ �̂T �̃)Ca,

Υ2 = B ′
a P Aa + T (�̂+ �̃)Ca,

Υ3 = B ′
a P Ba − 2T .

(27)

Similarly, to ensure (22), the following condition is con-
sidered:

[
ζ

p

]′ [
Υa1 ∗
Υa2 Υa3

] [
ζ

p

]
< 0, (28)

where the matrices Υa1 , Υa2 , and Υa3 are similar to Υ1, Υ2,
and Υ3, respectively, with the matrices P and T replaced by,
respectively, Pa and Ta, where Ta > 0 is a diagonal matrix
to be determined.

The inequalities in (26) and (28) together with (20) and
considering the definition of the set Cp will ensure the feasi-
bility of (22). Further, conditions (22) and (23) ensure that
Cp is bounded and Cp ⊂ A, otherwise ζ(k) could eventually
leave A.

In view of the above, we have the following stability result:

Theorem 2 Consider system (1), a given controller (2) and
the feedback law in (3) with finite-level quantizers Q1(·) and
Q2(·) as defined in (5), where μi , ρi , and Ni are given. The
closed-loop system (12) is widely quadratically stable if there
exist matrices P and Pa, diagonal matrices T >0 and Ta>0,
and positive scalars τ, τi , τ̄i , τ̂i and τ̃i , i =1, 2 satisfying the
following inequalities:

P > 0, Pa − P > 0, (29)

P − (1−δi )
2μ−2

i C ′
ai

Cai > 0, i = 1, 2, (30)[
Υ1 ∗
Υ2 Υ3

]
< 0,

[
Υa1 ∗
Υa2 Υa3

]
< 0, (31)

τ − (τ1+τ2) ≥ 0, τ̃i − τ̄i ≥ 0, i =1, 2, (32)

Pa +
2∑

i=1

τiε
−2
i C ′

ai
Cai − (1+τ)A′

a Pa Aa ≥ 0, (33)

[
U1(i, j) ∗
U2(i, j) U3(i, j)

]
≥ 0, i, j =1, 2, i �= j, (34)

where δi and εi are defined in (6) and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U1(i, j) = Pa + τ̂ j (1 − δ2
j )C

′
a j

Ca j

+ τ̄iε
−2
i C ′

ai
Cai − (1 + τ̃i )A′

a Pa Aa,

U2(i, j) = −τ̂ j Ca j − (1 + τ̃i )B ′
a j

Pa Aa,

U3(i, j) = τ̂ j − (1 + τ̃i )B ′
a j

Pa Ba j ,

Ba1 =
[
0 B ′

c

]′
, Ba2 =

[
B ′ 0

]′
.

(35)

Moreover, the set of admissible initial states D and the attrac-
tor A are given by (17) and (18), respectively.

Proof Firstly, in view of (14), (17), and (18), the second
inequality of (29) together with (30) ensure that A ⊂ D and
D ⊂ Bi , i = 1, 2, respectively. Next, the first inequality of
(31) ensures the feasibility of (26), which in turns implies
(21). Further, the second inequality of (31) guarantees that
(28) holds, which together with (20) and the definition of Cp

imply that (22) is satisfied.
In the sequel, it will be shown that (32)–(34) guarantee

that (23) holds. For that, we partition the set Cp into three
complementary subsets as follows:

Cp1 = {
ζ ∈ C1\C2 : DVa(ζ ) ≥ 0

}
,

Cp2 = {
ζ ∈ C2\C1 : DVa(ζ ) ≥ 0

}
,

Cp3 = {
ζ ∈ C1 ∩ C2 : DVa(ζ ) ≥ 0

}
,

and consider two cases:
(a) ζ(k)∈ Cp3 : Letting φ ∈ R

nζ and adding the first inequal-
ity of (32) to (33) pre-multiplied by φ′ and post-multiplied
by φ, and then dividing both sides by τ > 0, we get

(1 − φ′ A′
a Pa Aaφ)− τ−1φ′(A′

a Pa Aa − Pa)φ

− τ−1
2∑

i=1

τi (1 − ε−2
i φ′C ′

ai
Caiφ) ≥ 0, ∀φ ∈ R

nζ .
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Applying the S-procedure, the latter condition yields

φ′ A′
a Pa Aaφ ≤ 1,

∀ φ ∈ R
nζ : φ′(A′

a Pa Aa − Pa)φ ≥ 0,

ε−2
i φ′C ′

ai
Caiφ ≤ 1, i = 1, 2 . (36)

Now, let φ=ζ(k) as defined in (13). Since the last condition
in (36) is equivalent to ζ(k) ∈ C1 ∩ C2, and in such a case
the input signal p(k) of (12) is zero, then it holds that Aaφ=
ζ(k+1). Therefore, (36) leads to

ζ(k+1)′ Paζ(k+1) ≤ 1, ∀ ζ(k) ∈ C1 ∩ C2 :
ζ(k+1)′ Paζ(k+1)− ζ(k)′ Paζ(k) ≥ 0.

This guarantees that ζ(k + 1) ∈ A whenever ζ(k) ∈ Cp3 .
(b) ζ(k) ∈ Cpi , i = 1, 2: Let φ ∈ R

nζ and ψ ∈ R. Adding
the second inequality of (32) to (34) and pre-multiplied by
[φ ψ]′ and post-multiplied by [φ′ ψ ′]′, and then diving
both sides by τ̃i > 0, we obtain

1 − (Aaφ + Ba jψ)
′ Pa(Aaφ + Ba jψ)

+ τ̃−1
i τ̄i (ε

−2
i φ′C ′

ai
Caiφ − 1)

− τ̃−1
i

[
φ

ψ

]′ [A′
a Pa Aa−Pa ∗
B ′

a j
Pa Aa B ′

a j
Pa Ba j

] [
φ

ψ

]

+ τ̃−1
i τ̂ j [ψ − (1−δ j )Ca jφ]′[ψ − (1+δ j )Ca jφ] ≥ 0,

i, j =1, 2, i �= j

for all φ ∈ R
nζ and ψ ∈ R. By the S-procedure, the latter

inequality implies that for i, j =1, 2, i �= j

(Aaφ+Ba jψ)
′ Pa(Aaφ+Ba jψ) ≤ 1,

∀ φ ∈ R
nζ , ψ ∈ R :⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
φ

ψ

]′ [
A′

a Pa Aa − Pa ∗
B ′

a j
Pa Aa B ′

a j
Pa Ba j

] [
φ

ψ

]
≥ 0,

[
ψ − (1−δ j )Ca jφ

]′ [
ψ − (1+δ j )Ca jφ

]
≤ 0,

ε−2
i φ′C ′

ai
Caiφ ≤ 1.

(37)

Note that the last inequality of (37) is equivalent to φ ∈ Ci .
Let φ = ζ(k) and ψ = p j (k) as in (13). Since for ζ(k) ∈
Ci , the input signal pi (k) of (12) is zero and p j (k) satisfies
the sector-bound inequality in (11), by considering (12) we
obtain from (37) that

ζ(k+1)′ Paζ(k+1) ≤ 1, ∀ ζ(k) ∈ Ci\C j :
ζ(k+1)′ Paζ(k+1)− ζ(k)′ Paζ(k) ≥ 0

which ensures ζ(k+1) ∈ A whenever ζ(k) ∈ Cpi , i =1, 2.
In the light of the above, we conclude that system (12) is

widely quadratically stable. �

Remark 1 Observe that (33) and (34) are not jointly convex
in τ, τ̃1, τ̃2, and Pa . However, the conditions in (29)–(34)
turn out to be LMIs when the scalars τ, τ̃1, τ̃2 are given a
priori. Thus, applying a gridding procedure, we can perform
a search on the latter scalars to obtain a feasible solution to
the inequalities in (29)–(34). �

In general, we may desire to obtain a maximized set D (in
the sense of its volume), or a minimized set A. As the set D
is an ellipsoid, a way to approximately maximize its size is to
minimize trace(P). The reason for this is that for P ∈R

nζ×nζ

we have nζ (trace(P))−1 ≤ trace(P−1) and trace(P−1) is
the sum of the squared semi-axis lengths of the ellipsoid D.
Specifically, the size of D in Theorem 2 can be approxi-
mately maximized by means of the following optimization
problem:

{
min

γ1, P, Pa, T, Ta, τ, τi , τ̃i τ̄i , τ̂i i=1,2
γ1, subject to

(29)− (34) and γ1 − trace(P) ≥ 0 .
(38)

Similarly, we can approximately minimize the size of A
by maximizing trace(Pa), which can be achieved via the opti-
mization problem as follows:

{
max

γ2, P, Pa, T, Ta, τ, τi , τ̃i τ̄i , τ̂i i=1,2
γ2, subject to

(29)− (34) and trace(Pa)− γ2 ≥ 0 .
(39)

Very often, it is desired to jointly optimize the size ofD and
A, which is generally a difficult problem to solve. A possible
way to approximately jointly maximize D and minimize A
is obtained by minimizing the scalar γ := γ1/γ2, where γ1

and γ2 are as in (38) and (39), respectively. More specifically,
this optimization problem can be formulated as follows. First,
define

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ = γ−1
2 ,

X = κP, Xa = κPa,

W = κT, Wa = κTa,

αi = κτi , ᾱi = κτ̄i , α̂i = κτ̂i , i =1, 2

(40)

Note that (29)–(34) can be written as

X > 0, Xa − X > 0, κ > 0, (41)

αi > 0, ᾱi > 0, α̂i > 0, i = 1, 2, (42)

X − κ(1−δi )
2μ−2

i C ′
ai

Cai > 0, i = 1, 2, (43)[
Υ̂1 ∗
Υ̂2 Υ̂3

]
< 0,

[
Υ̂a1 ∗
Υ̂a2 Υ̂a3

]
< 0, (44)
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κτ − (α1+α2) ≥ 0, κτ̃i − ᾱi ≥ 0, i = 1, 2, (45)

Xa+
2∑

i=1

αiε
−2
i C ′

ai
Cai − (1+τ)Aa′ Xa Aa ≥ 0, (46)

[
Û1(i, j) ∗
Û2(i, j) Û3(i, j)

]
≥ 0, i, j =1, 2, i �= j, (47)

where Υ̂k, Υ̂ak and Ûk , k = 1, 2, 3, are similar to, respec-
tively, Υk, Υak and Uk , k = 1, 2, 3 as in Theorem 2 with P ,
Pa, T , Ta , τi , τ̄i and τ̂i replaced by, respectively, X , Xa, W ,
Wa, αi , ᾱi , and α̂i , i =1, 2.

Considering (38) and (39), the minimization of γ can be
achieved via the optimization problem

⎧⎪⎨
⎪⎩

min
γ, κ, X, Xa,W,Wa, τ, τ̃i , αi , ᾱi , α̂i , i=1,2

γ,

subject to (41)− (47), γ − trace(X) ≥ 0,
and trace(Xa)− 1 ≥ 0 .

(48)

5 Quantizer Design

Theorem 2 provides a method for deriving a set D of admissi-
ble initial states and its attractor A for the closed-loop system
of (1)–(3) considering finite-time logarithmic quantizers as
in (5) with given maximum quantization levels μ1 and μ2,
and zero-level errors ε1 and ε2. In this section, we apply
Theorem 2 for designing the quantizer parameters μi and
εi , i = 1, 2. To this end, let D0 = {ζ ∈ R

nζ : ζ ′ P0ζ ≤ 1},
P0 > 0, be a given set of admissible initial states and ϑ be
an upper bound on the volume of the set A = {ζ ∈ R

nζ :
ζ ′ Paζ ≤ 1},1 which will be the attractor of D0, where Pa>0
is to be determined. Assuming there exists an output feed-
back quadratically stabilizing controller for system (1), the
following procedure can be applied to design static finite-
level logarithmic quantizers Q1(·) and Q2(·) such that the
wide quadratic stability of the closed-loop system in (1)–(3)
is guaranteed:

Step 1: Assuming logarithmic quantizers with an infinity
number of levels, determine a controller and the quantization
densities ρ1 and ρ2 ensuring the closed-loop quadratic sta-
bility by applying the methodology proposed in Coutinho et
al. (2010) and let δi = (1 − ρi )/(1 + ρi ), i =1, 2.

Step 2: Determine matrices P and Pa and positive scalars
ηi , σi , βi , β̄i , τ̃i , τ̂i , i =1, 2, and τ satisfying the inequalities
in (31) and the following conditions:

P > 0, P0 − P > 0, Pa − P0 > 0, (49)

P − (1−δi )
2ηi C

′
ai

Cai > 0, i =1, 2, (50)

1 The volume of an ellipsoid A = {ζ ∈ R
nζ : ζ ′ Paζ ≤ 1, Pa > 0} is

given by c/
√

det(Pa), where c is a constant that depends on nζ (see,
e.g., Bernstein (2009)).

Pa + β1C ′
a1

Ca1 + β2C ′
a2

Ca2

− (1 + τ)Aa′ Pa Aa ≥ 0, (51)

τσ2−(β1+β2) ≥ 0, σ1−σ2 ≥ 0,

σi τ̃i −β̄i ≥ 0, i =1, 2, (52)[
Ũ1(i, j) ∗
Ũ2(i, j) Ũ3(i, j)

]
≥ 0, i, j =1, 2, i �= j, (53)

ϑ
2

nζ Pa − c
2

nζ I ≥ 0, (54)

where Ũk(i, j) is similar to Uk(i, j), k =1, 2, 3 as defined in
(35) with τ̄iε

−2
i replaced by β̄i and c is the constant related

to the volume of A. Note that (49)–(53) imply that the condi-
tions in (29)–(34) of Theorem 2 hold withμi =η−2

i , εi =σ−2
i ,

τi = ε2
i βi , and τ̄i = ε2

i β̄i , i = 1, 2, whereas (54) ensures
that ϑ is an upper bound for the volume of A.

Step 3: Suitable quantizers parametersμi and εi are given
by μi = 1/

√
ηi and εi = 1/

√
σi , i = 1, 2. Moreover, the

numbers of positive quantization levels of quantizers Q1(·)
and Q2(·) are the smallest integers N1 and N2, respectively,
satisfying

Ni ≥ 1 + logρi
(εi (1 + δi )/μi ), i =1, 2. (55)

Generally, we are interested in determining the small-
est number of quantization levels guaranteeing the wide
quadratic stability, which can be achieved by jointly minimiz-
ingμi and maximizing εi , i = 1, 2. To this end, the inequality
constraints (31) and (49)–(54) of Step 2 are embedded in the
following optimization problem:

{
min

P, Pa, T, Ta, τ, τ̃i , τ̂i , βi , β̄i , σi , ηi , i=1,2
θ,

subject to (31),(49)− (54)
(56)

where θ = σ1 + σ2 − η1 − η2.

6 Examples

Example 1 Consider the discrete-time system of Example
3.1 in Fu and Xie (2005), which deals with a non-minimum
phase open-loop unstable system with a transfer function
G(z) = z−3

z(z−2) . This system can be represented by the fol-
lowing state-space realization:

⎧⎨
⎩

x1(k+1) = x2(k)
x2(k+1) = 2x2(x)+ u(k)
y(k) = −3x1(k)+ x2(k)

(57)

Firstly, using the methodology proposed in Coutinho et al.
(2010) the following quadratically stabilizing output feed-
back controller is designed to maximize δ1 and δ2 assuming
the quantizers to be ideal:
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⎧⎨
⎩
ξ(k+1) =

[
0 1

−10 −1.667

]
ξ(k)+

[
0
1

]
v(k)

w(k) = [
0 6.667

]
ξ(k)

(58)

Next, we assume that the finite-level quantizers Q1(·) and
Q2(·) have the following parameters:

δ1 = 10−2, μ1 = 18, N1 = 512,

δ2 = 3 × 10−2, μ2 = 12, N2 = 128,

and according to (6) we have ε1 = 6.4910 × 10−4 and ε2 =
5.702×10−3. Since the number of bits, Nbi , required for the
quantizer Qi (·), i = 1, 2 is given by Nbi = log2(2Ni ), we
have that Q1(·) and Q2(·) use 10 bits and 8 bits, respectively.

The optimization procedure in (48) together with a grid-
ing search procedure on the parameters τ , τ̃1, and τ̃2 have
been applied to approximately jointly optimize the set D
of admissible initial state and its attractor A. Notice that
in view of (46) and (47), the later parameters are typically
small. For this example, the LMIs in (41)–(47) are feasible
if 0.1 ≤ τ, τ̃1, τ̃2 ≤ 0.2. Furthermore, to simplify the grid-
ing search, we have considered 0.1 ≤ τ = τ̃1 = τ̃2 ≤ 0.2
leading to τ = τ̃1 = τ̃2 = 0.155 and

P =

⎡
⎢⎢⎣

22.9607 −11.1670 76.5358 1.0331
−11.1670 5.5835 −37.2253 0.0000

76.5358 −37.2253 255.4276 3.4410
1.0331 0.0000 3.4410 2.2467

⎤
⎥⎥⎦ ,

Pa = 105

⎡
⎢⎢⎣

0.1681 −0.0824 0.5602 0.0057
−0.0824 0.0412 −0.2745 −0.0000

0.5602 −0.2745 1.8675 0.0188
0.0057 −0.0000 0.0188 0.0120

⎤
⎥⎥⎦ ,

Figure 4 displays a slice of the set D for ξ=0 together with
the projection of a stable and an unstable state trajectories on
the plane defined by [ x1 x2 0 0 ]′. To evaluate the conser-
vatism of the achieved results, Fig. 4 also shows a zoomed
view of the starting sequence of the two state trajectories and
the slice of D.

As in Fig. 4 the attractor is too small to be visible, in
Fig. 5 we display a detailed view of a slice of A and the
projection of the stable state trajectory on the plane defined
by [ x1 x2 0 0 ]′.
Example 2 This example is aimed at illustrating the method
of quantizers design of Sect. 5. To this end, consider the
following discrete-time linear approximation of an inverted
pendulum system with null damping factor taken from de
Souza et al. (2010):

⎧⎪⎨
⎪⎩

[
x1(k+1)

x2(k+1)

]
=

[
1.000 0.036

0.036 1.000

][
x1(k)

x2(k)

]
+

[
0.000

0.036

]
u(k),

y(k) = x2,

Fig. 4 A slice of the set D (with ξ = 0), and a stable and an unstable
state trajectories

Fig. 5 A slice of the set A (with ξ=0) and a stable state trajectory

and the following quadratically stabilizing output feedback
controller obtained via the method of Coutinho et al. (2010)
considering that the quantizers are ideal with the constraint
δ1 =δ2 =δ and δ being maximized:

⎧⎪⎪⎨
⎪⎪⎩
ξ(k+1) =

[
1.2090−0.8758

0.3825−0.6904

]
ξ(k)+

[
87.5314

146.4775

]
v(k),

w(k) =
[
0.0040 0.0947

]
ξ(k) .

To design the input and output finite-level logarithmic
quantizers, we consider the following set D0 of admissible
initial states:

D0 :={
x ∈ R

4 : x ′ P0x ≤ 1
}
, P0 = diag{1.5, 3, 0.1, 0.1}

and the quantization densities ρ1 =ρ2 =0.7. Moreover, it is
assumed that the maximal volume of the attractor A is 10% of
that of D0, i.e., ϑ=2.3 (the volume of A is π2/

√
4 det(P0)).
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Fig. 6 Slices of the sets D and D0 (with ξ = 0) and a stable state
trajectory

Fig. 7 A slice of the set A (with ξ=0) and a stable state trajectory

Applying the optimization problem (56) and performing a
griding search over τ̃1, τ̃2, and τ similar as in Example 1,
yields:

μ1 = 0.74, ε1 = 4.42×10−4, N1 = 22,

μ2 = 18.51, ε2 = 4.42×10−4, N2 = 31,

for τ= τ̃1 = τ̃2 =0.0068.
Figure 6 shows slices of the sets D and D0 with ξ = 0

along with the projection of a stable state trajectory on the
plane defined by

[
x1 x2 0 0

]′
. A zoomed view of the starting

sequence of the state trajectory and the slices of D and D0 are
also displayed in Fig. 6. Furthermore, Fig. 7 gives a detailed
view of the slice of A and the projection of the stable state
trajectory.

7 Concluding Remarks

This paper has extended the results of Maestrelli et al. (2012)
on local stability analysis of SISO discrete-time linear time-
invariant systems with input and output static finite-level log-
arithmic quantizers. Firstly, an optimization problem with
LMI constraints has been proposed to jointly optimize the
estimates of the set of admissible initial states and the asso-
ciated invariant attractor set in a neighborhood of the state-
space origin, based on a relaxed stability notion, referred to as
wide quadratic stability. Then, assuming these sets are given,
we have also provided a method to design the input and out-
put quantizers ensuring wide quadratic stability. Numerical
examples have demonstrated the potentials of the proposed
approach. Future research is concentrated on extending these
results to nonlinear quadratic systems.
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