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Abstract This paper presents new results concerning the
problem of static output feedback H∞ and H2 control design
for continuous-time Takagi–Sugeno (T–S) fuzzy systems. A
fuzzy line integral Lyapunov function with arbitrary polyno-
mial dependence on the premise variables is used to certify
closed-loop stability with a bound to the H∞ and H2 norms,
allowing the membership functions to vary arbitrarily (i.e., no
bounds on the time-derivative of the membership functions
are assumed). The static output feedback fuzzy controller
is obtained through a two-step procedure: first, a fuzzy state
feedback control gain is determined by means of linear matrix
inequalities (LMIs). Then, the state feedback gain matrices
are used in the LMI conditions of the second step that, if
satisfied, provide the fuzzy static output feedback control
law. The proposed approach also allows the output feedback
gains to have independent and arbitrary polynomial depen-
dence on some specific premise variables, selected by the
designer, with great advantages for practical applications.
The efficiency of the proposed strategy is demonstrated by
means of numerical examples and time domain simulations.
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1 Introduction

The problem of control design for dynamical systems
described by Takagi–Sugeno (T–S) fuzzy systems (Takagi
and Sugeno 1985) has been largely investigated in the last
decades with the use of the Lyapunov theory combined with
linear matrix inequalities (LMIs). The initial methods were
based on common quadratic Lyapunov functions that yield, in
general, conservative results (Tanaka and Wang 2001). Con-
trol design approaches based on constant Lyapunov functions
can be found in Teixeira and Żak (1999), Teixeira et al. (2000,
2003) and Andrea et al. (2008). Moreover, convergent LMI
relaxations for quadratic stability and H∞ state feedback
control are presented in Sala and Ariño (2007) and Montag-
ner et al. (2009, 2010). In Arrifano et al. (2006) and Tognetti
and Oliveira (2010), a class of piecewise quadratic Lyapunov
functions is considered.

As an alternative, fuzzy Lyapunov functions (Tanaka et al.
2003), that can be viewed as a blend of multiple quadratic on
the state functions, have been used to provide less conserva-
tive results. The main drawback of handling fuzzy Lyapunov
functions is the presence of the time-derivative of the mem-
bership functions in the stability conditions (Tanaka et al.
2003; Mozelli et al. 2009b; Mozelli and Palhares 2011).
To circumvent this difficulty, one usual strategy is to con-
sider upper bounds on the time-derivatives in the condi-
tions (Tanaka et al. 2001). However, these bounds are hard
to obtain in the control design problem. Another approach,
based on line-integral Lyapunov functions (Rhee and Won
2006), avoids the presence of the time-derivative of the
membership functions in the stability conditions and, con-
sequently, allows arbitrary variations of the membership
functions. In Rhee and Won (2006), this strategy pro-
vides sufficient LMI conditions for stability analysis but
the structure imposed to the Lyapunov matrix, to assure the
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line-integral function to be a candidate Lyapunov function,
leads to bilinear matrix inequalities (BMIs) in the synthesis
conditions. In Mozelli et al. (2009a, 2010) LMI conditions
are proposed to design state feedback controllers with the
use of slack variables. It is worth to say that line-integral
Lyapunov functions can be used for stability analysis of T–S
fuzzy systems only if the premise variables are the states of
the system, but this can represent a large class of T–S models
obtained from nonlinear systems (Tanaka and Wang 2001).
Moreover, to implement the parallel distributed compensa-
tion (PDC) for the control law, all premise variables have to be
measured in real time (Wang et al. 1995). Therefore, the cur-
rent approaches based on line-integral Lyapunov functions
cannot be direct applied to the output feedback problem.

A strategy developed in Tognetti et al. (2011d) for the state
feedback control of T–S fuzzy systems allows the selective
use of only the available premise variables for the control law.
In this case, the designer could also decide what bounds of
the time-derivative of the membership functions to take into
account in the LMIs. As it will be shown later, this method can
be adapted to cope with the output feedback problem. It is also
worth to mention some recent methods that address the state
feedback control design problem in terms of local stability
for continuous (Klug and Castelan 2011; Guerra et al. 2012)
and discrete-time (Klug et al. 2011) T–S fuzzy systems. This
issue is relevant in practice because, in general, a T–S fuzzy
model represents a nonlinear system to be controlled only
locally.

In the context of static output feedback synthesis, due to
the non-convex nature of this problem, only a few results can
be found in the literature of T–S fuzzy system. Static output
feedback controllers are simpler to implement in practical
applications when compared to the dynamic and observed
based ones (Guerra et al. 2006; Mansouri et al. 2009; Nguang
and Shi 2006; Guelton et al. 2009; Klug et al. 2011; Tognetti
et al. 2012) since there is no differential equations to be solved
in real time (Syrmos et al. 1997). On the other hand, the
design of static output feedback controllers is difficult and
some conservatism is usually introduced in the problem. See
Huang and Nguang (2007); Lee and Kim (2009) and Bouarar
et al. (2009) for output feedback control design in the T–S
literature.

The main contribution of this paper is to propose new LMI
conditions to design H∞ and H2 static output feedback con-
trollers for continuous-time T–S fuzzy systems. To obtain less
conservative conditions and allow arbitrary variation of the
membership functions, line-integral fuzzy Lyapunov func-
tions are used in a two-step design procedure. The strategy
in two steps follows general lines presented in Peaucelle and
Arzelier (2001); Arzelier et al. (2003, 2010) and Mehdi et
al. (2004). First, a state feedback controller is designed and
used as an input parameter in the second step, that provides
an output feedback controller and an upper bound for the

H∞ and H2 norms of the closed-loop system. All conditions
are expressed in terms of LMIs and the Lyapunov matrix and
decision variables of the problem are homogeneous poly-
nomial matrices of arbitrary and independent degrees. An
interesting feature is that the first stage controller (used only
as an intermediate step) is not required to stabilize, a pri-
ori, the closed-loop T–S fuzzy system. This property can be
used to generate a large class of state feedback gains for the
second stage. The membership functions are represented by
the Cartesian product of simplexes Baranyi (2004); Tognetti
et al. (2010a,b), called multi-simplex, allowing a more gen-
eral structure for the Lyapunov matrix and slack variables
(polynomials with arbitrary degree dependence on the mem-
bership functions in each simplex) when compared to Rhee
and Won (2006) and Mozelli et al. (2009a, 2010). As a
by-product, less conservative conditions for synthesis of state
feedback controllers are obtained for this type of line-integral
Lyapunov functions. Moreover, like in Tognetti et al. (2011d),
this strategy allows the selective use of the premise variables,
an important aspect in the context of output feedback prob-
lems for T–S fuzzy systems, since the premise variables usu-
ally are the states of the system. This paper extends the results
presented in Tognetti et al. (2011c) and Tognetti et al. (2011b)
in the following aspects: the presence of noise is consid-
ered in the measured output (very common in practical cases
but almost unexplored in the literature); control design with
H2 performance; more relaxed first stage condition; addi-
tional remarks about the path-independent Lyapunov func-
tion, detailing the structures of the decision variables in the
LMIs, implementation issues and how to retrieve a state feed-
back controller from the second stage condition. Also, an
iterative procedure is proposed to enhance the quality of the
controller in terms of the H∞ and H2 attenuation bounds.
Numerical examples and simulations illustrate the effective-
ness of the proposed approach.

2 Preliminaries

Consider a class of continuous-time T–S fuzzy system which
can be described by the following �th fuzzy rule

R� : If x1(t) is Mα�1
1 and . . . and xn(t) is Mα�n

n

Then

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = Aα�1···α�n x(t)+ Bα�1···α�n u(t)
+Eα�1···α�nw(t)

z(t) = Cα�1···α�n x(t)+ Dα�1···α�n u(t)
+Fα�1···α�nw(t)

y(t) = Cyα�1···α�n x(t)+ Fyα�1···α�nw(t)

(1)

for � = 1, . . . , N , where x(t) ∈ Rn is the state vec-
tor, y(t) ∈ Rp is the measured output, w(t) ∈ Ro is
the disturbance input, u(t) ∈ Rm is the control input,
z(t) ∈ Rq is the controlled output used for the H∞ and
H2 criteria. The linear subsystem matrices are Aα�1···α�n ∈
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Rn×n, Bα�1···α�n ∈ Rn×m, Eα�1···α�n ∈ Rn×o, Cα�1···α�n ∈
Rq×n, Dα�1···α�n ∈ Rq×m, Fα�1···α�n ∈ Rq×o, Cyα�1···α�n ∈
Rp×n and Fyα�1···α�n ∈ Rp×o. The premise variables are the

states and M
α�j
j denotes an x j -based fuzzy set used for the

�th fuzzy rule, where α�j specifies which x j -based fuzzy set
is used in the �th fuzzy rule. N is total number of fuzzy rules
and r j the number of x j -based fuzzy sets. For instance, if
α11 = α21 = k then it means that in rules 1 and 2 the same
x1(t)-based fuzzy set Mk

1 is used.
Let ϑ

α�j
j (x j (t)) be the membership function of M

α�j
j . The

normalized membership function for eachα�j = 1, . . . , r j =
i , is

μ j i
(
x j (t)

) = ϑ i
j

(
x j (t)

)

∑r j
i=1 ϑ

i
j

(
x j (t)

) ,
j = 1, . . . , n,
i = 1, . . . , r j ,

0 ≤ μ j i
(
x j (t)

) ≤ 1,

r j∑

i=1

μ j i
(
x j (t)

) = 1.

Each μ j = (μ j1, . . . , μ jr j ), j = 1, . . . , n, belongs to
the unit simplex

Ur j =
{

(λ1, . . . , λr j ) ∈ Rr j :
r j∑

i=1

λi = 1, λi ≥ 0

}

.

In the adopted modeling technique each membership func-
tion μi (xi (t)) depends on only one premise variable. This
yields great flexibility over the techniques presented in Rhee
and Won (2006) and Mozelli et al. (2009a, 2010) as will be
demonstrated in the following sections. The definition of the
set where all membership functions lie, called multi-simplex,
is the same as in Tognetti et al. (2011d).

Using the multi-simplex structure, the T–S fuzzy system
(1) can be rewritten as following1

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = A(μ)x(t)+ B(μ)u(t)+ E(μ)w(t)

z(t) = C(μ)x(t)+ D(μ)u(t)+ F(μ)w(t)

y(t) = Cy(μ)x(t)+ Fy(μ)w(t)

(2)

where

(
A, B, E,C, D, F,Cy, Fy

)
(μ) =

r1∑

i1=1

· · ·
rn∑

in=1

μ1i1 (x1) · · ·μnin (xn)
(

Ai1···in , Bi1···in ,

Ei1···in ,Ci1···in , Di1···in , Fi1···in ,Cyi1···in , Fyi1···in

)

μ = (μ1, μ2, . . . , μn) ∈ U = Ur1 × Ur2 × · · · × Urn . (3)

Polynomial combinations of arbitrary degree of the mem-
bership functions are modeled through the multi-simplex

1 For simplicity of notation, the dependence ofμ(x(t)) on x(t) is omit-
ted hereafter.

structure, with great advantages to the output feedback prob-
lem. Hence, the non-PDC output feedback control law given
by

u(t) = L(μ)y(t), μ ∈ U (4)

may assume independent degrees in each simplex. The
closed-loop T–S fuzzy system is given as
{

ẋ(t) = Acl(μ)x(t)+ Ecl(μ)w(t)
z(t) = Ccl(μ)x(t)+ Fcl(μ)w(t),

(5)

with

Acl(μ) � A(μ)+ B(μ)L(μ)Cy(μ)

Ccl(μ) � C(μ)+ D(μ)L(μ)Cy(μ)

Ecl(μ) � E(μ)+ B(μ)L(μ)Fy(μ)

Fcl(μ) � F(μ)+ D(μ)L(μ)Fy(μ) (6)

for all μ ∈ U .
In general, to represent a nonlinear systems through linear

T–S fuzzy models, the premise variables are the states of the
system. However, in the output feedback problem the states of
the system may not be available for measurement. Therefore,
some premise variables cannot be used by the control law.
The present strategy allows the designer to select only the
available premise variables for control design, circumventing
the main difficulty in the output feedback control of T–S fuzzy
systems.

To cope with arbitrarily fast variations of the premise vari-
ables, a fuzzy line-integral Lyapunov function (Rhee and
Won 2006) is used for system (2),

V (x) = 2
∫

ρ(0,x)
f (ψ) · dψ (7)

where ρ(0, x) is a path from the origin to the present state,
(·) stands for the inner product of vectors, ψ is a vector for
the integral and dψ is an infinitesimal displacement vector.
The fuzzy vector f (x) is parameterized as

f (x) = Pg(μ)x, (8)

Pg(μ) �

⎡

⎢
⎢
⎢
⎣

d11g1
(μ1) p12 · · · p1n

p12 d22g2
(μ2) · · · p2n

...
...

. . .
...

p1n p2n · · · dnngn
(μn)

⎤

⎥
⎥
⎥
⎦
. (9)

The indexes g = (g1, g2, · · · , gn) denote the degrees of
the polynomial membership functions on μ1, μ2, . . . , μn

of Pg(μ). The degree gi = 0 stands for a constant element,
when xi is not a premise variable for the T–S model. Note
that the off diagonal elements are constants and the structure
(9), that allows polynomials of degree gi for each diagonal
element diigi

(μi ), generalizes the ones used in Rhee and Won
(2006) and Mozelli et al. (2009a, 2010) that consider only
affine dependence (gi = 1, i = 1, . . . , n).
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Remark 1 To be a Lyapunov function candidate, V (x) has
to satisfy the following conditions (Khalil 2002): (i) con-
tinuous differentiability; (ii) positive definiteness; (iii) radial
unboundedness. Condition (i) can be demonstrated follow-
ing the lines given in Rhee and Won (2006). To assure that
both (ii) and (iii) hold, V (x) given by (7) must be path-
independent.2 This is guaranteed through the structure given
by (9), that verifies

∂ fi (x)

∂x j
= ∂ f j (x)

∂xi
, i �= j = 1, . . . , n. (10)

In fact, condition (10) above holds because f (x) =
[ f1(x), . . . , fn(x)]′ is defined as

fi (x) = diigi
(μi (xi )) xi +

n∑

k �=i

pik xk, i = 1, . . . , n,

and the partial time-derivative of fi (x) with respect to the
variable x j , for j �= i , is

∂ fi (x)

∂x j
= ∂diigi

(μi (xi ))

∂x j
xi + pi j = pi j , i = 1, . . . , n,

Similarly,

∂ f j (x)

∂xi
= p ji

and, since pi j = p ji , f (x) satisfies the condition in (10).

Before proceeding to the main results, the Elimination
Lemma is presented.

Lemma 1 (Elimination Lemma (Skelton et al. 1998)) Let
U ∈ Rn×m, V ∈ Rk×m and 	 = 	′ ∈ Rn×n be given
matrices. The following conditions are equivalents:

(i) There exist a matrix X ∈ Rm×k that satisfies

	+ VXU + (VXU)′ < 0

(ii) Both conditions

Nv	N ′
v < 0 or VV ′ > 0

N ′
u	Nu < 0 or U ′U > 0

must be verified, where Nv and N ′
u are respectively the

orthogonal complement of V and U ′, that is,

NvV = 0, N ′
uU ′ = 0.

The definitions of the H∞ and H2 performance criteria
used in the paper are given below.

2 Observe that condition (iii) in Remark 1 always holds in T–S fuzzy
systems that, in general, represent nonlinear systems exactly in a subset
of R

n (i.e., the states are constrained).

Definition 1 Suppose that the closed-loop continuous-time
T–S fuzzy system (5) is exponentially stable. Then, its H∞
performance is defined by (see Green and Limebeer 1995)

γ � sup
‖w(t)‖2 �=0

‖z(t)‖2

‖w(t)‖2

with w(t) ∈ L2[0,∞) and z(t) ∈ L2[0,∞), where
L2[0,∞) denotes the space of square integrable continuous-
time signals over the interval [0,∞).

An H∞ guaranteed cost γ can be characterized in terms
of LMIs by the continuous-time version of the bounded
real lemma for time-varying systems, that can be found, for
instance, in Boyd et al. (1994).

Definition 2 Suppose that the continuous-time T–S fuzzy
system (5), with Fcl(μ) = 0, is exponentially stable. Then,
its H2 performance is defined by (see Takaba 1998)

η2 � lim
T →∞ sup E

{
1

T

T∑

t=0

z(t)′z(t)
}

where the system input w(t) is a zero-mean white noise
Gaussian process with identity covariance matrix.

LMI conditions relating the H2 performance bound η with
controllability or observability Gramians can be found in
Boyd et al. (1994). See also Stoorvogel (1993).

3 Main Results

The following theorem provides less conservative results to
the synthesis of stabilizing state feedback controllers associ-
ated to the control law u(t) = Ks(μ)x(t) for the T–S fuzzy
system (2) by means of the fuzzy line-integral Lyapunov
function (7). Hereafter, both the Lyapunov matrix and the
slack variables of the problem that depend on μ are rep-
resented as homogeneous polynomial matrices of arbitrary
degrees3 in the multi-simplex, being denoted, for instance,
as Zs(μ) (degree s).

Theorem 1 Let β > 0 a given scalar. If there exist a sym-
metric positive definite matrix Wg(μ) ∈ Rn×n, as in (9),
a matrix G ∈ Rn×n with appropriate strucuture and a
matrix Zs(μ) ∈ Rm×n, such that the following parameter-
dependent LMIs are verified4 for all μ ∈ U

(μ) �
[

�(μ)+�(μ)′ �

Wg(μ)− G ′ + β�(μ) −β(G + G ′)

]

< 0, (11)

3 The index a of a matrix Ma(μ) stands for the degree of the polyno-
mial representation of the matrix. The degree of the system matrices in
(3) (degree one) is omitted for simplicity. For more details about the
notation, see Sect. 4.
4 The symbol � stands for symmetric blocks.
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where

�(μ) = A(μ)G + B(μ)Zs(μ) (12)

then

Ks(μ) = Zs(μ)G
−1 (13)

is a polynomial stabilizing state feedback control gain of
degree s for the T–S fuzzy system (2).

Proof Pre and post-multiplying(μ) by T e T ′, respectively,
with T = diag((G ′)−1, (G ′)−1), yields

Y(μ) �
[

M A(μ)+ A(μ)′M ′ �

Pg(μ)− M ′ + βM A(μ) −β(M + M ′)

]

(14)

where M � (G ′)−1, Zs(μ) � Ks(μ)G and

A(μ) � A(μ)+ B(μ)Ks(μ), (15)

Pg(μ) � (G ′)−1Wg(μ)G
−1. (16)

Pre- and post-multiplying Y(μ) by [I A(μ)′] and post-
multiplying by its transpose to obtain A(μ)′ Pg(μ)+ Pg(μ)

A(μ) < 0 and, since Pg(μ) has the structure (9), one has
V̇ (x) < 0. 
�
Remark 2 To obtain the structure (9) in Pg(μ) under the
transformation (16), one has to impose the same structure
to Wg(μ) and, moreover, G must also have a special struc-
ture. Therefore, the parameter-dependent diagonal terms in
Pg(μ) are placed in the same position in Wg(μ). Moreover,
from (16), for each entry diigi

(μi ) in the main diagonal of
Pg(μ) that is a function of μ, one has to impose zero to
all elements of the corresponding i-th row of G−1, except
the entry in the main diagonal. This is accomplished5 by
imposing zeros at the same position for G. As an example,
consider a fourth order T–S model where x1(t) and x3(t) are
the premise variables. Then g = (g1, 0, g3, 0) and matrices
Wg(μ) and G must have the following structures

Wg(μ) =

⎡

⎢
⎢
⎣

d11g1
(μ1) p12 p13 p14

p12 d22 p23 p24

p13 p23 d33g3
(μ3) p34

p14 p24 p34 d44

⎤

⎥
⎥
⎦

5 Note that G−1 is computed in terms of the adjoint matrix of G.

and

G =

⎡

⎢
⎢
⎣

g11 0 0 0
g21 g22 g23 g24

0 0 g33 0
g41 g42 g43 g44

⎤

⎥
⎥
⎦ .

In order to generate a wider class of state feedback con-
trollers as input parameters for Theorem 2, in the sense of
improving the chances of finding stabilizing static output
feedback controllers with H∞ and H2 performance at the
second stage, the constraints on matrices Wg(μ) and G can
be dropped, as presented in the following corollary. Although
the corollary does not guarantee the stability of the closed-
loop T–S system for the obtained state feedback controller, if
the conditions of Theorem 2 and 3 hold, both the state feed-
back and the output controllers ensure the stability of the T–S
fuzzy system (2) and H∞ and H2 attenuation bounds for the
closed-loop system, respectively.

Corollary 1 Let β > 0 be a given scalar. If there exist a
symmetric positive definite matrix Wg(μ) ∈ Rn×n, a matrix
G ∈ Rn×n and a matrix Zs(μ) ∈ Rm×n such that, for all
μ ∈ U , the LMIs (11) are verified, then Ks(μ) given by (13)
is a state feedback controller for the T–S fuzzy system (2),
that guarantees the closed-loop T–S system dynamic matrix,
for fixed values of the premise variables, to be Hurwitz, i.e.,
to have eigenvalues with negative real parts for all μ ∈ U .

Note that, for time-varying systems, the fact that the
closed-loop dynamic matrix is Hurwitz for all μ ∈ U does
not imply stability. Therefore, there is no guarantee of sta-
bilizing properties for the state feedback controller obtained
from Corollary 1 for the closed T–S fuzzy system. On the
other hand, the next theorem can provide a stabilizing static
output feedback controller with a guaranteed H∞ attenuation
bound using, as an input, the gain provided by Theorem 1 or
Corollary 1.

Theorem 2 Let Ks(μ) ∈ Rm×n be a given polynomial
matrix. If there exist a symmetric positive definite matrix
Pg(μ), with structure (9), matrices Sq(μ), Gq(μ), Qq(μ),

Hv(μ) and Jv(μ) with appropriate dimensions, and a scalar
γ > 0 such that condition (17) (below) holds for all μ ∈ U ,

⎡

⎢
⎢
⎢
⎢
⎣

A(μ)′Sq (μ)
′+Sq (μ)A(μ) � � � �

Pg(μ)−Sq (μ)
′+Gq (μ)A(μ) −Gq (μ)−Gq (μ)

′ � � �

E(μ)′Sq (μ)
′ E(μ)′Gq (μ)

′ −γ 2 I � �

Qq (μ)
′(C(μ)+D(μ)Ks(μ)) 0 Qq (μ)

′F(μ) I −Qq (μ)− Qq (μ)
′ �

B(μ)′Sq (μ)
′+ Jv(μ)Cy(μ)−Hv(μ)Ks(μ) B(μ)′Gq (μ)

′ Jv(μ)Fy(μ) D(μ)′Qq (μ) −Hv(μ)−Hv(μ)′

⎤

⎥
⎥
⎥
⎥
⎦
< 0 (17)
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with A(μ) given by (15), then

L(μ) = Hv(μ)
−1 Jv(μ) (18)

is a stabilizing static output feedback fuzzy controller for the
T–S fuzzy system (2) with H∞ attenuation bound given by γ .

Proof The LMI (17) can be rewritten as the condition (i) of
Lemma 1, that is,

�(μ) = 	+ VXU + (VXU)′ < 0,

with X = H(μ) and

U = [Y (μ) 0 Y (μ) 0 −I
]
,

V ′ = [0 0 0 0 I
]
,

where

Y (μ) = Hv(μ)
−1 Jv(μ)Cy(μ)− Ks(μ) (19)

Y (μ) = Hv(μ)
−1 Jv(μ)Fy(μ) (20)

and

	 =

⎡

⎢
⎢
⎢
⎢
⎣

A(μ)′Sq(μ)
′ + Sq(μ)A(μ) �

Pg(μ)− Sq(μ)
′ + Gq(μ)A(μ) −Gq(μ)− Gq(μ)

′
E(μ)′Sq(μ)

′ E(μ)′Gq(μ)
′

Qq(μ)
′C(μ) 0

B(μ)′Sq(μ)
′ B(μ)′Gq(μ)

′

� � �

� � �

−γ 2 I � �

Qq(μ)
′F(μ) I − Qq(μ)− Qq(μ)

′ �
0 D(μ)′Qq(μ) 0

⎤

⎥
⎥
⎥
⎥
⎦

with A(μ) as in (15) and

C(μ) = C(μ)+ D(μ)Ks(μ). (21)

Defining Nv and Nv as

Nv =
[

I 0 0 0 0
0 I 0 0 0

]

, Nu =

⎡

⎢
⎢
⎢
⎢
⎣

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

Y (μ) 0 Y (μ) 0

⎤

⎥
⎥
⎥
⎥
⎦
,

such that NvV = 0 and N ′
uU ′ = 0, the inequalities of con-

dition (ii) of Lemma 1 yield

Nv	N ′
v =

[
A(μ)′Sq(μ)

′ + Sq(μ)A(μ) �

Pg(μ)− Sq(μ)
′ + Gq(μ)A(μ) −Gq(μ)− Gq(μ)

′
]

< 0

(22)

and
⎡

⎢
⎢
⎣

Sq(μ)Acl(μ)+ Acl(μ)
′Sq(μ)

′ �(μ)
� −Gq(μ)− Gq(μ)

′
� �

� �

Sq(μ)Ecl(μ) Ccl(μ)
′Qq(μ)

Gq(μ)Ecl(μ) 0
−γ 2 I Fcl(μ)

′Qq(μ)

� −Qq(μ)
′Qq(μ)

⎤

⎥
⎥
⎦ ≤ N ′

u	Nu < 0 (23)

with

�(μ) � Pg(μ)− Sq(μ)+ Acl(μ)
′Gq(μ)

′ (24)

and Acl(μ), Ccl(μ), Ecl(μ) and Fcl(μ) given by (6). Note
that

(I − Qq(μ))
′(I − Qq(μ)) ≥ 0 ⇒

−Qq(μ)
′Qq(μ) ≤ I − Qq(μ)− Qq(μ)

′. (25)

The LMI (22) is a stability condition for A(μ)+ B(μ)Ks(μ),
ensuring that Ks(μ) is a stabilizing controller for the T–S
system (2).

The multiplication of (23) on the right by T3 and on the
left by T ′

3, with

T3 =

⎡

⎢
⎢
⎣

I 0 0
Acl(μ) Ecl(μ) 0

0 I 0
0 0 Qq(μ)

−1

⎤

⎥
⎥
⎦ ,

yields

⎡

⎣
Acl(μ)

′ Pg(μ)+ Pg(μ)Acl(μ) � �

Ecl(μ)
′ Pg(μ) −γ 2 I �

Ccl(μ) Fcl(μ) −I

⎤

⎦ < 0,

that is, the bounded real lemma (Boyd et al. 1994) with Pg(μ)

as in (9), implying that V̇ (x)+ y′y − γ 2w′w < 0. Thus, the
static output feedback controller given in (18) stabilizes the
T–S fuzzy system (2) and provides an H∞ attenuation bound
given by γ . 
�

The next theorem provides sufficient conditions for the
existence of a static output feedback controller with a guar-
anteed H2 attenuation bound. In H2 control, F(μ) =
0 and Fy(μ) = 0 are considered in the T–S fuzzy
system (2).

Theorem 3 Let Ks(μ) ∈ Rm×n be a given polynomial
matrix. If there exist a symmetric positive definite matrix
Pg(μ), with structure (9), matrices Xq(μ)= Xq(μ)

′, Sq(μ),

Gq(μ), Qq(μ), Hv(μ) and Jv(μ) with appropriate dimen-
sions, and a scalar η > 0 such that the conditions

min
η

T r(Xq(μ)) < η2 (26)

E(μ)′ Pg(μ)E(μ)− Xq(μ) < 0 (27)

and condition (28) (top of next page) hold for all μ ∈ U ,
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⎡

⎢
⎢
⎣

A(μ)′Sq(μ)
′ + Sq(μ)A(μ) � � �

Pg(μ)− Sq(μ)
′ + Gq(μ)A(μ) −Gq(μ)− Gq(μ)

′ � �

Qq(μ)
′(C(μ)+ D(μ)Ks(μ)) 0 I − Qq(μ)− Qq(μ)

′ �

B(μ)′Sq(μ)
′ + Jv(μ)Cy(μ)− Hv(μ)Ks(μ) B(μ)′Gq(μ)

′ D(μ)′Qq(μ) −Hv(μ)− Hv(μ)′

⎤

⎥
⎥
⎦ < 0 (28)

with A(μ) given by (15), then (18) is a stabilizing static
output feedback fuzzy controller for the T–S fuzzy system (2),
assuring an H2 attenuation bound given by η.

Proof Following the same steps as in the proof of Theorem 2,
LMI (28) can be rewritten as condition (i) of Lemma 1, that
is,

�(μ) = 	+ VXU + (VXU)′ < 0,

with X = H(μ) and

U = [Y (μ) 0 0 −I
]
,

V ′ = [0 0 0 I
]
,

where Y (μ) as in (19) and

	 =

⎡

⎢
⎢
⎣

A(μ)′Sq(μ)
′ + Sq(μ)A(μ) �

Pg(μ)− Sq(μ)
′ + Gq(μ)A(μ) −Gq(μ)− Gq(μ)

′
Qq(μ)

′C(μ) 0
B(μ)′Sq(μ)

′ B(μ)′Gq(μ)
′

� �

� �

I − Qq(μ)− Qq(μ)
′ �

D(μ)′Qq(μ) 0

⎤

⎥
⎥
⎦

with A(μ) as in (15) and C(μ) as in (21).
Defining Nv and Nv as

Nv =
[

I 0 0 0
0 I 0 0

]

, Nu =

⎡

⎢
⎢
⎣

I 0 0
0 I 0
0 0 I

Y (μ) 0 0

⎤

⎥
⎥
⎦ ,

such that NvV = 0 and N ′
uU ′ = 0, the inequalities of con-

dition (ii) of Lemma 1 yield (22) and
⎡

⎣
Sq(μ)Acl(μ)+ Acl(μ)

′Sq(μ)
′ �(μ)

� −Gq(μ)− Gq(μ)
′

� �

Ccl(μ)
′Qq(μ)

0
−Qq(μ)

′Qq(μ)

⎤

⎦ ≤ N ′
u	Nu < 0, (29)

with �(μ) as in (24), and Acl(μ), Ccl(μ), Ecl(μ) and
Fcl(μ) given by (6), also considering (25).

The multiplication of (29) on the right by T3 and on the
left by T ′

3, with

T3 =
⎡

⎣
I 0

Acl(μ) 0
0 Qq(μ)

−1

⎤

⎦ ,

yields
[

Acl(μ)
′ Pg(μ)+ Pg(μ)Acl(μ) Ccl(μ)

′
Ccl(μ) −I

]

< 0

which, by Schur complement (Boyd et al. 1994), is equivalent
to

Acl(μ)
′ Pg(μ)+ Pg(μ)Acl(μ)+ Ccl(μ)

′Ccl(μ) < 0. (30)

Therefore, LMIs (26), (27) and (30) are well-known condi-
tions (Boyd et al. 1994) that provide an H2 attenuation bound
given by η for the closed-loop system (5) with a static output
feedback gain given by (18). 
�

In the conditions presented in Theorems 1, 2 and 3 and
Corollary 1, the matrices that compose the control law are
dissociated from the Lyapunov matrix. Therefore, structural
constraints can be imposed independently. Moreover, any
state feedback gain could be used as input data in the second
stage conditions, even with more complex structures than
(13). In the conditions of the first step, the scalarβ can assume
any positive value, constituting an extra degree of freedom
to be explored. A heuristic search can be done or a given set
of values for β can be tested with the aim of obtaining the
smallest values for the H∞ and H2 attenuation bounds in the
second step.

Remark 3 Choosing Cy(μ) = I , Theorems 2 and 3 can
also provide stabilizing state feedback controllers for the
T–S fuzzy system (2) with H∞ and H2 attenuation bounds,
respectively. This strategy has been explored in Tognetti et al.
(2011a), where less conservative results than Rhee and Won
(2006), and Mozelli et al. (2009a, 2010) are presented.

4 Implementation Issues and LMI Relaxations

The proposed LMIs depend on the membership functions,
represented in terms of multi-simplexes, and cannot be
treated numerically since they are of infinite dimension. To
construct numerical tractable conditions it is necessary to
represent the homogeneous polynomials in terms of their
coefficients and to homogenize the polynomial matrices in
the LMIs to the same degree in each simplex.

In the following, some notations of multi-simplex poly-
nomial matrices, necessary to construct numerical tractable
conditions, are introduced. For more details, see Tognetti
et al. (2011d).
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For n ∈ N, r ∈ Nn and g = (g1, . . . , gn) ∈ Nn , let
Kri (gi ), i = 1, . . . , n, be the set of ri -tuples obtained from
all possible combinations of ri nonnegative integers with sum
gi and Kr (g) defined as the Cartesian product of Kr (gi ), i =
1, . . . , n, that is

Kri (gi ) =
{

ki = (ki1, ki2, . . . , kiri ) ∈ N
ri :

ri∑

j=1

ki j = gi

}

Kr (g) = Kr1(g1)× · · · × Krn (gn).

A homogeneous polynomial matrix Mg(μ) of partial degrees
g = (g1, g2, . . . , gn) can be generically represented by

Mg(μ) �
∑

k∈Kr (g)

μk Mk

=
∑

k1∈Kr1 (g1)

· · ·
∑

kn∈Krn (gn)

μ
k1
1 · · ·μkn

n Mk1···kn , (31)

where μk are homogeneous monomials of degree gi in each
variable μi , i.e.,

μk = μ
k1
1 μ

k2
2 · · ·μkn

n , μ
ki
i = μi1

ki1μi2
ki2 · · ·μiri

kiri , (32)

ki = (ki1, ki2, . . . , kiri ) is such that ki1+ ki2+· · ·+ kiri = gi

and Mk are the corresponding matrix-valued coefficients. For
instance, a homogeneous polynomial matrix Mg(μ)of partial
degrees g = (1, 2) and r = (2, 2) (polynomial dependence
of degree one on μ1 ∈ U2 and polynomial dependence of
degree two on μ2 ∈ U2), yields Kr (g) = K2(1)× K2(2) =
{(0, 1), (1, 0)}× {(0, 2), (1, 1), (2, 0)}, corresponding to the
following matrix-valued polynomial:

Mg(μ) = μ11

(
μ21

2 M((1,0),(2,0)) + μ21μ22 M((1,0),(1,1))

+μ22
2 M((1,0),(0,2))

)
+ μ12

(
μ21

2 M((0,1),(2,0))

+μ21μ22 M((0,1),(1,1)) + μ22
2 M((0,1),(0,2))

)
.

(33)

More details about the construction of finite dimensional
LMIs from homogeneous polynomials of arbitrary degree
represented in the multi-simplex can be found in the Appen-
dix, in Oliveira et al. (2008) and Tognetti et al. (2011d). The
codes developed for Theorems 1 and 2 and Corollary 1 are
available for download in http://www.lara.unb.br/~eduardo/
softwares/sba12.zip.

The conditions presented are only sufficient, but increas-
ingly precise results can be obtained as the degrees g, asso-
ciated to the Lyapunov function, q, to the slack variables
and s, to the first step controller, increase, at the price of a
higher computational effort. On the other hand, the choices
of v, i.e., the degree of the output control gain, depend on
the design purposes. Although the structure (9) assumes that
all the states are premise variables (as in the fuzzy rule (1)),

some of the states can be discarded from being premise vari-
ables by imposing the respective diagonal terms in (9) as
constants (degree gi = 0), as in Mozelli et al. (2009a, Exam-
ple 4) and Rhee and Won (2006, Example 2). A constant gain
(not depending on any premise variables) can be obtained by
selecting v = (0, . . . , 0). A controller that depends only on
a specific premise variable is constructed by choosing a non-
zero corresponding degree vi .

Remark 4 An iterative procedure to obtain smaller values of
H∞ attenuation bounds γ can be constructed in the following
way. For each iteration k, the input matrix

Kv+1(μ)
(k) = L(μ)(k−1)Cy(μ), (34)

where L(μ)(k−1) is obtained from (18) at iteration k − 1, is
used as new input data for Theorem 2. The iterations stop
when the obtained H∞ attenuation bound γ (k) of the closed-
loop system
{

ẋ(t) = A(k)(μ)x(t)+ E (k)(μ)w(t)
z(t) = C (k)(μ)x(t)+ F (k)(μ)w(t),

(35)

with

A(k)(μ) = A(μ)+ B(μ)L(μ)(k−1)Cy(μ)

E (k)(μ) = E(μ)+ B(μ)L(μ)(k−1)Fy(μ)

C (k)(μ) = C(μ)+ D(μ)L(μ)(k−1)Cy(μ)

F (k)(μ) = F(μ)+ D(μ)L(μ)(k−1)Fy(μ),

is such that |γ (k−1)−γ (k)| < ε, where ε is a tolerance defined
a priori. Numerical experiments have showed that γ (k) ≤
γ (k−1), that is, smaller values of the H∞ attenuation bound
can be obtained at the price of increasing the computational
burden. Note that the iterative procedure can also be applied
in Theorem 3 to reduce the H2 bounds.

5 Numerical Examples

The numerical complexity associated with an optimization
problem based on LMIs can be estimated from the number V
of scalar variables and the number L of LMI rows. The results
were obtained using YALMIP (Löfberg 2004) and SeDuMi
(Sturm 1999) within the MATLAB 7.4.0 environment run-
ning on a personal computer with a 3.00 GHz Intel Core 2
Duo processor and 2.00 GB of RAM running Windows XP
SP3.

In the following examples, the scalar β of Theorem 1 and
Corollary 1 has been chosen from the set {1, 0.5, 0.1, 0.05,
0.04, 0.001, 10−5}. The best result (in terms of smallest
H∞or H2 bounds) has been retained.

Example 1 Consider the T–S fuzzy system given by (2),
adapted from Guelton et al. (2009), with the following matri-
ces
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A1 =
[−5 −4
−1 −2

]

, A2 =
[−2 −4

20 −2

]

B1 =
[

0
10

]

, B2 =
[

0
3

]

, E1 = E2 =
[

0
−0.25

]

,

C1 =
[

2 −10
5 −1

]

, C2 =
[−3 20
−7 −2

]

,

D1 =
[

3
−1

]

, D2 =
[−1

0.5

]

,

F ′
1 = [−0.5 0.5

]
, F ′

2 = [0.35 0.5
]

Cy1 = Cy2 = [1 0
]
, Fy1 = Fy2 = 0.1,

where the premise variable is x1(t).
Table 1 shows the H∞ attenuation bounds obtained with

Corollary 1 and Theorem 2 for several values of degrees of
the Lyapunov function (g), slack variables (q), the first stage
state feedback controller (s) and the static output controller
(v). Observe that the values of the H∞ attenuation bound
decrease as the degrees increase, requiring higher compu-
tational efforts, that still remains acceptable. The first two
values of γ in Table 1 show that the use of a non-constant Lya-
punov function is essential to decrease the H∞ attenuation
bound and the last two results in the same table illustrate that
the presented technique allows to reduce conservatism, keep-
ing the static output controller simple to implement (degree
v = 1), concomitantly.

Adapting the system to allow a comparison with the con-
ditions proposed in Bouarar et al. (2009) (considering y(t) =
z(t), that is, Cyi = Ci , Fyi = Fi and D′

i = [0 0], i = 1, 2),
Table 2 shows the values of γ obtained with the conditions
of Theorem 2 in Bouarar et al. (2009) (BGM09), that take
into account a bound φ of the time-derivative of the mem-
bership functions and with the conditions of Corollary 1 and
Theorem 2 for different degrees. Observe that the approach
proposed in Bouarar et al. (2009) can assure γ = 0.71 only
for very slow rates of variation μ̇11(x1) (the variation rate of
the membership functionμ11(x1) of the T–S system) whereas
the proposed conditions allow arbitrary variation of the mem-
bership functions. The conditions of Theorem 1 in Kau et
al. (2007), that use a constant Lyapunov matrix, were not
able to find a solution (considering also y(t) = z(t), that is,
Cyi = Ci , Fyi = Fi = [0 0] and D′

i = [0 0], i = 1, 2).

Table 1 H∞ attenuation bounds for the system of Example 1 obtained
with Corollary 1 and Theorem 2 (C1–T2) for different values of
(g, q, s, v) (denoted as C1–T2(g,q,s,v)) and β in Corollary 1. V is the
number of scalar variables and L of LMI rows

Method γ β L V Time (s)

C1–T2(0,1,1,1) 3.34 0.1 48 43 0.28

C1–T2(1,1,1,1) 0.98 1.0 52 47 0.31

C1–T2(6,6,6,6) 0.92 0.04 172 147 0.68

C1–T2(6,6,6,1) 0.97 0.05 172 137 0.60

Table 2 H∞ attenuation bounds for the adapted system (considering
y(t) = z(t)) of Example 1 obtained with Corollary 1 and Theorem 2
(C1–T2) for different values of (g, q, s, v) (denoted as C1–T2(g,q,s,v))
and with BGM09 for several values of the boundφ of the time-derivative
μ̇11(x1) of the membership function μ11(x1)

C1–T2 BGM09

Degree γ β γ φ

(1, 1, 1, 1) 0.89 0.5 3.67 2.5

(2, 2, 2, 2) 0.87 1.0 1.01 1.5

(6, 6, 6, 6) 0.77 0.05 0.85 1.0

(10, 10, 10, 10) 0.71 0.05 0.71 0.1

It can also be observed that the iterative procedure
described in Remark 4 is able to further improve the results.
Applying Corollary 1 and Theorem 2 with (g, q, s, v) =
(1, 1, 0, 0) (constant state and static output controller) and
β = 0.05 in Corollary 1, γ = 3.69 is obtained at the
first iteration, γ = 1.21 at the second and γ = 1.19 at
the third. It is also worth to say that, as far as the authors
know, no condition in the T–S fuzzy literature can deal effec-
tively with noise in the measurement output (Fy(μ) �= 0)
in the static output feedback problem for continuous-time
systems.

Example 2 Consider a flexible joint-inverted pendulum
device (Liu et al. 2005) described by the dynamic equation

I1θ̈1(t)+ I2θ̈2(t) = mgl sin θ2(t)+ u(t)− αw(t)

I2θ̈2(t) = βd(θ̇2(t)− θ̇1(t))− βs(θ2(t)− θ1(t))

+ mgl sin θ2(t), (36)

where θ1(t) and θ2(t) denote the angle (rad) of the pendulum
and of the rotor from the vertical, u(t) is the control torque
(Nm), w(t) is the disturbance torque (Nm), I1 and I2 are the
moment of inertia (Kg m2) of the rotor and of the pendulum,
m is the mass (Kg) of the pendulum, l is the length (m)
from the center of mass of the pendulum round its center
of mass, and g = 9.8 m/s2 is the gravitational acceleration
constant. Suppose the shaft is not rigid, but is modeled as a
parallel combination of a linear torsion spring with constant
βs > 0 and a linear torsion damper with coefficient βd > 0.
In the numerical simulations, m = 1 Kg, l = 1 m, βs =
2 Nm, βd = 3 Nms and α = 0.5 were used.

Let x1(t) = θ2(t), x2(t) = θ̇2(t), x3(t) = θ2(t) −
θ1(t), x4(t) = θ̇2(t) − θ̇1(t) and assume −π < x1(t) < π .
Then, the nonlinear system (36) is exactly represented by the
following T–S fuzzy model

Ri : If x1(t) is Mi
1 then

⎧
⎨

⎩

ẋ = Ai x + Eiw + Bi u
z = Ci x + Fiw + Di u
y = Cyi x

(37)

123



42 J Control Autom Electr Syst (2013) 24:33–45

for i = 1, 2, with membership functions

μ11(x1) =
{

sin x1(t)
x1(t)

, x1(t) �= 0

1, x1(t) = 0

μ12(x1) = 1 − μ11(x1).

and matrices (as in Chen et al. (2012))

A1 =

⎡

⎢
⎢
⎣

0 1 0 0
1.96 0 −0.4 −0.6

0 0 0 1
1.96 0 −2.4 −3.6

⎤

⎥
⎥
⎦ , B1 = B2 =

⎡

⎢
⎢
⎣

0
0
0

−1

⎤

⎥
⎥
⎦ ,

A2 =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 −0.4 −0.6
0 0 0 1
0 0 −2.4 −3.6

⎤

⎥
⎥
⎦ , E1 = E2 =

⎡

⎢
⎢
⎣

0
0
0

0.5

⎤

⎥
⎥
⎦ ,

C1 = C2 =
[

1 0 0 0
0 1 0 0

]

, D1 = D2 =
[

0
−0.1

]

,

Cy1 = Cy2 =
[

1 0 0 0
0 1 0 0

]

, F1 = F2 =
[

0
0

]

.

The static output controller (4) of degree v1 = 1, composed
by the matrices

L1 = [−16.0 −17.5
]
, L2 = [−16.0 −18.0

]
,

has been obtained with Corollary 1 (β = 0.1) and Theorem 2
with partial degrees g1 = s1 = q1 = 1. The H∞ attenuation
bound is γ = 0.17. The controller has been implemented and
simulations of the closed-loop nonlinear system have been
performed. The states of the closed-loop system, the output
and control input signal are shown, respectively, in Figs. 1
and 2 for the initial condition x(0) = [1 0 0 0]′ and no distur-
bance (w(t) = 0). As expected, the trajectories converge to

0 2 4 6 8 10 12 14 16 18
−2

−1

0

1

2

3

4

t (sec)

Fig. 1 State trajectories of the closed-loop nonlinear system (36) with
static output feedback controller and initial condition x(0) = [1 0 0 0]′
and w(t) = 0. The measured output signals (y(t)) are indicated by
dashed lines

the origin. The controlled output of the closed-loop system
with a static output controller and a state feedback controller
(obtained with Corollary 1 and Theorem 2, considering the
same values of partial degrees,β and Cy(μ) = I ) are showed
in Fig. 3, for the disturbance signal w(t) = e−t/3 sin(π t),
illustrated in Fig. 4. It can be observed that the attenuation
level for the static output feedback controller is very close to
the one obtained with the state feedback controller. Actually,
both controllers provide practically the same upper bound
γ for the H∞ norm, illustrating the effectiveness of the sta-
tic output feedback controller obtained with the proposed
approach.

0 2 4 6 8 10 12 14 16 18
−20

−15

−10

−5

0

5

t (sec)

Fig. 2 Control signal generated by the static output feedback controller
for the nonlinear system of (36) with initial condition x(0) = [1 0 0 0]′
and w(t) = 0

0 5 10 15
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

t (sec)

Fig. 3 Controlled output signals for the nonlinear system of (36) with
static output (solid) and state (dashed) feedback controllers for the
initial condition x(0) = [0 0 0 0]′ and disturbancew(t) = e−t/3 sin(π t)

123



J Control Autom Electr Syst (2013) 24:33–45 43

0 5 10 15
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (sec)

w
(t

)

Fig. 4 Disturbance signal w(t) = e−t/3 sin(π t) applied to the nonlin-
ear system (36)

6 Conclusion

This paper has proposed parameter-dependent LMI condi-
tions for the synthesis of H∞ and H2 static output feed-
back controllers for continuous-time T–S fuzzy systems.
The method combines a line-integral Lyapunov function
and slack variables represented by homogeneous polynomial
matrices of arbitrary degree in a two-step approach. Thanks
to the multi-simplex representation, the designer has the flex-
ibility to choose only the available premise variables for the
control law. The methodology can also be extended to cope
with the dynamic output feedback control problem, as well
as to deal with the discrete-time case, in the context of T–S
fuzzy systems.
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7 Appendix

This Appendix illustrates how to construct numerical
tractable conditions from infinite dimension LMIs repre-
sented by homogeneous polynomials in multi-simplexes. For
that, as stated in Sect. 4, the homogeneous polynomials are
given in terms of their coefficients.

As a simple example, consider matrix Mg(μ) given in
(33). The inequality Mg(μ) > 0, for all μ ∈ U , holds if all
terms of (33) are positive definite, that is,

M((1,0),(2,0)) > 0, M((1,0),(1,1)) > 0, M((1,0),(0,2)) > 0,

M((0,1),(2,0)) > 0, M((0,1),(1,1)) > 0, M((0,1),(0,2)) > 0.

Using the notations introduced in Sect. 4, one can write

Mk1k2 > 0, ∀k1 ∈ K2(1), ∀k2 ∈ K2(2)

or simply

Mk > 0, ∀k ∈ Kr (g) = K2(1)× K2(2), g = (1, 2).

When other matrices and variables are involved, all terms of
the parameter-dependent LMI matrix must be in the same
degree to allow the construction of finite dimension LMIs.
The advantage of handling multi-simplexes is that each sim-
plex is homogenized to the same degree independently.

Before presenting details of how to construct numerical
tractable conditions, from the multinomial theory (general-
ization of the binomial theorem to polynomials) define

Ug(μ) �
n∏

i=1

⎛

⎝
ri∑

j=1

μi j

⎞

⎠

gi

︸ ︷︷ ︸
∑

ki ∈Kri (gi )

gi !
ki !μ

k
i

�
∑

k∈Kr (g)

g!
k!μ

k . (38)

As an example, considering LMI (22), the maximum degree
of the polynomial matrix is given by w = max{g, q +
σ }, σ = ones(1, n). Therefore, all terms of (22) are
homogenized to the same degree w, that is
[

A(μ)′Sq(μ)
′ + Sq(μ)A(μ) �

Pg(μ)− Sq(μ)
′ + Gq(μ)A(μ) −Gq(μ)− Gq(μ)

′
]

=
[M11(μ) M12(μ)

� −M22(μ)

]

=
∑

k∈Kr (w)

μk
[M11k M12k

� −M22k

]

< 0 (39)

where

M11(μ) = Uw−q−σ (μ)(A(μ)′Sq(μ)
′ + Sq(μ)A(μ))

M12(μ) = Uw−g(μ)Pg(μ)− Uw−q(μ)Sq(μ)

+ Uw−q−σ (μ)Gq(μ)A(μ)

M22(μ) = Uw−q(μ)(Gq(μ)+ Gq(μ)
′)

and

M11k =
∑

k̃∈Kr (w−s−σ)
k̃�k

∑

k̂∈Kr (σ )

k̃+k̂�k

(w − s − σ)!
k̃! A

′
k̂ S′

k−k̃−k̂

+ Sk−k̃−k̂ Ak̂

M12k =
∑

k̃∈Kr (w−g)

k̃�k

(w − g)!
k̃! Pk−k̃ −

∑

k̃∈Kr (w−q)

k̃�k

(w − q)!
k̃! Sk−k̃

+
∑

k̃∈Kr (w−s−σ)
k̃�k

∑

k̂∈Kr (σ )

k̃+k̂�k

(w − s − σ)!
k̃! Gk−k̃−k̂ Ak̂
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M22k =
∑

k̃∈Kr (w−q)

k̃�k

(w − q)!
k̃! Gk−k̃ + G ′

k−k̃
.

As can be noted, the last term of (39) is written as a homo-
geneous polynomial with LMI coefficients. If all the coef-
ficients are imposed to be negative definite (numerically
tractable conditions), the feasibility of (22) is assured.
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Teixeira, M. C. M., & Żak, S. H. (1999). Stabilizing controller design for
uncertain nonlinear systems using fuzzy models. IEEE Transactions
on Fuzzy Systems, 7(2), 133–142.

Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2010a). Controle
seletivo com critério H2 de sistemas nebulosos Takagi-Sugeno (pp.
4118–4125). Bonito, MS: Anais do XVIII Congresso Brasileiro de
Automática.

Tognetti, E. S., Oliveira, R. C. L. F. & Peres, P. L. D. (2010b). Selec-
tive stabilization of Takagi-Sugeno fuzzy systems: Proceedings of the
2010 IEEE International Conference on Fuzzy Systems (pp. 2772–
2779). Barcelona, Spain.

Tognetti, E. S., Oliveira, R. C. L. F. & Peres, P. L. D. (2011a). Improved
stabilization conditions for Takagi-Sugeno fuzzy systems via fuzzy
integral Lyapunov functions: Proceedings of the 2011 American
Control Conference (pp. 4970–4975). San Francisco, CA.

Tognetti, E. S., Oliveira, R. C. L. F. & Peres, P. L. D. (2011b). An
LMI-based approach to static output feedback stabilization of T-S
fuzzy systems: Proceedings of the 18th IFAC World Congress (pp.
12593–12598). Milano, Italy.

Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2011c). Relax-
ações LMIs para realimentação de saída H∞ de sistemas nebulosos
Takagi-Sugeno contínuos no tempo. São João del-Rei, MG: Anais
do X Congresso Brasileiro de Automação Inteligente.

Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2011d). Selective
H2 and H∞ stabilization of Takagi-Sugeno fuzzy systems. IEEE
Transactions on Fuzzy Systems, 19(5), 890–900.

Tognetti, E. S., Oliveira, R. C. L. F., & Peres, P. L. D. (2012). Reduced-
order dynamic output feedback control of continuous-time T-S fuzzy
systems. Fuzzy Sets and Systems, 207(16), 27–44.

Tognetti, E. S., & Oliveira, V. A. (2010). Fuzzy pole placement based
on piecewise Lyapunov functions. International Journal of Robust
and Nonlinear Control, 20(5), 571–578.

Wang, H. O., Tanaka, K. & Griffin, M. F. (1995). Parallel distributed
compensation of nonlinear systems by Takagi-Sugeno fuzzy model:
Proceedings of the 4th IEEE International Conference on Fuzzy
Systems and The 2nd International Fuzzy Engineering Symposium
(pp. 531–538). Yokohama, Japan.

123


	LMI Relaxations for mathcal H infty and mathcal H 2 Static Output Feedback  of Takagi--Sugeno Continuous-Time Fuzzy Systems
	Abstract 
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Implementation Issues and LMI Relaxations
	5 Numerical Examples
	6 Conclusion
	Acknowledgments
	7 Appendix
	References


