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Abstract This work presents a closed-loop strategy for 3D
online motion planning of beveled steerable needles using
duty-cycled rotation. The algorithm first selects an entry
point that minimizes a multi-criteria cost function and then
combines an RRT-based path planner with an intraoperative
replanning algorithm and workspace feedback information to
constantly update the needle inputs and adjust the trajectory.
Simulations in a workspace based on a typical prostate nee-
dle steering scenario show that the algorithm is robust against
disturbances and model uncertainties and can provide online
trajectories to avoid obstacles even under the presence of
physiological motion.

Keywords Medical robotics · Needle steering · Motion
planning

1 Introduction

Many medical procedures involve percutaneous diagnosis
and local therapies that require the insertion of a needle deep
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into soft tissue to reach a target, and depend on precise tip
positioning for effectiveness (Abolhassani et al. 2007). Nee-
dle deflection and tissue deformation are the most important
factors that affect needle insertion accuracy and require great
expertise from the surgeon to compensate for their effects.
In addition, the procedure target may be located in a region
surrounded by important organs, nerves, or vessels that must
be avoided.

Beveled flexible needles capable of being steered during
their insertion into soft tissue (Webster et al. 2006) have
been designed to allow complex trajectories and expand the
applicability of percutaneous procedures to areas of difficult
access, which could not be reached by conventional rigid nee-
dles without causing excessive, injurious pressure on tissue.

This type of needle can be modeled as a kinematic system
with nonholonomic constraints. As a consequence, motion
planning is a complex task and its difficulty increases under
the presence of uncertainties due to errors in tip position-
ing, needle modeling, tissue inhomogeneity and deformation.
Robot-assisted needle steering has the potential to overcome
such complications and has been an area of active research
in the past decade. In this context, medical imaging can be
used not only for motion planning but also for the control
of robot-assisted medical procedures, providing information
related to tissue properties, target displacement, and needle
tip position (Abolhassani et al. 2007).

Many 3D motion planning methods for beveled steerable
needles have been already proposed in the literature. The
first work was that of Park et al. (2005), who introduced
a diffusion-based approach that considers obstacle-free 3D
environments. Later, Duindam et al. (2010) used explicit
geometric inverse kinematics for 2D and 3D needle motion
planning. Xu et al. (2008) were the first to apply rapidly
exploring random tree (RRT)-based methods to steerable
needle planning and more recently, Lobaton et al. (2011)
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presented a sampling-based method for planning trajecto-
ries with multiple goals. However, none of these methods
deal with motion uncertainty caused by modeling approxi-
mations, tissue deformation, and other interaction forces that
may cause the needle to greatly deviate from its planned
path.

One possibility to overcome this limitation is to model
such uncertainties and consider their effects during preop-
erative path planning. Alterovitz et al. (2005) used a finite
element mesh (FEM) to compute soft tissue deformations
combined with numerical optimization to find a locally opti-
mal initial configuration and insertion distance. A finite ele-
ment method has also been used by Vancamberg et al. (2010,
2011) to minimize the final error of a RRT solution in a
breast biopsy application whereas Patil et al. (2011) used
FEM meshes combined with a sampling-based algorithm
to plan in highly deformable environments. But the effi-
ciency of these strategies depends a lot on the quality of
the mesh simulation and how accurately it represents the real
tissue.

Instead of simulating a tissue mesh, Alterovitz et al. (2008)
considered uncertainty in needle motion by formulating the
planning problem as a Markov Decision Process, using a
discretization of the state space and a Stochastic Roadmap
(Alterovitz and Goldberg 2007). Both these approaches gen-
erate a lookup table using dynamic programming that allows
for instantaneous image-guided control for the steerable
needle in a static environment. However, if we consider
a dynamic environment that presents tissue and anatomi-
cal structures displacement due to patient motion or breath-
ing, the use of precomputed paths may not be appropriate.
van den Berg et al. (2010) used an LQG-based approach
for planning and control of beveled needle insertions. Their
technique minimizes the probability of obstacles intersec-
tion and deals with noisy sensor measurements, but target
and obstacles displacement due to patient motion are not
considered.

Another alternative is to apply a single-query planning
method that is fast enough to be used intraoperatively—
that is, during the medical procedure—in order to replan
the trajectory from imaging feedback information. Hauser
et al. (2009) were the first to propose a control-loop pol-
icy for needle steering in deformable tissue. But again,
only obstacle-free environments were considered. Patil and
Alterovitz (2010) finally proposed a fast RRT-based algo-
rithm with obstacle avoidance but, although it presented
potential for intraoperative use, its performance in closed-
loop was not evaluated. In a previous work (Bernardes et
al. 2011) we have proposed a 2D planning method that was
combined with an intraoperative replanning strategy for sys-
tematically correcting the needle trajectory. This algorithm
has been improved and extended to the 3D case in the present
paper.

1.1 Contributions and Organization of the Article

The main contribution of this work was the proposal of an
intraoperative strategy for robust 3D needle steering that
applies fast replanning during the insertion procedure to com-
pensate for system uncertainties like tissue deformation, tis-
sue inhomogeneity, positioning errors, and other modeling
approximations. Different from the previous approaches, our
method is not only robust to disturbances, but can also deal
with changes in the obstacles and target positions caused by
patient and physiological motion during the procedure.

Another contribution was the development of an
application-specific path planning algorithm with input sam-
pling strategy to obtain improved performance and efficiency.
It explores the duty-cycled rotation strategy (Minhas et al.
2007) to achieve variable curvature paths and consequently
achieve a motion planning performance compatible with
intraoperative use.

A third contribution was the development of an Entry Point
Planner that provides an initial configuration for the needle
insertion procedure, which maximizes safety and minimizes
length of the generated trajectories based on a multi-criteria
cost function.

This article is organized as follows. Section 2 describes
the steerable needle nonholonomic model and the princi-
ple of the duty-cycle insertion strategy. Then, in Sect. 3 the
motion planning problem is detailed, where first we present
the direct extension of our previous algorithm, and then we
introduce a new improved solution. Also, a derived strategy
for selecting feasible insertion entry points is proposed. Sec-
tion 4 presents the replanning strategy whereas in Sect. 5 we
expose the results obtained and the evaluation of our method.
Last, in Sect. 6 we discuss its use possibilities, the next steps
in development, and the future works.

2 Steerable Needle Kinematic Model

The natural behavior of a beveled steerable needle when it is
pushed forward is to bend in the direction of its sharpened tip,
following an arc of approximately constant curvature κmax =
1/r . The natural curvature is related to the geometrical and
mechanical properties of the beveled needle and tissue. So,
for a given needle–tissue set, r is constant. As demonstrated
by Webster et al. (2006), the kinematic model for this kind
of needle can be approximated by that of a nonholonomic
unicycle vehicle with the following constraints:

νy = νz = ωy = 0

ωz = νxκmax. (1)

The two control inputs νx and ωx , which are, respectively,
the needle’s insertion and rotation velocities along its shaft
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Fig. 1 Needle coordinate system and control inputs

as illustrated in Fig. 1, are referred from now on as ν and ω

for simplicity.
The configuration q of the needle tip can be described in

3D by a rigid transformation from Oworld to Otip as shown
in Fig. 1. A position is represented by a quaternion p =
xı̂+yĵ+zk̂ whereas a configuration—that is, a set of position
and orientation—is represented by a dual quaternion q =
r + ε 1

2 pr, with r and p being, respectively, the rotation and
translation quaternions, and ε being Clifford’s dual unit (see
Appendix for more details).

A sequence of rigid motions can be represented by a
sequence of dual quaternion multiplications. As a conse-
quence, we can obtain a discrete time implementation of the
needle kinematic model as

q
k+1
= q

k
q

δ
, (2)

where q
δ

represents the incremental movement during a
period Tδ and is given by

q
δ
= rδ + ε

1

2
pδrδ. (3)

From the nonholonomic constraints (1), we have that
the needle rotation is a consequence of the velocity ω =
ωı̂ + νκmaxk̂, which is the resultant of ω � ωx and ωz (the
quaternionic units ı̂ and k̂ represent the x and z axis, respec-
tively). On the other hand, the needle translation is a conse-
quence of ν � νx only. Hence, the rotation rδ and translation
pδ are given by

rδ = cos

(
φδ

2

)
+

sin
(

φδ

2

)
√

ω2 + ν2κ2
max

(ωı̂ + νκmaxk̂),

pδ = νTδ ı̂, (4)

where φδ =
√

ω2 + ν2κ2
maxTδ .

If we combine rotation and insertion movements using
a duty-cycling strategy (Minhas et al. 2007), the resultant

needle path can achieve different curvature values. The duty-
cycling strategy combines periods Tins of pure insertion with
periods Trot of simultaneous insertion and rotation, so that
any curvature ranging from the needle natural curvature to a
pure straight trajectory can be achieved.

The duty-cycle DC is defined as the ratio of Trot to the
cycle period T ,

DC = Trot

T
= Trot

Trot + Tins
, (5)

and it has an affine relationship to the needle curvature

κ = κmax(1− DC), (6)

where κ is the effective curvature and κmax is the needle
natural curvature, when no rotation is applied.

Hence, given that κmax is a known system parameter, a
needle trajectory with curvature κ can be achieved by com-
bining two incremental movements: q

rot
, which represents

the movement during simultaneous rotation and insertion
(ω � ωref, Tδ � Trot), and q

ins
which is the movement during

the insertion-only period (ω � 0, Tδ � Tins), both executed
according to (4). This can be easily implemented by choos-
ing fixed values for ωref and for the rotation period Trot, both
defined a priori. Since κ corresponds to the curvature of the
arc related to the desired motion, the period of pure insertion
Tins is then obtained from (6) and (5). If the needle is moved
by a fixed insertion distance �s at each cycle, the insertion
velocity is variable and given by

ν = �s

TDC
, (7)

where TDC = Trot + Tins.

Remark 1 It is important to note that the procedure used to
obtain the curvatureκ , which is necessary to calculate the DC
value in (6) and is related to the arc of the desired motion,
will be introduced later in Sect. 3.2.1.

3 3D Arc-Based Planners

The needle insertion environment is a bounded 3D workspace
and the size and location of the obstacles and the desired tar-
get are defined by the surgeon. Also, the parameter κmax

for the given needle–tissue combination is considered to
be known. In practice, it is usually identified offline from
a sequence of multiple insertions or estimated online from
visual feedback of the needle trajectory inside tissue.

Approximating the needle movement to that of a 3D uni-
cycle model (Webster et al. 2006), the desired needle path is
a combination of circular arcs. The final extremity of each
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arc A should correspond to the next arc’s initial extremity,
not only in position but also in orientation, so we have C1

continuity. In prostate brachytherapy, the final orientation of
radioactive seeds may influence the treatment final result. But
if we consider percutaneous applications like some types of
biopsy, tumor ablation, and anesthesia, the needle orientation
at the target may not be a strong problem requirement. Thus,
we propose it to be relaxed and used as an extra degree of
freedom to obtain such orientation continuity.

3.1 Arc-RRT Planner

The objective of a Arc-RRT planner is to find a sequence
of duty-cycle signals parameterized on insertion length that
is capable of taking the needle from its initial configuration
q

init
to a final position pgoal while respecting the nonholo-

nomic constraints and avoiding the obstacles. This sequence
must be obtained in a computational speed compatible with
intraoperative use, so that the planned path can be adjusted
to changes in the workspace and the unexpected behavior of
the needle. Our method is based on the classic RRT approach
(LaValle and Kuffner 1999)—a tree T is constructed with its
root in q

init
and continuously expanded until the goal point

pgoal can be connected to it.
In a previous work (Bernardes et al. 2011), we proposed

a first algorithm, the Arc-RRT with point sampling, whose
extension to 3D environments is depicted in Algorithm 1. It
expands the tree by randomly sampling collision-free points
and using them to grow branches and explore the workspace.
In this strategy, for each point prand randomly sampled from
the workspace, we define a set Qreachable of all nodes in T
from which prand can be reached. A node is considered reach-
able if the arc that connects it to prand does not intersect any
obstacles and if its curvature respects the needle maximum
value κmax. Then, the nearest node from Qreachable, namely
q

near
, is added to T . The process is repeated until the target

can be connected to the tree or until a maximum number of
generated samples is reached. The extension of our previ-
ous 2D method to a 3D environment incidentally resulted in
an algorithm that resembles the one presented in Patil and
Alterovitz (2010).

However, after further testing it, we have noticed that
this algorithm was not fast enough, especially in cases with
reduced needle steerability. In more challenging situations,
we have obtained low success rates and long processing times
which are not desirable for intraoperative use (see Sect. 5.1
for statistical analysis).

In order to improve the performance of Algorithm 1, in
the present work we propose a new sampling strategy and the
addition of new functions which result in the Arc-RRT with
input sampling, depicted in Algorithm 2 and from now on
referred simply as Arc-RRT. The initialization of the algo-
rithm is the same as the previous method, with the construc-

Algorithm 1 Arc-RRT with point sampling
ARC_RRT (qinit, pgoal)

1: T ← INIT_TREE(qinit)

2: while T ∩ pgoal = ∅ do
3: prand ← RANDOM_POINT()
4: qnew ← RRT_CONNECT_NEAREST(T , prand)

5: qgoal ← RRT_CONNECT(T , qnew, pgoal)

6: end while
7: P ← SEARCH_GRAPH(T , qinit, qgoal)

8: return P

RRT_CONNECT_NEAREST (T , p)
1: for all qi ∈ T do
2: Ai ← GET_ARC(qi , p)

3: if COLLISION_FREE(Ai ) and Ai .κ < κmax then
4: add Ai to Qreachable
5: end if
6: end for
7: if Qreachable �= ∅ then
8: Anear ← GET_NEAREST(p, Qreachable)
9: T .add_vertex(Anear.qB )

10: T .add_edge(A.qA,A.qB ,A.κ)

11: return A.qB
12: end if
13: return NULL

RRT_CONNECT (T , q, p)
1: if q �= NULL then
2: A← GET_ARC(q, p)
3: if COLLISION_FREE(A) and A.κ < κmax then
4: T .add_vertex(A.qB )

5: T .add_edge(A.qA,A.qB )

6: return A.qB
7: end if
8: end if
9: return NULL

Algorithm 2 Arc-RRT with input sampling
ARC_RRT (qinit, pgoal)

1: T ← INIT_TREE(qinit)

2: while T ∩ pgoal = ∅ do
3: prand ← RANDOM_POINT()
4: qnew ← RRT_EXTEND(T , prand)

5: qgoal ← RRT_CONNECT(T , qnew, pgoal)

6: end while
7: P ← SEARCH_GRAPH(T , qinit, qgoal)

8: return P

RRT_EXTEND (T , p)
1: qnear ← NEAREST_NEIGHBOR(T , p)

2: urand ← RANDOM_INPUT()
3: A← APPLY_INPUT(qnear, urand)

4: if COLLISION_FREE(A) then
5: T .add_vertex(A.qB )

6: T .add_edge(A.qA,A.qB )

7: return A.qB
8: end if
9: return NULL

RRT_CONNECT (T , q, p)
1: if q �= NULL then
2: A← GET_ARC(q, p)
3: if COLLISION_FREE(A) and A.κ < κmax then
4: T .add_vertex(A.qB )

5: T .add_edge(A.qA,A.qB )

6: return A.qB
7: end if
8: end if
9: return NULL
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(a) (b) (c)

Fig. 2 GET_ARC function connecting a configuration q
A

to a point pB

tion of a tree T rooted in q
init

. Then, a random point prand

is also sampled from the workspace, but instead of trying to
connect it to the tree, we select its nearest neighbor q

near
to

be extended by applying a sampled input signal urand. The
procedure is repeated until the target pgoal can be connected
to the tree.

The input sampling algorithm has two main advantages
when compared to the previous approach. First, each iteration
is computed faster since the collision and reachability check
is performed for only one node at each iteration, while it was
tested for all nodes present in the tree in the point sampling
version. Also, the input sampling algorithm presented less
rejection of samples, being capable of finding a solution in
fewer iterations. Consequently, our new algorithm presents
a much better performance when compared to the previous
one, as we can observe from the simulation results in Sect.
5.1.

3.2 Arc-Based Local Planning

The needle path curvature κ is directly related to the duty-
cycle sequence of its inputs ω and ν as described in Sect.
(2). Consequently, in the Arc-RRT planner, we use explicit
geometry to describe the needle motion as a sequence of
arcs which are connected to expand the tree. This expansion
process is based on two local planning functions described
as follows.

3.2.1 Function GET_ARC

The duty-cycling technique used to insert the needle allows
it to move with different arc curvatures in its xy-plane. Con-
sequently, to take its tip from a configuration q

A
to a point

pB in a 3D workspace, the point pB must lie in the needle’s
xy-plane. When it is not the case, the needle must be previ-
ously rotated by an angle γ along its shaft until the xy-plane
is aligned with pB . This rotation results in a new tip configu-
ration q

A′ which can be connected to pB by an arc A which
lies in the new xy’-plane (see Fig. 2).

Thus, the sequence of movements that will take the needle
tip from a given configuration q

A
to a given point pB is

defined by two steps presented as follows.

Step 1: In order to obtain the intermediate configuration q
A′ ,

we must calculate the angle γ . First, we write pB in q
A

frame as pA
B = r∗A(pB − pA)rA, where rA and pA satisfy

q
A
= rA + ε 1

2 pArA.

From the point coordinates pA
B = (aı̂+bĵ+ck̂), the angle

γ between planes xy and xy’ is given by

γ = arctan
( c

b

)
. (8)

Note that angles are represented in the interval (−π, π ].
The intermediate configuration q

A′ is obtained by rotating
q

A
of an angle γ around the x-axis

q
A′ = q

A
q

γ
, (9)

with q
γ
= cos( γ

2 )+ sin(
γ
2 )ı̂ .

Step 2: From a given start configuration q
A′ and a final point

pB , it is possible to uniquely define an arc that connects them.
The arc parameters can be geometrically obtained with a few
trigonometric calculations.

The final point pB written in the frame of q
A′ is given by

pA′
B = r∗A′(pB − pA′)rA′ .

Being that pA′
B = (a′ ı̂ + b′ĵ ), the signed bearing angle ϕ

of the arc that connects q
A′ to pA′

B is given by

ϕ = arctan(
b′

a′
), (10)

and the arc curvature is given by

κ = 1

r
= 2 sin(ϕ)√

a′2 + b′2
. (11)

The final configuration q
B

is given by a sequence of dual
quaternion multiplications

q
B
= q

A′qα
, (12)

where q
α
= rα+ ε 1

2 pA′
B rα , with rα = cos(α

2 )+ sin(α
2 )k̂ and

α = 2ϕ.
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3.2.2 Function APPLY_INPUT

Instead of connecting the configuration q
A

to a given point,
one might want to expand it with the concatenation of a given
3D arc segment. This arc is obtained from the random input
urand = (γrand, ϕrand, κrand),1 whose parameters are related
to the arc plane, bearing angle and curvature, respectively.
Hence, once arc parameters γ, ϕ, and κ are known, they are
used to determine a corresponding final configuration q

B
.

First, we apply γ to find q
A′ as given in (9). Then, from the

curvature κ , we can determine the position of the arc center
as pC = rA′pA′

C r∗A′ + pA′ , where pA′
C = 1

κ
ĵ is the position of

the center with respect to the frame of q
A′ .

At last, from the bearing angle ϕ, we can get the arc sector
angle α = 2ϕ. The final point position is given by

pB = rA′p
c
Br∗A′ + pC , (13)

being pc
B = r sin(α)ı̂ − r cos(α)ĵ its position with respect

to the arc center. Finally, the final configuration q
B

is

q
B
= rB + ε

1

2
rBqB, (14)

with rB = rA′rα and rα = cos(α
2 )+ sin(α

2 )k̂.

3.3 Entry Point Planner

The objective of the Entry Point Planner (EP Planner) is to
find a feasible starting configuration for the needle insertion
procedure. It is especially useful when the target is in a region
of difficult access and the starting configuration requirements
may be relaxed. In this case, instead of having a defined
q

start
, we only constrain the entry point to a region of interest

from where the insertion can be performed. Consequently, we
increase the chances of finding a feasible path, even for the
cases where the procedure target is in a difficult configuration
(see Sect. 5.3 for example).

In order to search for a feasible entry point, the planner
discretizes the entry region and runs the Arc-RRT algorithm
using each one of the points as a starting point candidate.
For each candidate that successfully returns a path P , we
calculate a cost function C(P) and the lowest cost path is
selected. For the cases where there is no constraint for the
insertion entry angle, the region discretization can be adapted
to also include a discretization of the possible initial orien-
tations.

1 Although we use here the expression “input,” one should notice that
we do not refer to the needle actuation inputs ω and ν, but to pure
geometrical parameters used to expand the RRT tree. The insertion and
velocity actuation inputs are actually a consequence of the planned path
formed by the concatenation of arcs obtained from such geometrical
parameters.

We have chosen a cost function that takes in considera-
tion two factors conflicting with each other Mittal and Deb
(2007): the total path length and the collision risk. The objec-
tive of having a short insertion clashes with the desire of going
as far as possible from obstacles. The closer to obstacles the
needle passes, the higher are the chances of collision. Hence,
we define the two functions

frisk =
N∑

i=1

(
dsafe

di ,min

)2

and flength =
K∑

i=1

∣∣∣∣2ϕi

κi

∣∣∣∣, (15)

where N is the number of discretization points of the trajec-
tory, di ,min is the minimum distance from point i to obstacles,
dsafe is the minimum safety distance the needle should have
from the obstacles, K is the number of arcs in the trajec-
tory, ϕi is the bearing angle from the i-th arc, and κi is its
correspondent curvature.

The final cost C = β frisk + (1 − β) flength is a weighted
sum of both functions, with β being a weighting factor. If the
given region is reasonably large, we may adapt the algorithm
in order to make it faster. For this, we make a coarse initial
discretization of the entry region and after we have found the
lowest cost path, we perform a finer discretization around the
chosen point to check for a better solution.

4 Intraoperative Replanning

Using the affine relationship (6) between duty-cycle and arc
curvature, we obtain the sequence of DC inputs that will take
the needle from its insertion point to the goal while following
the desired path. However, tissue deformation and inhomo-
geneity, imprecision of the unicycle model, and uncertainties
in the initial configuration may deflect the needle from the
planned trajectory, leading to a possible collision with an
important organ or misplacement of the needle tip at the end
of the insertion task.

Algorithm 3 Intraoperative Replanning
INTRAOPERATIVE_REPLANNING(qtip_now, pgoa]_now,P)

1: Pnow ← UPDATE_PATH_EXTREMITIES(qtip_now, pgoal_now,P)

2: for all Ai ∈ Pnow do
3: Ai ← GET_ARC(Ai .qA,Ai .pB )

4: if !COLLISION_FREE(Ai ) or Ai .κ > κmax then
5: return ARC_RRT(qtip_now, pgoal_now)

6: end if
7: end for
8: return Pnow

To avoid this, we propose a replanning strategy which
should be executed at each cycle to systematically correct the
trajectory until the needle tip is sufficiently close to the target
(see Algorithm 3). We assume that the current information
about the workspace is provided by a 3D medical imaging
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system. The workspace feedback is used to update the path
by considering the needle’s current configuration q

tip_now
as

the new starting position for the path, and the target’s cur-
rent position pgoal_now as the new goal. Then, the GET_ARC
function (see Sect. 3.2.1) is run to adjust all the arcs from P ,
recalculating the new curvatures and the final orientations.
If a collision is detected in the updated arcs, or if the new
curvature does not respect the maximum limit, the complete
RRT planner is run again to find a new feasible trajectory.

The update of the path is extremely fast since it uses only
the geometric relations defined in Sect. (3.2) to satisfy the
system nonholonomic constraints. Combined with the good
performance of the Arc-RRT with input sampling, and con-
sidering that needle insertion procedures normally occur at
small insertion and rotation velocities due to safety restric-
tions, the replanning algorithm can be easily used intraoper-
atively.

In addition, since the Arc-RRT algorithm converges much
faster than the insertion procedure speed, the remaining time
between cycles can be used to accumulate executions of the
planner. Then, the same cost function from the EP Planner
could be used to choose the best path between the multi-
ple solutions found. This way, the planned trajectory gets
closer to the optimal path without the need of using any
expensive numerical optimization in favor of intraoperative
use.

It is important to note that the needle insertion procedure is
performed at very low velocities due to safety requirements
of medical interventions. This results in a relatively slow
dynamics, so that the intraoperative replanning does not need
to be performed in hard real time. However, although the
replanning is usually not performed in real time, the device
used to control the insertion procedure is usually real time
controlled at the low level.

5 Results

Our tests were conducted in the simulated 3D environment
with obstacles depicted in Fig. 3 with all units in cen-
timeters. It is based on a typical scene for prostate nee-
dle insertion and consists of a cubical region with coor-
dinates (−5, 5) × (−5, 5) × (−5, 5) and six unit-radius
spheres, centered at [−1, 0, 0], [3.5, 0, 1.5], [2.5, 0, 2.9],
[5, 0, 2], [0.5, 1.4, 0.3], and [0.5,−1.4, 0.3] to represent
obstacles around the prostate such as the pubic arch, the
urethra, and the penile bulb (Xu et al. 2008). The two
blue rectangles represent regions of interest for possible
entry points and targets. Simulations were run in a PC with
Intel Core i7 2.93 GHz, 2.9 GB memory and Ubuntu 10.10
operating system. To evaluate the performance of the pro-
posed planners, we performed three different sets of simula-
tions.

Fig. 3 3D scenario for simulations based on Xu et al. (2008). The
spheres represent obstacles, the rectangles are the regions of interest,
the red lines compose the tree constructed by an execution of Arc-RRT
with input sampling, and the black line is the path found (Color figure
online)

5.1 Comparison of Algorithms with Point and Input
Sampling

The first set of simulations compares the performance of the
Arc-RRT with point and input sampling with respect to com-
putation time, success rate, and insertion length. We specified
a needle with 4 cm of minimum radius of curvature.

Simulation 1 First, we compared the computational time
needed by each algorithm to build a tree with the same
amount of nodes. The initial configuration was set to the posi-
tion (x, y, z) = (−5, 0, 0) and aligned with the world frame
(i.e, pinit = −5ı̂ and rinit = 1), and for each algorithm, a tree
was created and expanded until it reached 500 nodes. This
process was repeated for 1,000 trials and the obtained aver-
age computation time in milliseconds is 648.58 ± 93.45 for
Algorithm 1 (point sampling) and 159.63 ± 90.75 for Algo-
rithm 2 (input sampling). We can see that the input sampling
strategy expands the tree much faster than the point sampling
one. The main cause of such difference is because for each
iteration, the point sampling algorithm has to check the reach-
ability of all the nodes in the tree, while the input sampling
method performs the check for only one node.

Simulation 2 Second, we compared the ability of each algo-
rithm to find a solution for the same planning situation. In
this test, the maximum number of samples for constructing
the RRT was set to 1,000 and, for each trial, an initial con-
figuration and a goal point were randomly picked with an
uniform distribution from the regions of interest. Each set of
q

init
and pgoal was tested in both algorithms. Table 1 presents

the results for 1,000 trials, indicating a better performance
of Algorithm 2 (input sampling), which had a higher rate of
success and lower processing time when compared to Algo-
rithm 1 (point sampling). From the data, we observe that the
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Table 1 Performance of algorithms 1 and 2

Algorithm 1 Algorithm 2
point sampling input sampling

Number of trials 1,000 1,000
Number of successes 768 951

Number of samples 224±198 79±132

CPU time (ms) 33.19±39.46 3.46±7.59

Path length (cm) 10.55±3.92 10.07±1.64

input sampling strategy is capable of finding a solution with
fewer samples when compared to point sampling.

Thus, by changing from point to input sampling, we
obtained a new path planner with higher success rate, and
more than 9 times faster than the previous one, without
increase in the average insertion length. This indicates that
the use of the new algorithm is advantageous to an intraop-
erative planner.

5.2 Performance of the Arc-RRT with Input Sampling

The next simulation evaluates the influence of the needle
steerability in the performance of the Arc-RRT with input
sampling (Algorithm 2). For each trial, an initial configura-
tion and a target point are randomly picked from an uniform
distribution. The maximum number of nodes for the RRT is
2500. For the kinematic model of the needle, we specified
three different minimum radii of curvature (4, 5, and 6 cm).
Table 2 presents the obtained results for 1,000 trials. Feasi-
ble paths were found in most of the trials, with a success rate
higher than 95 % in the worst case. However, we can notice
that the performance of the planner is strongly dependent on
needle steerability. As we raise the minimum radius of curva-
ture, the harder it gets to find the feasible paths, until the limit
where there is no possible solution for a given combination
of start configuration and target position. In such cases, an
alternative is to relax the needle initial configuration require-
ment and use the EP Planner to find a feasible path within a
region of interest, as illustrated by the next simulation.

5.3 Performance of the Entry Point Planner

An especially difficult combination for the given workspace
(see Fig. 3) is the initial configuration at position pinit = −5ı̂

Table 2 Performance of algorithm 2 (input sampling)

r = 4 r = 5 r = 6

Number of trials 1,000 1,000 1,000

Number of successes 1,000 982 953

Number of samples 220±99 459±209 627±329

CPU time (ms) 6.14±23.40 19.83±66.33 35.40±89.99

(a)

(b)

Fig. 4 Scenario of Simulation C with a difficult combination of q
init

and pgoal and lower needle steerability

Table 3 Performance of the EP planner

r = 6

Number of trials 100

Number of successes 100

Number of samples 17798±1390

CPU time (s) 13.17±1.66

and rinit = 1, and pgoal = 5ı̂ , for which no solution could be
found with r = 6 cm. Figure 4 shows one of the exploration
trees for this configuration with 5,000 nodes.

Then, we used the EP Planner to search the region of
interest for a new feasible start configuration. Table 3 presents
the simulation results. In total, 100 trials were performed
and all of them were able to find a path that connects to
pgoal, confirming the interest in using the EP Planner for
finding a better start configuration whenever the planning
requirements may be relaxed.

5.4 Needle Insertion Under Disturbances

The next simulation evaluates the intraoperative replanning
strategy and its capability of driving the needle to the desired

123



224 J Control Autom Electr Syst (2014) 25:216–227

target even with the presence of model uncertainties and dis-
turbances such as tissue deformation, tissue inhomogeneity,
and needle tip positioning errors which are inherent to med-
ical imaging and sensor measurements.2

In simulation, these effects were modeled as white noises
added to the measured tip configuration and to the applied
needle rotation. Such induced errors follow a normal dis-
tribution N ∼ (μ, σ ) with μ = 0 and σ = 1 mm to the
tip position, and μ = 0 and σ = 0.01 rad to the orien-
tation. The same perturbations were also included to the
tip initial position and orientation, while the actual nat-
ural curvature was simulated with a value 25 % bigger than
that expected by the planning algorithm. The workspace
configuration, q

init
and pgoal were the same from Simula-

tion 5.3.
In a preoperative step, the Arc-RRT with input sampling

was used to obtain a feasible path given the initial tip con-
figuration, target position, and workspace. The correspon-
dent sequence of duty-cycles parametrized in path length was
directly calculated from the arc’s curvatures, and applied to
the simulated needle. The needle tip was simulated using the
discrete model from (4), with natural radius of curvature of
4 cm, rotational velocity of 2 Hz (i.e., Trot = 0.5 s), and
insertion distance per cycle �s = 1 mm.

At this point, it is important to recall that, in order to cal-
culate the needle input signals for each desired arc curvature
κ , we use (6) to obtain DC . Using (5), and assuming a fixed
Trot, we obtain Tins. This way, considering a constant inser-
tion distance per cycle, we calculate v from (7). Since we
also define a constant ωref, both values are used in (4) to
obtain (2).

At each simulation cycle, our replanning strategy was used
to systematically correct the trajectory along the insertion
procedure according to the current measured tip configura-
tion. Figure 5 shows an example of the replanning in action.
The initial planned trajectory is shown in dashed blue and it
would lead the needle tip to the desired target if it were not
for the induced disturbances.

Without the replanning action, the effects of such dis-
turbances cause the needle to follow the trajectory in red,
with a final error of 8.3 mm to the target location. Instead,
if the replanning algorithm is used, as the needle insertion
advances, the planned trajectory is updated in closed-loop.
The constant online replanning resulted in the path depicted
in solid black, with a final error of only 0.6 mm. The same
simulation was repeated several times resulting in a final
mean error of 0.66 mm and standard deviation of 0.23 mm
in 10 trials, a much better accuracy than the open-loop inser-
tion.

2 For videos, see the first part of Online Resource 1.

(a)

(b)

Fig. 5 Performance of the intraoperative replanning. In dashed lines,
the initial planned path; in red the trajectory obtained in open-loop and
in black the trajectory with replanning. See provided Online Resource
1 for other insertion examples (Color figure online)

5.5 Needle Insertion in a Dynamic Environment

The last simulation evaluates the effects of changes in the
workspace during needle steering and the ability of our
intraoperative replanning strategy to compensate for these
changes. When we consider the presence of patient and phys-
iological motion between preoperative planning and treat-
ment phases, the result can greatly deviate from the expected
one. In simulation, these changes in the insertion scene were
modeled as periodic sinusoidal motions applied to the obsta-
cles and to the desired target positions with a period of 5 s and
40 s, respectively. The displacement amplitude was 2 mm in
all directions for the obstacles, whereas for the target it was
3 mm for y and z directions.3

The initial tip configuration and goal position were pinit =
−5ı̂−1ĵ−1k̂ and rinit = cos(π/6)−sin(π/6)k̂, which were
obtained from the EP Planner algorithm, while the initial
workspace and simulation parameters were the same from
Simulation 5.4, including the disturbances added to the sys-
tem.

3 For videos, see the second part of Online Resource 1.
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(a)

(b)

Fig. 6 Example of needle simulation with dynamic workspace and
intraoperative trajectory replanning. The dashed lines represent the orig-
inal positions of obstacles and the initial planned path; in solid black the
trajectory with replanning. The blue (right) and red (left) dots indicate
the initial and final target positions, respectively. See provided Online
Resource 1 for other insertion examples (Color figure online)

Similar to the previous simulation, the Arc-RRT algorithm
was used to obtain a feasible trajectory, and as the inser-
tion moves on, the planned trajectory was updated by the
Intraoperative Replanning to adjust according to the changes
observed in the obstacles and target positions.

This simulation with dynamic environment was repeated
for 10 trials and the needle was able to avoid the obstacles
while reaching the moving target with a final mean error
of 0.83 mm and standard deviation of 0.47 mm, which is
considered to be a good precision for the majority of percu-
taneous procedures (Fichtinger et al. 2008). One of the trials
is depicted in Fig. 6, where we can observe the replanning
in action. The initially planned trajectory is shown in Fig. 6a
(solid blue line) and if it was not for the workspace motion, it
would lead the needle tip to the desired target while avoiding
the obstacles.

However, if we consider the displacement of the scene
objects as shown in Fig. 6b, the initial trajectory (dashed blue
line) would cause the needle to collide with an obstacle and
miss the current target position, which has also moved during
the insertion. Instead, because the replanning algorithm was
used, as the needle insertion advanced the planned trajectory
was updated in closed-loop. The constant online replanning
resulted in the path depicted in solid black, with a final error
of only 0.33 mm.

6 Conclusions

In this work we proposed a closed-loop strategy for 3D
motion planning of steerable needles using duty-cycling. It
combines an RRT-based path planner with an intraoperative
algorithm and workspace feedback information to constantly
update the needle inputs and adjust the trajectory.

The new Arc-RRT planner has shown to have a good suc-
cess rate while being fast enough to be used in an intraop-
erative system. We also presented a variation to use it as
a preoperative planner for calculation of feasible insertion
entry points that maximize safety and minimize path length.
Even though the convergence of RRT-based algorithms is
not assured in finite time, the RRT is proved to be prob-
abilistic complete, meaning that if we give it enough time
to search for the solution and if the solution exists, it will
be found (Kuffner and LaValle 2000). In practice, what we
observe is that the Arc-RRT converges much before the next
insertion cycle due to its high success rate and fast execution
when compared to the insertion procedure speed. As a con-
sequence, we may use the remaining time between cycles to
accumulate executions of the Arc-RRT algorithm and use the
same cost function from the EP Planner to choose the best
path so the planned trajectory gets closer to the optimal with-
out the need of using any expensive numerical optimization
in favor of intraoperative use.

The proposed replanning strategy made the insertion pro-
cedure more robust to system uncertainties such as tissue
deformation, errors in position, inhomogeneity, and mod-
eling approximations. The simulation results showed that,
even under perturbations, the needle was able to reach the
target with a satisfactory precision while an open-loop strat-
egy would fail to avoid the obstacles and to arrive at the
desired position. Simulations in a dynamic workspace also
suggest that the replanning could also be used to compensate
for small magnitude physiological movement if the tissue–
needle combination presents good steerability.

The next step is to evaluate the proposal on tissue phan-
toms and robotic hardware, which we have partially imple-
mented for the 2D case in Bernardes et al. (2012). Possible
future works include the investigation of motion planners that
combine the duty-cycling strategy with smoother trajectories
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such as splines, intraoperative estimation of needle curvature,
and prediction of the obstacles displacement.

7 Online Resource

Online Resource 1 provides a video showing simulations
of the needle insertion under the effect of disturbances, as
described in Sect. 5.4. During the insertion, we use the pro-
posed strategy for intraoperative replanning to update the
desired needle trajectory according to the current needle tip
configuration. As a consequence, the needle converges to the
target, despite the model uncertainties and positioning errors
added to the simulation. In the second part, the video shows
simulations of the needle insertion in dynamic workspaces,
as described in Sect. 5.5. Even with small displacements
of obstacles and target, the needle is able to reach its final
destination.
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8 Appendix

A quaternion h consists of a real component plus an imag-
inary part composed of three quaternionic units ı̂, ĵ , k̂; that
is, h = a + bı̂ + cĵ + dk̂, where a, b, c, d ∈ R, ı̂2 =
ĵ2 = k̂2 = −1, and ı̂ ĵ k̂ = −1. Its conjugate is given by
h∗ = a − bı̂ − cĵ − dk̂.

A rotation composed of a rotation angle φ around the
axis n = nx ı̂ + ny ĵ + nzk̂ is given by the quaternion r =
cos(φ/2)+ sin(φ/2)n.

A translation p is represented by a pure quaternion; that
is, a quaternion where the real part is equal to zero. Thus,
p = px ı̂ + py ĵ + pzk̂.

The rigid motion is then completely represented by the
dual quaternion q = r + ε 1

2 pr, where ε is Clifford’s dual

unit, which is nilpotent; that is, ε �= 0 but ε2 = 0.
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