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Abstract In practical applications, the pure derivative
action is never used, due to the “derivative kick” produced
in the control signal for a step input, and to the undesirable
noise amplification. It is usually replaced by a first-order
low-pass filter. In this paper, we use a μ-order fractional low-
pass filter and define a practical fractional-order controller.
The proposed approach with new defined fitness function
has very easy implementation and the most control perfor-
mance. We present a method for optimum tuning of practi-
cal fractional PID controllers for automatic voltage regulator
system using particle swarm optimization (PSO) algorithm.
PSO is a robust stochastic optimization technique based on
the movement and intelligence of swarm, applies the con-
cept of social interaction to problem solving. From the com-
parison this technique with the other methods, its influence
and efficiency are illustrated. Simulations and comparisons
with other FOPID/PID controllers illustrate that the pro-
posed PSO-FOPID controller can provide good control per-
formance with respect to reference input and also improve
the system robustness with respect to model uncertainties.

Keywords Optimal fractional-order PID controller
design · AVR system · Fitness function

1 Introduction

In the last decade, fractional-order dynamic systems and con-
trollers have been studying widely in many areas of engineer-
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ing and science (Oldham and Spanier 1974; Lubich 1986;
Miller and Ross 1993; Oustaloup 1981; Chengbin and Hori
2004). The concept of the fractional-order PID controllers
was proposed by Podlubny et al. (1997). He also demon-
strated the better response of this type of controllers, in com-
parison with the classical PID controllers, when used for the
control of fractional-order systems. He was demonstrated
the major role of fractional-order calculus in a smart mecha-
tronic system (Podlubny 1999). Hardware and digital real-
izations of fractional-order systems can be followed in Chen
et al. (2004), Nakagawa and Sorimachi (1992), Valério and
Sàda Costa (2011). A frequency-domain approach based on
given phase margin and crossover frequency is studied in
Vinagre et al. (2000). In Monje et al. (2004), an optimiza-
tion method is presented such that predefined design spec-
ifications are satisfied. A method is presented based on the
pole distribution of the characteristic equation in the com-
plex plane (Petras 1999). A state-space design approach is
presented based on feedback pole placement in Dorcak et al.
(2001). A method is presented based on differential evolu-
tion (DE) technique in Biswas et al. (2009). Also, a method
is presented based on idea of the Ziegler–Nichols and the
Astrom–Hagglund methods in Yeroglu and Tan (2011). A
method is presented based on the asymptotic behavior of
fractional algebraic equations and applies a delicate prop-
erty of the root loci of the system in Merrikh-Bayat and
Karimi-Ghartemani (2010). A fractional-order (PI)λ con-
troller is designed to improve the flight control performance
of a small fixed-wing unmanned aerial vehicle (UAV) in Luo
et al. (2011). In Zhou et al. (2013) a series of practical dis-
tributed order, robust PI control strategies are presented. In
Luo and Chen (2009) is focused on a given type of simple
model of fractional-order system and is proposed a fractional-
order [proportional derivative] (FO-[PD]) controller for this
class of fractional-order system. An experimental study of the
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fractional order proportional and derivative (FO-PD) con-
troller for the fractional-order systems with generalized
fractional capacitor membrane model is presented in Luo
et al. (2011) to validate the control performance. In Bar-
bosa et al. (2010) as an application of fractional-order PID
controllers is demonstrated effect of fractional orders in the
velocity control of a servo system.

Optimal tuning of classical PID controller parameters
is done in some paperbut with proposed fitness functions,
and classical PID cannot achieve a high-quality solution
that effectively improve the transient response of the con-
trolled system. In Devaraj and Selvabala (2009), a method is
presented based on real-coded genetic algorithm and fuzzy
logic. In Gaing (2004), Rahimian and Raahemifar (2011),
Shabib et al. (2005), Amer et al. (2008) is proposed a optimal
design method for determining the PID controller parame-
ters of the automatic voltage regulator (AVR) system using
the particle swarm optimization (PSO). Other methods such
as genetic algorithm (GA), simulated annealing (SA), bee
colony algorithm and chaotic algorithm are used for achiev-
ing high efficiency and searching global optimal solution in
problem space (Wong et al. 2009; Coelho 2007; Krohling
and Rey 2001; Gozde and Taplamacioglu 2010). Recently,
swarm intelligence, that is another optimization procedure
based on social system or the collective behaviors of simple
individuals interacting with their environment and each other,
has gained popularity. Ant colony optimization (ACO) and
particle swarm optimization (PSO) are two popular swarm
inspired methods. ACO is inspired by the behaviors of ants
and has many successful applications in discrete optimization
problems. PSO is a population-based stochastic optimization
technique that is inspired by behavior of a bird flock or a
school of fish in search of food. PSO is similar to evolution-
ary techniques such as genetic algorithm (GA), but PSO has
few advantages toward GA. Indeed, PSO only has one oper-
ator called velocity calculation, so the computation time is
decreased significantly. It does not require operators such as
crossover and mutation in evolutionary process; thus, PSO
implementation is easier than GA. In PSO, the potential solu-
tions, called particles, fly through the problem space by fol-
lowing the current optimum particles. In GAs, chromosomes
share information with each other. So, the whole population
moves like a one group toward an optimal area. In PSO, only
gBest (the best value obtained so far by any particle in the
neighborhood of that particle) spreads the information to oth-
ers. It is a one-way information sharing mechanism i.e., the
evolution only looks for the best solution. PSO has memory,
that is, the knowledge of good solutions is retained by all par-
ticles, whereas in GA, previous knowledge of the problem is
destroyed once the population is changed. Unlike GA’s, PSO
is the only algorithm that does not depend on the principle of
“survival of the fittest” (Gaing 2004). Therefore, compared
to other techniques, PSO has a well-balanced mechanism to

enhance the global and local exploration abilities and it is an
excellent optimization methodology and a simple approach
but promising for solving the engineering optimization prob-
lems.

In Zamani et al. (2009), a fractional-order controller for
AVR system is presented based on a new criterion func-
tion with eight terms. However, it is not convenient to select
appropriated weighted factors for these eight terms. An opti-
mum fractional-order PID controller is presented in Tang
et al. (2012) using chaotic ant swarm (CAS) optimization
method and the same fitness function existence in Gaing
(2004), and then high performance of proposed method in
comparison with Gaing (2004) is illustrated.

In this paper, a novel optimal practical fractional-order
controller consist of a μ-order fractional low-pass filter in
derivative by using PSO algorithm for a new nonlinear fit-
ness function is presented. High control performance of the
proposed practical PSO-FOPID controller for AVR system
is compared with other optimal FOPID/PID controllers that
are presented in Gaing (2004), Tang et al. (2012). The sys-
tem robustness using proposed practical PSO-FOPID con-
troller for model uncertainties is compared to CAS-FOPID
controller available in Tang et al. (2012).

This paper is organized as follows. Section 2 discusses a
brief review to fractional calculus especially fractional-order
PID controller. In Sect. 3, brief introduction to particle swarm
optimization algorithm is given. Also, the purposed fitness
function is illustrated in this section, and its application in
P I λ Dμ PSO-controller is discussed. In Sect. 4, the model of
AVR system is presented. In Sect. 5, simulation results are
presented. Section 6 is the conclusion.

2 Review on Fractional Calculus

2.1 Fractional-Order PID Controllers (FOPID)

The fractional PID controller is a generalization of the PID
controller. The transfer function of this controller is given by
the following function:

C(s) = kp + ki

sλ
+ kdsμ (1)

In practical applications, the pure derivative action is never
used, due to the “derivative kick” produced in the control
signal for a step input, and to the undesirable noise amplifi-
cation. It is usually replaced by a first-order low-pass filter.
We use a μ-order fractional low-pass filter; thus, the Laplace
transformation of the fractional PID controller can be written
as:

C(s) = kp + ki

sλ
+ kd

N

1 + N
sμ

(2)
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where s = jω is the complex frequency, kp is the propor-
tional constant, ki is the integration constant, kd is the dif-
ferentiation constant, and λ and μ are positive real numbers.
Thus, fractional power of jω is:

sα = ωα
(

cos
π

2
α + j sin

π

2
α
)

(3)

where α is a positive real number. The most popular defini-
tions of fractional derivatives or integrals in fractional calcu-
lus are Grünwald–Letnikov (GL), Riemann–Liouville (RL)
and Caputo statements. The Grünwald-Letnikov expressed
the fractional-order derivative by the following equation
(Caponetto et al. 2010)

a Dγ
t f (t) = lim

h→0
h−γ

[t−a/h]∑
j=0

(−1) j
(

γ

j

)
f (t − jh) (4)

where (−1) j
(

r
j

)
are (Dorcak 1994):

c(r)
0 = 1, c(r)

j =
(

1 − 1 + r

j

)
c(r)

j−1, j = 0, 1, 2, . . . (5)

And used for recursive computation, these are weights.
Reimann–Liouville (RL) expression for fractional-order

derivative is given by:

a Dγ
t f (t) = 1

�(n − γ )

dn

dtn

t∫

a

f (n)(τ )

(t − τ)γ−n+1 dτ (6)

where Γ (.) is Euler’s gamma function that generalizes the
factorial, and allows operator, to take noninteger values.

An another definition is the Caputo definition given by

a Dγ
t f (t) = 1

�(γ − n)

t∫

a

f (n)(τ )

(t − τ)γ−n+1 dτ (7)

More detail is available in Das (2011).

2.2 Oustaloup Approximation Algorithm

Oustaloup’s approximation method uses a band-pass filter
to approximate the fractional-order operator sλ based on
frequency-domain response (Oustaloup et al. 1996). The
approximate transfer function of a continuous fractional-
order operator sλ with Oustaloup Algorithm is as follows:

G f (s) = K
N∏

k=−N

s + ω′
k

s + ωk
, (8)

where the zeros, poles and the gain can be evaluated, respec-
tively, as:

ω′
k = ωb

(
ωh

ωb

) k+N+ 1
2 (1−γ )

2N+1

, (9)

ωk = ωb

(
ωh

ωb

) k+N+ 1
2 (1+γ )

2N+1

, (10)

K =
(

ωh

ωb

)− γ
2

N∏
k=−N

ωk

ω′
k
. (11)

In our simulation, for approximation of sλ, frequency
range is closed as: ω ∈ [ωb, ωh] and ωb = 0.001, ωh =
1000, N = 2.

3 Design of PIλ Dμ PSO-Controller

3.1 Particle Swarm Optimization (PSO)

PSO was developed in 1995 by James Kennedy (social-
psychologist) and Russell Eberhart (electrical engineer)
(Kennedy and Eberhart 1995). PSO is the only algorithm
that does not implement the survival of the fittest. It uses a
number of agents (particles) that constitute a swarm mov-
ing around in the search space looking for the best solution.
Jth particle (k j ) is treated as a point in a N -dimensional
space (k j = k j,1, k j,2, . . . , k j,N ) which adjusts its “fly-
ing” according to its own flying experience as well as the
flying experience of other particles. Each particle keeps
track of its coordinates in the solution space which are
associated with the best solution (fitness) that has achieved
so far by that particle. This value is called personal best,
Pbest.pbest j = (

pbest j,1, pbest j,2, . . . , pbest j,N

)
is previ-

ous position of the j th particle in a N -dimension space.
Another best value that is tracked by the PSO is the best
value obtained so far by any particle in the neighborhood of
that particle. This value is called gbest. The basic concept of
PSO lies in accelerating each particle toward its pbest and
the gbest locations, with a random weighted acceleration
at each time step. The modification of the particle’s posi-
tion can be mathematically modeled according the following
equations.

v
(t+1)
j,N = ω.v

(t)
j,N + c1rand1 (. . .)

(
pbest j,N − K (t)

j,N

)

+ c2rand2 (. . .)
(

gbest − K (t)
j,N

)
(12)

K (t+1)
j,N = K (t)

j,N + v
(t+1)
j,N (13)

v
(t+1)
j,N =

{
V max

N v
(t+1)
j,N > V max

N

V min
N v

(t+1)
j,N > V min

N

(14)
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Fig. 1 A real model of AVR system

where j = 1, 2, . . ., n and N = 1, 2, . . ., m, and n number of
particles in the population(population size); m dimension of
problem (number of members in a particle) that there is five;
t pointer of iterations(generations); v

(t)
j,N velocity of particle

j at iteration t , V min
N ≤ v

(t)
j,N ≤ V max

N ; ω weighting function;
c1, c2 acceleration factors; rand1 (. . .) , rand1 (. . .) uniformly
distributed random numbers between 0 and 1; K (t)

j,N Current
position of particle j at iteration t ; pbest j,N pbest position
of particle j ; gbest gbest position of swarm.

3.2 Purposed Fitness Function

We define a new fitness function as follows

Min J (kp, ki , λ, kd , μ = e−β(Ts + Tr )

+(1 − e−β)(ITSE + Mp) (15)

where Ts settling time, Tr rise time, Mpovershoot, β is
weighting factor and ITSE is integral of the time multiplied
square error criterion given by:

ITSE =
tsim∫

0

te2(t)dt (16)

where tsim is total simulation time and e(t) = Vref − VS is
the tracking error. The PID controller design method using
the integral of absolute error (IAE), or integral of square
error (ISE), or integral of time multiplied square error (ITSE)
is often employed in control system design. The IAE, ISE
performance indices are as follows:

IAE =
∞∫

0

|e(t)| dt (17)

ISE =
∞∫

0

e2(t)dt (18)

the ITSE performance indices have excellences of smaller

Fig. 2 Block diagram of AVR
system

Table 1 Components of AVR
system model with transfer
function and parameters limits

Transfer function Parameters limits

Fractional-order controller kp + ki
sλ + kd

N
1+ N

sμ
N = 100; 0 ≤ kp ≤ 3

0 ≤ ki ≤ 1; 0 ≤ kd ≤ 1

0 ≤ λ ≤ 2; 0 ≤ μ ≤ 2

Amplifier T Famplifier = Ka
1+τa s 10 ≤ Ka ≤ 40; 0.02 ≤ τa ≤ 0.1

Exciter T Fexciter = Ke
1+τes 1 ≤ Ke ≤ 10; 0.4 ≤ τe ≤ 1

Generator T Fgenerator = Kg
1+τgs 0.7 ≤ Kg ≤ 1; 1 ≤ τg ≤ 2

sensor T Fsensor = Ks
1+τs s Ks = 1; 0.001 ≤ τs ≤ 0.06

123



J Control Autom Electr Syst (2013) 24:601–611 605

Fig. 3 Terminal voltage step
response of an AVR system
without Fractional PID
controller

Fig. 4 Block diagram of an
AVR system with PSO-FOPID

Fig. 5 Terminal voltage step
response of the AVR system
controlled by optimum
PSO-FOPID controller

overshoot and oscillation than the IAE or the ISE per-
formance indices and it is the most sensitive, then ITSE
has the best selectivity. The most important parameter in
this fitness function is ITSE. Minimization of this parame-
ter forces ts, tr and Mp parameters to be optimum. In the
other word, with this fitness function ts, tr and Mp parame-
ters are optimized directly and indirectly. ITSE performance
index is calculated using the multiple-application Simpson’s
1/3 rule (Chapra and Canale 1998). Our goal is obtain-
ing the best step response, We minimize J (kp, ki , λ, kd , μ)

using PSO algorithm and obtain optimum parameters of
PIλ Dμ pso-controller. In this paper, PSO parameters is
selected as:

c1 = c2 = 2, ω = 0.729,

maxIter = 100, population size = 100 (19)

4 Modeling of AVR System

An AVR system holds the terminal voltage magnitude of
a synchronous generator at a specified level. Therefore,
the stability of the AVR system would seriously affect the
security of the power system, and design of a controller
for an AVR system is necessary to improve its stability
and transient performance. A simpler AVR system com-
prises four main components, such as amplifier, exciter,
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Table 2 The optimum
PSO-FOPID controller
parameters with different
β values

β K p Ki Kd μ λ

1 1.2623 0.5531 0.2382 1.2555 1.1827
1.5 1.2623 0.5526 0.2381 1.2559 1.1832

Table 3 Performance indices of
the AVR system without
controller and with PSO-FOPID
Controller for different β values

Controller Mp (%) Ess Tr Ts

Without 65.68 0.0900 0.2612 6.9896

PSO-FOPID (β = 1) 0.02 0 0.1604 0.2655

PSO-FOPID (β = 1.5) 0.01 0 0.1603 0.265

generator and sensor. The real model of such a system is
shown in Fig. 1. A small signal model of this system includ-
ing fractional PSO-PID controller is shown in Fig. 2, and
the limits of the parameters used in it are presented in
Table 1.

5 Simulation Results

5.1 Performance of AVR System Without Fractional
PID Controller

AVR system has a very poor performance without a Frac-
tional PID controller. Unit step response of AVR system
without controller is shown in Fig. 3. That has large over-

shoot, long settling time and oscillation. An AVR system
with PSO-FOPID is shown in Fig. 4.

5.2 Performance of AVR System with PSO-FOPID
Controller

In this section, we examine the performance of PSO-FOPID.
Terminal voltage step response of the AVR system controlled
by optimum PSO-FOPID controller is shown in Fig. 5. The
gained best controller parameters are presented in Table 2. It
can be seen from Fig. 5 that the step response of the AVR sys-
tem controlled by PSO-FOPID controller has very good per-
formance. The performance indices in the time domain of the
step responses shown in Figs. 3 and 5 are presented in Table 3.

Fig. 6 Terminal voltage step
response of AVR system
controlled by PSO-FOPID and
CAS-FOPID controllers.
a β = 1.0, b β = 1.5
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Fig. 7 Terminal voltage step
response of AVR system
controlled by PSO-FOPID,
CAS-FOPID and GA-FOPID
controllers. a β = 1.0,
b β = 1.5

Table 4 Best controller parameters and performance indices different FOPID controllers

Controller K p Ki Kd μ λ Mp(%) Ess Tr Ts

β = 1

CAS-FOPID 1.0537 0.4418 0.2510 1.1122 1.0624 0.1678 0.0014 0.2223 0.3037

GA-FOPID 1.3227 0.5398 0.2443 1.2790 1.1849 0 0.002 0.1402 0.561

PSO-FOPID 1.2623 0.5531 0.2382 1.2555 1.1827 0.02 0 0.1604 0.2657

β = 1.5

CAS-FOPID 0.9315 0.4776 0.2536 1.0838 1.0275 0.0642 0.0012 0.2305 0.3187

GA-FOPID 1.3715 0.5663 0.2395 1.2823 1.2892 0.36 0.0036 0.1444 0.4894

PSO-FOPID 1.2623 0.5526 0.2381 1.2559 1.1832 0.01 0 0.1603 0.2655

5.3 Comparison with other FOPID Controllers

In this section, we compare PSO-FOPID with other FOPID
controllers. For comparison, we consider designed fractional
controller in Tang et al. (2012) that is based on chaotic ant
swarm (CAS) algorithm (CAS-FOPID) and GA-FOPID con-
troller. The GA algorithm is implemented as in Tang et al.
(2012).

The GA algorithm is performed ten runs to obtain the
best controller parameters using the same fitness function
is given in (15). The step responses of the AVR system con-
trolled by CAS-FOPID controller, GA-FOPID controller and

PSO-FOPID controller are shown in Figs. 6 and 7. The best
controller parameters and the performance indices are shown
in Table 4. With observe Figs. 6, 7 and Table 4, we derive that
proposed PSO-FOPID controller has better performance than
the CAS-FOPID controller and GA-FOPID controller. The
convergence characteristic of the practical PSO-fractional
PID controller is shown in Fig. 8.

5.4 Comparison with other PID Controllers

In this section, we compare PSO-FOPID with other PID
controllers. For comparison, we consider designed optimum
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Fig. 8 The convergence characteristic of the PSO-fractional PID con-
troller, β = 1.0

controllers in Tang et al. (2012), Gaing (2004). In Gaing
(2004) is designed a controller based on PSO algorithm
(PSO-PID) and in Tang et al. (2012) is designed a controller
based on chaotic ant swarm (CAS) algorithm
(CAS-PID).

The step responses of theAVR system controlled by PSO-
PID controller, CAS-PID controller and PSO-FOPID con-
troller are shown in Fig. 9. The best controller parameters
and the performance indices are expressed in Table 5. With
observe Fig. 9, and Table 5, we derive that proposed PSO-
FOPID controller has better performance than the CAS-PID
controller and PSO-PID controller. It shows high perfor-
mance of fractional-order PID controllers in comparison with
integer order PID controllers.

5.5 Robustness of PSO-FOPID Controller

To demonstrate robustness of the proposed PSO-FOPID con-
troller strategy against parametric uncertainties, simulations
are carried out for three number of operating conditions with
previously designed FOPID is considered as follows:
Case 1: Kg = 0.7, τg = 1.6 :

In Fig. 10 we compare proposed PSO-FOPID controller in
Table 2 (for β = 1) with CAS-FOPID controller is designed
in Tang et al. (2012). With observe Fig. 10, we derive that
proposed PSO-FOPID controller has better performance than
CAS-FOPID controller in Tang et al. (2012) with generator
uncertainty.
Case 2: Ke = 1.2, τe = 0.5:

Fig. 9 Terminal voltage step
response of AVR system
controlled by PSO-FOPID,
CAS-PID and PSO-PID
controllers. a β = 1.0, b β = 1.5
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Table 5 Best controller parameters and performance indices different PID controllers

Controller K p Ki Kd μ λ Mp (%) Ess Tr Ts

β = 1

PSO-PID 0.657 0.5389 0.2458 – – 1.16 0 0.2767 0.4025

CAS-PID 0.6746 0.6009 0.2618 – – 1.7678 5.6296e−08 0.2425 0.3550

PSO-FOPID 1.2623 0.5531 0.2382 1.2555 1.1827 0.02 0 0.1604 0.2655

β = 1.5

PSO-PID 0.6254 0.4577 0.2187 – – 0.4400 3.6139e−08 0.2997 0.4156

CAS-PID 0.6202 0.4531 0.2152 – – 0.4000 2.6883e−08 0.3156 0.4212

PSO-FOPID 1.2623 0.5526 0.2381 1.2559 1.1832 0.01 0 0.1603 0.2657

Fig. 10 Terminal voltage step
response of AVR system
controlled by PSO-FOPID
and CAS-FOPID controllers
β = 1.0 with case 1

Fig. 11 Terminal voltage step
response of AVR system
controlled by PSO-FOPID and
CAS-FOPID controllers β = 1
with case 2

Fig. 12 Terminal voltage step
response of AVR system
controlled by PSO-FOPID and
CAS-FOPID controllers
β = 1.0 with case 3
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In Fig. 11 we compare proposed PSO-FOPID controller in
Table 2 (for β = 1) with CAS-FOPID controller is designed
in Tang et al. (2012). With observe Fig. 11, we derive that
proposed PSO-FOPID controller has better performance than
CAS-FOPID controller in Tang et al. (2012) with exciter
uncertainty.
Case 3:Ka = 14, τa = 0.07:

In Fig. 12 we compare proposed PSO-FOPID controller in
Table 2 (for β = 1) with CAS-FOPID controller is designed
in Tang et al. (2012). With observe Fig. 12, we derive that
proposed PSO-FOPID controller has better performance than
CAS-FOPID controller in Tang et al. (2012) with amplifier
uncertainty.

6 Conclusions

In this paper, a novel optimal practical fractional-order con-
troller using PSO algorithm is presented that has a μ-order
fractional low-pass filter in derivative to prevent the “deriv-
ative kick” produced in the control signal for a step input,
and the undesirable noise amplification. The parameters of
optimal practical fractional order controller are determined
through optimizing a new nonlinear function consisting of
overshoot, integral of time multiplied square error (ITSE),
raising time and settling time. These measures are calculated
from the step response of AVR system. The simulation results
illustrate that the proposed practical PSO-FOPID controller
for AVR system has best control performance than other opti-
mal FOPID/PID controllers that so far is presented, and also,
for model uncertainties, the practical PSO-FOPID controller
is more robust. The proposed technique may apply as an effi-
cient method to design robust optimal practical fractional-
order controllers for practical systems to reject external dis-
turbances.
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