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Abstract
We introduce a new approach by using unconstrained optimization to find a solution to the
system of the split equality problems in real Hilbert spaces. Our new algorithms do not
depend on the norm of the transfer mappings. We also give the relaxed iterative algorithms
corresponding to the proposed algorithms. Finally, we present some numerical experiments
to demonstrate the performance of the main results.
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1 Introduction

Let H1, H2 and H be three real Hilbert spaces, let C ⊆ H1 and Q ⊆ H2 be two nonempty,
closed and convex sets, let A : H1 → H and B : H2 → H be two bounded linear operators.
The split equality problem (SEP, for short) was first introduced and studied by Moudafi et al.
in 2013 (see, e.g., [11, 12]). The SEP is stated as follows:

Find v ∈ C, w ∈ Q such that A(v) = B(w).

The SEP links closely to many different important problems. For instance, in game theory,
in decomposition methods for PDE’s, in decision sciences and inertial Nash equilibration
processes (see, e.g., [1, 2]), and the split feasibility problem which was later approached for
inversion problems in intensity modulated radiation therapy (see, e.g., [4, 5]).

To find a solution to the SEP, in [11], Moudafi considered the constrained optimization
problem:

min
v∈C,w∈Q

1

2
‖Av − Bw‖2H .
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From observing and writing down the optimal conditions, he obtained the following fixed
point formulation: {

v = PC (v − γ A∗(Av − Bw)),

w = PQ(w + γ B∗(Av − Bw)),

where A∗ and B∗ are the adjoint operators of A and B, respectively. This equation suggests the
possibility of iterating, and thus he considered and established the alternating CQ-algorithm
for solving the SEP, that is{

xn+1 = PC (xn − γ A∗(Axn − Byn)),

yn+1 = PQ(yn + γ B∗(Axn − Byn)).
(1.1)

Under some suitable conditions [11, Theorem 2.1], he proved that the iterative sequence
generated by (1.1) converges weakly to a solution of the SEP.

Due to their tremendous utility and wide applicability, many algorithms have been set up
to solve the SEP or its modified version in different forms. For more details, see, for instance,
[6–10, 14–16, 19–22, 24–26] and the references therein.

Very recently, in [23], Tuyen introduced and studied the more general problem, which is
said to be the system of split equality problems (SSEP, for short). Namely, suppose that

(D1) H1, H2 and H are three real Hilbert spaces; Ci and Qi (i = 1, 2, 3, . . . , N ) are
nonempty closed convex subsets of H1 and H2, respectively.

(D2) Ai : H1 → H and Bi : H2 → H (i = 1, 2, 3, . . . , N ) are bounded linear operators.
(D3) bi (i = 1, 2, 3, . . . , N ) are given elements in H .
(D4) Ω = {(v,w) ∈ ∩N

i=1(Ci × Qi ) : Ai (v) − Bi (w) = bi , i = 1, 2, 3, . . . , N } �= ∅.

The SSEP is stated as follows:

Find an element p∗ ∈ Ω.

Using the Tikhonov regularization method, he proposed implicit and explicit iterative algo-
rithms [23, Theorems 3.1 and 3.5] for solving the Problem SSEP. But, in the first algorithm,
we have to solve an implicit equation. For the second algorithm, one of the control parameters
requires computing or at least estimating the Lipschitz constant and the norm of the objective
operators. In general, they are not easy work to perform in practice.

We also note that if Ai ≡ A, Bi ≡ B and bi = 0 for all i = 1, 2, 3, . . . , N , then the SSEP
becomes the multiple-sets split equality problem (MSSEP, for short) which has been studied
by Tian et al. in [22]. They also have established a weak convergence algorithm with the split
self-adaptive step size for solving the MSSEP.

In this paper, motivated and inspired by the above works, we will focus on and establish
several new algorithms for solving the Problem SSEP with another approach. To begin this,
for each x = (v,w) ∈ H := H1 × H2, we define the mapping U : H → R as follows:

U (x) =
∑N

i=1

[
‖Ai (v) − Bi (w) − bi‖2H + ‖v − PCi (v)‖2H1

+ ‖w − PQi (w)‖2H2

]
2

.

We now consider the unconstrained optimization problem:

min
x∈HU (x). (1.2)

It is easy to see thatU is a convex function and Problem SSEP is equivalent to Problem (1.2).
Thus, p∗ = (v∗, w∗) is a solution of Problem SSEP if and only if ∇U (p∗) = 0, in which
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∇U (x) = (U1(x),U2(x)) with

U1(x) =
N∑
i=1

((
I H1 − PH1

Ci

)
(v) + A∗

i (Ai (v) − Bi (w) − bi )
)

,

U2(x) =
N∑
i=1

((
I H2 − PH2

Qi

)
(w) − B∗

i (Ai (v) − Bi (w) − bi )
)

.

Moreover, we observe that ∇U (p∗) = 0 is equivalent to the problem of finding a fixed point
p∗ of I − γ∇U , that is, p∗ = (I − γ∇U )(p∗) for some γ > 0. Hence, in the present paper,
we will introduce and study the convergence of the sequence {xn} defined by

xn+1 = xn − γn∇U (xn),

where γn > 0 (see more detail in Algorithm 1). We first establish the weak convergence of
Algorithm 1. Next, to obtain a strong convergence, we give a modification of Algorithm 1 by
using the viscosity approximation method (see Algorithm 2). Some corollaries for solving
the system of split feasibility problems are introduced in Section 4. Two relaxed iterative
algorithms corresponding to Algorithms 1 and 2 are presented and studied in Section 5.
Three numerical examples are discussed in Section 6 to examine the performance of the
proposed algorithms.

2 Preliminaries

In this section, we denote by 〈·, ·〉H and ‖ · ‖H the inner product and the induced norm in a
real Hilbert spaceH. The symbols→ and⇀ are indicated the strong and weak convergence,
respectively.

If H1 and H2 are real Hilbert spaces thenH := H1 × H2 is also a Hilbert space (see, e.g.,
[14, Proposition 2.4] and [17, Proposition 2.2]) with the inner product

〈(x1, y1), (x2, y2)〉H = 〈x1, x2〉H1 + 〈y1, y2〉H2 , ∀(x1, y1), (x2, y2) ∈ H,

and the norm on H is defined by

‖(x, y)‖2
H

= ‖x‖2H1
+ ‖y‖2H2

, ∀(x, y) ∈ H.

The following lemmas are used in the sequel in the proofs of the main results.

Lemma 2.1 Let PH
C be a metric projection from a real Hilbert space H into a nonempty,

closed and convex subset C of H. Then the following hold:

(i) ([3, Theorem 3.14]) 〈x − PH
C (x), y − PH

C (x)〉H ≤ 0, ∀x ∈ H, y ∈ C .

(ii) ([23, Lemma 2.1])

〈x − y, PH
C (x) − PH

C (y)〉H ≥ ‖PH
C (x) − PH

C (y)‖2H, ∀x, y ∈ H.

(iii) ([23, Lemma 2.1])

〈x − y, (IH − PH
C )(x) − (IH − PH

C )(y)〉H ≥ ‖(IH − PH
C )(x) − (IH − PH

C )(y)‖2H
for all x, y ∈ H. It also follows that IH − PH

C is a nonexpansive mapping.
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Lemma 2.2 [13, Lemma 3] Let H be a real Hilbert space and let {xn} be a sequence in H
such that xn⇀z when n → ∞. Then we have

lim inf
n→∞ ‖xn − z‖H < lim inf

n→∞ ‖xn − x‖H
for all x ∈ H and x �= z.

Lemma 2.3 [3, Theorem 4.17] Let C be a nonempty closed convex bounded subset of a
Hilbert space H and T : C → H a nonexpansive mapping. Then the mapping IH − T
is demiclosed, that is, whenever {xn} is a sequence in C which satisfies xn⇀x ∈ C and
xn − T (xn) → y ∈ H, it follows that x − T (x) = y.

Lemma 2.4 For every x, y ∈ H, we have

‖x + y‖2H ≤ ‖x‖2H + 2〈y, x + y〉H.

Lemma 2.5 [18, Lemma 2.6] Let {an} be a sequence of positive real numbers, {bn} be a
sequence of real numbers in (0, 1) such that

∑∞
n=1 bn = ∞ and {cn} be a sequence of real

numbers. Assume that
an+1 ≤ (1 − bn)an + bncn, ∀n ≥ 1.

If
lim sup
k→∞

cnk ≤ 0

for every subsequence {ank } of {an} satisfying
lim inf
k→∞ (ank+1 − ank ) ≥ 0,

then limn→∞ an = 0.

3 Main Results

In this section, we always suppose all conditions from (D1) to (D4) are held. From now
on, we consistently denote H := H1 × H2. To solve Problem SSEP, we first introduce the
following algorithm.

Algorithm 1 Step 1. Choose x0 = (v0, w0) ∈ H := H1 × H2 arbitrarily and set n := 0.
Step 2. Given xn = (vn, wn), compute

xn+1 = xn − γn∇U (xn), (3.1)

with the parameter {γn} is defined by
γn = ρn

Dn

En + Fn + ζn
, (3.2)

where ρn ∈ [a, b] ⊂ (0, 2), {ζn} is a sequence of positive real numbers which is upper
bounded by ζ , and

Dn :=
N∑
i=1

‖(I H1 − PH1
Ci

)(vn)‖2H1
+

N∑
i=1

‖(I H2 − PH2
Qi

)(wn)‖2H2

+
N∑
i=1

‖Ai (vn) − Bi (wn) − bi‖2H ,

123



New Algorithms...

En :=
∥∥∥∥∥

N∑
i=1

(
(I H1 − PH1

Ci
)(vn) + A∗

i (Ai (vn) − Bi (wn) − bi )
)∥∥∥∥∥

2

H1

,

Fn :=
∥∥∥∥∥

N∑
i=1

(
(I H2 − PH2

Qi
)(wn) − B∗

i (Ai (vn) − Bi (wn) − bi )
)∥∥∥∥∥

2

H2

.

Step 3. Set n ← n + 1, and go to Step 2.

We have the following theorem.

Theorem 3.1 The sequence {xn} generated by Algorithm 1 converges weakly to a solution of
Problem SSEP.

Proof The proof is split into several steps. We take any point p = (v,w) ∈ Ω .

Claim 1 The sequence {xn} is bounded.
It takes from (3.1) that

‖xn+1 − p‖2
H

= ‖xn − γn∇U (xn) − p‖2
H

= ‖xn − p‖2
H

− 2γn〈∇U (xn), xn − p〉H + γ 2
n ‖∇U (xn)‖2H. (3.3)

We observe that

〈∇U (xn), xn − p〉H =
N∑
i=1

〈
(I H1 − PH1

Ci
)(vn), vn − v

〉
H1

+
N∑
i=1

〈
(I H2 − PH2

Qi
)(wn), wn − w

〉
H2

+
N∑
i=1

〈A∗
i (Ai (vn) − Bi (wn) − bi ), vn − v〉H1

−
N∑
i=1

〈B∗
i (Ai (vn) − Bi (wn) − bi ), wn − w〉H2

=
N∑
i=1

〈
(I H1 − PH1

Ci
)(vn) − (I H1 − PH1

Ci
)(v), vn − v

〉
H1

+
N∑
i=1

〈
(I H2 − PH2

Qi
)(wn) − (I H2 − PH2

Qi
)(w),wn − w

〉
H2

+
N∑
i=1

〈Ai (vn) − Bi (wn) − bi , Ai (vn) − Ai (v)〉H

−
N∑
i=1

〈Ai (vn) − Bi (wn) − bi , Bi (wn) − Bi (w)〉H

123



N. S. Ha and T. M. Tuyen

=
N∑
i=1

〈
(I H1 − PH1

Ci
)(vn) − (I H1 − PH1

Ci
)(v), vn − v

〉
H1

+
N∑
i=1

〈
(I H2 − PH2

Qi
)(wn) − (I H2 − PH2

Qi
)(w),wn − w

〉
H2

+
N∑
i=1

‖Ai (vn) − Bi (wn) − bi‖2H . (3.4)

In view of Lemma 2.1 (iii) and (3.4), we can find that

〈∇U (xn), xn − p〉H ≥
N∑
i=1

∥∥∥(I H1 − PH1
Ci

)(vn) − (I H1 − PH1
Ci

)(v)

∥∥∥2
H1

+
N∑
i=1

∥∥∥(I H2 − PH2
Qi

)(wn) − (I H2 − PH2
Qi

)(w)

∥∥∥2
H2

+
N∑
i=1

‖Ai (vn) − Bi (wn) − bi‖2H

=
N∑
i=1

∥∥∥(I H1 − PH1
Ci

)(vn)

∥∥∥2
H1

+
N∑
i=1

∥∥∥(I H2 − PH2
Qi

)(wn)

∥∥∥2
H2

+
N∑
i=1

‖Ai (vn) − Bi (wn) − bi‖2H .

This implies that
〈∇U (xn), xn − p〉H ≥ Dn . (3.5)

Besides, we also note that

‖∇U (xn)‖2H =
∥∥∥∥∥

N∑
i=1

(
(I H1 − PH1

Ci
)(vn) + A∗

i (Ai (vn) − Bi (wn) − bi )
)∥∥∥∥∥

2

H1

+
∥∥∥∥∥

N∑
i=1

(
(I H2 − PH2

Qi
)(wn) − B∗

i (Ai (vn) − Bi (wn) − bi )
)∥∥∥∥∥

2

H2

= En + Fn . (3.6)

Thus, it follows from (3.2), (3.3), (3.5) and (3.6) that

‖xn+1 − p‖2
H

≤ ‖xn − p‖2
H

− 2γnDn + γ 2
n (En + Fn)

= ‖xn − p‖2
H

− 2ρn
D2
n

En + Fn + ζn
+ ρ2

n
D2
n(En + Fn)

(En + Fn + ζn)2

≤ ‖xn − p‖2
H

− 2ρn
D2
n

En + Fn + ζn
+ ρ2

n
D2
n

En + Fn + ζn

= ‖xn − p‖2
H

− ρn(2 − ρn)
D2
n

En + Fn + ζn
. (3.7)
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From the condition ρn ∈ [a, b] ⊂ (0, 2) and (3.7), we obtain

‖xn+1 − p‖2
H

≤ ‖xn − p‖2
H
. (3.8)

By employing mathematical induction, we find that the sequence {xn} is bounded.

Claim 2 For every i = 1, 2, 3, . . . , N , we have

∥∥∥(I H1 − PH1
Ci

)(vn))

∥∥∥2
H1

→ 0, (3.9)∥∥∥(I H2 − PH2
Qi

)(wn)

∥∥∥2
H2

→ 0, (3.10)

‖Ai (vn) − Bi (wn) − bi‖2H → 0. (3.11)

From (3.7), we have

ρn(2 − ρn)
D2
n

En + Fn + ζn
≤ ‖xn − p‖2

H
− ‖xn+1 − p‖2

H
.

On the other hand, it takes from (3.8) that the finite limit of the sequence {‖xn − p‖2
H
} exists.

Thus, from the conditions ρn ∈ [a, b] ⊂ (0, 2), 0 < ζn ≤ ζ and the above inequality, we
can infer that

D2
n

En + Fn + ζ
→ 0.

This leads to
Dn → 0. (3.12)

From the definition of Dn and (3.12), we obtain the limitations (3.9), (3.10) and (3.11), as
claimed.

Claim 3 The sequence {xn} converges weakly to p∗ ∈ Ω .
Since {xn} is a bounded sequence, there exists the subsequence {xnk } := {(vnk , wnk )} of

{xn} which converges weakly to some z = (v∗, w∗) ∈ H, that is,

vnk⇀v∗, wnk⇀w∗.

In view of Lemma 2.3, (3.9) and (3.10), we get (v∗, w∗) ∈ Ci × Qi for all i = 1, 2, . . . , N .
On the other hand, since Ai and Bi are bounded linear operators, we have

Ai (vnk ) − Bi (wnk ) − bi⇀Ai (v∗) − Bi (w∗) − bi , ∀i = 1, 2, . . . , N .

Combining with (3.11), we can infer that

Ai (v∗) − Bi (w∗) − bi = 0, ∀i = 1, 2, . . . , N .

Therefore, we have z ∈ Ω .
Finally, we shall demonstrate that xn⇀z. Suppose that there is another subsequence {xnm }

of {xn} such that xnm⇀z̄ with z̄ �= z. Using an argument similar to the one used above, we
again also get that z̄ ∈ Ω . It follows from Lemma 2.2 and the existence of the finite limit of

123



N. S. Ha and T. M. Tuyen

{‖xn − z‖H} that
lim inf
k→∞ ‖xnk − z‖H < lim inf

k→∞ ‖xnk − z̄‖H
= lim inf

m→∞ ‖xnm − z̄‖H
< lim inf

m→∞ ‖xnm − z‖H
= lim inf

k→∞ ‖xnk − z‖H.

This is a contradiction. It implies that xnm⇀z. Therefore, we obtain that xn⇀z.
This completes the proof. ��
Toobtain the strong convergence theorem,we nowcombineAlgorithm1with the viscosity

approximation method. The second algorithm is established as follows:

Algorithm 2 Step 1. Choose x0 = (v0, w0) ∈ H := H1 × H2 arbitrarily and set n := 0.
Step 2. Given xn = (vn, wn), compute

xn+1 = αnh(xn) + (1 − αn)(xn − γn∇U (xn)), (3.13)

where h : H → H is a contraction mapping with constant δ ∈ [0, 1), {γn} is defined as in
(3.2) and {αn} ⊂ (0, 1) satisfies

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞.

Step 3. Set n ← n + 1, and go to Step 2.

Theorem 3.2 The sequence {xn} generated by Algorithm 2 converges strongly to p∗ =
PΩ(h(p∗)).

Proof The proof is divided into several steps. We first put yn = xn −γn∇U (xn) and take any
p ∈ Ω .

Claim 1 The sequence {xn} is bounded.
It follows from (3.13) that

‖xn+1 − p‖H = ‖αnh(xn) + (1 − αn)(xn − γn∇U (xn)) − p‖H
= ‖αn(h(xn) − p) + (1 − αn)(yn − p)‖H.

By the convexity of ‖ · ‖H and h is a contraction mapping with constant δ ∈ [0, 1), we can
find that

‖xn+1 − p‖H ≤ αn‖h(xn) − p‖H + (1 − αn)‖yn − p‖H
≤ αn[‖h(xn) − h(p)‖H + ‖h(p) − p‖H] + (1 − αn)‖yn − p‖H
≤ αn[δ‖xn − p‖H + ‖h(p) − p‖H] + (1 − αn)‖yn − p‖H. (3.14)

By an argument similar as in Claim 1 of Theorem 3.1, we can find that

‖yn − p‖2
H

= ‖xn − γn∇U (xn) − p‖2
H

≤ ‖xn − p‖2
H

− ρn(2 − ρn)
D2
n

En + Fn + ζn
(3.15)

≤ ‖xn − p‖2
H
. (3.16)
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From (3.14) and (3.16), we can infer that

‖xn+1 − p‖H ≤ αn[δ‖xn − p‖H + ‖h(p) − p‖H] + (1 − αn)‖xn − p‖H
= (1 − αn(1 − δ))‖xn − p‖H + αn‖h(p) − p‖H
= (1 − αn(1 − δ))‖xn − p‖H + αn(1 − δ)

‖h(p) − p‖H
1 − δ

≤ max

{
‖xn − p‖H,

‖h(p) − p‖H
1 − δ

}
.

By employing mathematical induction, we find that the sequence {xn} is bounded. Hence,
the sequences {yn} and {h(xn)} are also bounded.

Claim 2 We have

ρn(2 − ρn)
D2
n

En + Fn + ζn
≤ ‖xn − p‖2

H
− ‖xn+1 − p‖2

H
+ αnM1, (3.17)

where M1 = supn{‖h(xn) − p‖2
H
} < ∞.

Indeed, from (3.13), (3.15) and Lemma 2.4, we have

‖xn+1 − p‖2
H

= ‖αn(h(xn) − p) + (1 − αn)(yn − p)‖2
H

≤ αn‖h(xn) − p‖2
H

+ (1 − αn)‖yn − p‖2
H

≤ M1αn + ‖yn − p‖2
H

≤ ‖xn − p‖2
H

+ αnM1 − ρn(2 − ρn)
D2
n

En + Fn + ζn
.

It is easy to see that the last inequality can be rewritten in the form (3.17), as claimed.

Claim 3 We have the following inequality:

an+1 ≤ (1 − bn)an + bncn, ∀n ≥ 1, (3.18)

where

an := ‖xn − p‖2
H
,

bn := αn(1 − δ),

cn := 2〈h(p) − p, xn+1 − p〉H
1 − δ

.

Indeed, one again, from (3.13), (3.16) and Lemma 2.4, we can see that

‖xn+1 − p‖2
H

=‖αn(h(xn) − p) + (1 − αn)(yn − p)‖2
H

=‖αn(h(xn) − h(p)) + (1 − αn)(yn − p) + αn(h(p) − p)‖2
H

≤‖αn(h(xn) − h(p)) + (1 − αn)(yn − p)‖2
H

+ 2αn〈h(p) − p, xn+1 − p〉H
≤αn‖h(xn) − h(p)‖2

H
+ (1 − αn)‖yn − p‖2

H

+ 2αn〈h(p) − p, xn+1 − p〉H
≤αnδ‖xn − p‖2

H
+ (1 − αn)‖xn − p‖2

H

+ 2αn〈h(p) − p, xn+1 − p〉H
=(1 − αn(1 − δ))‖xn − p‖2

H
+ αn(1 − δ)

2〈h(p) − p, xn+1 − p〉H
1 − δ

.
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It is not difficult to see that the above inequality can be rewritten in the form (3.18), as
claimed.

Claim 4 The sequence {xn} converges strongly to p∗ = PΩ(h(p∗)).
Suppose that {‖xnm − p∗‖2} is an arbitrary subsequence of {‖xn − p∗‖2} such that

lim inf
k→∞ (‖xnm+1 − p∗‖2 − ‖xnm − p∗‖2) ≥ 0.

It follows from Claim 2, αnm → 0 and ρnm ∈ [a, b] ⊂ (0, 2) that

D2
nm

Enm + Fnm + ζnm
→ 0.

Since ζnm ≤ ζ , we have
D2
nm

Enm + Fnm + ζ
→ 0,

which implies that Dnm → 0. Hence, we can find that

∥∥∥(I H1 − PH1
Ci

)(vnm )

∥∥∥2
H1

→ 0, (3.19)∥∥∥(I H2 − PH2
Qi

)(wnm )

∥∥∥2
H2

→ 0, (3.20)

‖Ai (vnm ) − Bi (wnm ) − bi‖2H → 0. (3.21)

In addition, we also have

‖ynm − xnm‖2
H

= γ 2
nm (Enm + Fnm )

= ρ2
nm

D2
nm (Enm + Fnm )

(Enm + Fnm + ζnm )2

≤ b2
D2
nm

Enm + Fnm + ζnm
→ 0.

This implies that
‖ynm − xnm‖H → 0. (3.22)

By the boundedness of {xnm } and {h(xnm )}, we observe that
‖xnm+1 − xnm‖H = ‖αnm (h(xnm ) − xnm ) + (1 − αnm )(ynm − xnm )‖H

≤ αnm‖h(xnm ) − xnm‖H + (1 − αnm )‖ynm − xnm‖H
≤ αnm M2 + (1 − αnm )‖ynm − xnm‖H, (3.23)

where M2 = supm{‖h(xnm ) − xnm‖H}. Thus, it takes from (3.22) and (3.23) that

‖xnm+1 − xnm‖H → 0. (3.24)

Finally, to apply Lemma 2.5, from Claim 3, it suffices to prove the following inequality

lim sup
m→∞

cnm ≤ 0.
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It is equivalent to show that lim supm→∞〈h(p∗) − p∗, xnm+1 − p∗〉 ≤ 0. We first note that

〈h(p∗) − p∗, xnm+1 − p∗〉
=〈h(p∗) − p∗, xnm+1 − xnm 〉 + 〈h(p∗) − p∗, xnm − p∗〉
≤‖h(p∗) − p∗‖‖xnm+1 − xnm‖ + 〈h(p∗) − p∗, xnm − p∗〉. (3.25)

Since {xnm } is a bounded sequence (Claim 1), there exists a subsequence {xnm j
} of {xnm }

which converges weakly to some z ∈ H, such that

lim sup
m→∞

〈h(p∗) − p∗, xnm − p∗〉H = lim
j→∞〈h(p∗) − p∗, xnm j

− p∗〉H
= 〈h(p∗) − p∗, z − p∗〉H.

Furthermore, from (3.19), (3.20), (3.21) and using an argument similar to the proof of Claim 3
in Theorem 3.1, we obtain that z ∈ Ω . Besides, from the definition of p∗ and Lemma 2.1 (i),
we obtain that

lim sup
m→∞

〈h(p∗) − p∗, xnm − p∗〉 = 〈h(p∗) − p∗, z − p∗〉 ≤ 0. (3.26)

Using (3.24), (3.25), (3.26), we find that lim supm→∞ cnm ≤ 0. Hence, it is not difficult to
see that all the hypotheses of Lemma 2.5 are satisfied. This guarantees that ‖xn − p∗‖ → 0.

This completes the proof. ��

Remark 3.1 It follows from (3.6) that if En + Fn = 0 then ∇U (xn) = 0. In this case, we
have that xn = (vn, wn) is a solution to the SSEP and, thus, we can stop the algorithm. If
otherwise, we can select the parameter ζn = 0 which leads to γn = ρn

Dn
En+Fn

. On the other
hand, we note that

En + Fn ≤2

(
N∑
i=1

∥∥∥(I H1 − PH1
Ci

)(vn)

∥∥∥2
H1

+
N∑
i=1

∥∥∥(I H2 − PH2
Qi

)(wn)

∥∥∥2
H2

)

+ 2
N∑
i=1

‖Ai‖2‖Ai (vn) − Bi (wn) − bi‖2H

+ 2
N∑
i=1

‖Bi‖2‖Ai (vn) − Bi (wn) − bi‖2H ≤ κDn,

where κ = 2max{1,max1≤i≤N {‖Ai‖2}+max1≤i≤N {‖Bi‖}2}. This guarantees that Dn → 0

whenever D2
n

En+Fn
→ 0.

Hence, the conclusions of Theorems 3.1 and 3.2 are still valued by employing an argument
similar to the one used in the proof of these.

4 Corollaries

It is easy to see that if H ≡ H2, Bi is the identity mapping on H and bi = 0 for all
i = 1, 2, 3, . . . , N , then Problem SSEP becomes the system of split feasibility problems,
that is,

Find an element p∗ ∈ Ω̂, (4.1)

123



N. S. Ha and T. M. Tuyen

where

Ω̂ =
{
(v,w) ∈ ∩N

i=1(Ci × Qi ) : Ai (v) − w = 0, i = 1, 2, 3, . . . , N
}

�= ∅.

Furthermore, Problem (4.1) reduces to the split feasibility problem in the case that N = 1.
We now denote ∇Û (x) := (Û1(x), Û2(x)) for all x = (v,w) ∈ H with

Û1(x) :=
N∑
i=1

(
(I H1 − PH1

Ci
)(v) + A∗

i (Ai (v) − w)
)

,

Û2(x) :=
N∑
i=1

(
(I H2 − PH2

Qi
)(w) − (Ai (v) − w)

)
.

From Algorithm 1, we obtain the following algorithm.

Algorithm 3 Step 1. Choose x0 = (v0, w0) ∈ H := H1 × H2 arbitrarily and set n := 0.
Step 2. Given xn = (vn, wn), compute

xn+1 = xn − γ̂n∇Û (xn),

with the parameter {γn} is defined by

γ̂n = ρn
D̂n

Ên + F̂n + ζn
,

where ρn ∈ [a, b] ⊂ (0, 2), {ζn} is a sequence of positive real numbers which is upper
bounded by ζ , and

D̂n :=
N∑
i=1

[∥∥∥(I H1 − PH1
Ci

)(vn)

∥∥∥2
H1

+
∥∥∥(I H2 − PH2

Qi
)(wn)

∥∥∥2
H2

+ ‖Ai (vn) − wn‖2H2

]
,

Ên := ‖
N∑
i=1

(
(I H1 − PH1

Ci
)(vn) + A∗

i (Ai (vn) − wn)
)

‖2H1
,

F̂n := ‖
N∑
i=1

(
(I H2 − PH2

Qi
)(wn) − (Ai (vn) − wn)

)
‖2H2

.

Step 3. Set n ← n + 1, and go to Step 2.

Theorem 4.1 The sequence {xn} generated by Algorithm 3 converges weakly to a solution
p∗ = (v∗, w∗) to Problem (4.1).

From Algorithm 2, we obtain Algorithm 4 below.

Algorithm 4 Step 1. Choose x0 = (v0, w0) ∈ H := H1 × H2 arbitrarily and set n := 0.
Step 2. Given xn = (vn, wn), compute

xn+1 = αnh(xn) + (1 − αn)(xn − γ̂n∇Û (xn)),

where h : H → H and {αn} are defined as in Step 2 of Algorithm 2 while {γ̂n} is defined as
in Step 2 of Algorithm 3.
Step 3. Set n ← n + 1, and go to Step 2.

Theorem 4.2 The sequence {xn} generated by Algorithm 4 converges strongly to a unique
solution (v∗, w∗) to Problem (4.1) such that p∗ = PΩ̂ (h(p∗)).
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5 Relaxed Iterative Algorithms

In this section, we consider Problem SSEP when Ci and Qi are sublevel sets of the lower
semicontinuous convex functions ci : H1 → R and qi : H2 → R and i = 1, 2, . . . , N ,
respectively. Namely,

Ci = {v ∈ H1 : ci (v) ≤ 0},
Qi = {w ∈ H2 : qi (w) ≤ 0},

where ci and qi are respectively subdifferentiable on H1 and H2, and that the subdifferentials
∂ci and ∂qi are bounded (on bounded sets).

At points vn ∈ H1 and wn ∈ H2, we define the subsets Ci,n and Qi,n as follows:

Ci,n = {v ∈ H1 : ci (vn) ≤ 〈vn − v, ci,n〉H1},
Qi,n = {w ∈ H2 : qi (wn) ≤ 〈wn − w, qi,n〉H2},

where ci,n ∈ ∂ci (vn) and qi,n ∈ ∂qi (wn). It is not hard to find that Ci,n and Qi,n are half-
spaces of H1 and H2. They are respectively called the relaxed sets of Ci and Qi . Besides,
we also have Ci ⊂ Ci,n and Qi ⊂ Qi,n .

In general, we are not easy to compute the metric projections PH1
Ci

and PH2
Qi

. It depends
on the construct of the sets Ci and Qi . However, we do have the explicit expression of the
metric projections PH1

Ci,n
and PH2

Qi,n
, which are

PH1
Ci,n

(v) = v − max

{
0,

〈v − vn, ci,n〉H1 + ci (vn)

‖ci,n‖2H1

}
ci,n,

PH1
Qi,n

(w) = w − max

{
0,

〈w − wn, qi,n〉H2 + qi (wn)

‖qi,n‖2H2

}
qi,n .

Therefore, we obtain relaxed iterative algorithms corresponding to Algorithm 1 and Algo-
rithm 2, where PH1

Ci
and PH2

Qi
are respectively replaced by PH1

Ci,n
and PH2

Qi,n
.

We denote ∇Ũ (x) := (Ũ1(x), Ũ2(x)) for all x = (v,w) ∈ H, where

Ũ1(x) :=
N∑
i=1

(
(I H1 − PH1

Ci,n
)(v) + A∗

i (Ai (v) − Bi (w) − bi )
)

,

Ũ2(x) :=
N∑
i=1

(
(I H2 − PH2

Qi,n
)(w) − B∗

i (Ai (v) − Bi (w) − bi )
)

.

From Algorithm 1, we obtain the following algorithm.

Algorithm 5 Step 1. Choose x0 = (v0, w0) ∈ H := H1 × H2 arbitrarily and set n := 0.
Step 2. Given xn = (vn, wn), compute

xn+1 = xn − γ̃n∇Ũ (xn),

with the parameter {γ̃n} is defined by

γ̃n = ρn
D̃n

Ẽn + F̃n + ζn
,
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where ρn ∈ [a, b] ⊂ (0, 2), {ζn} is a sequence of positive real numbers which is upper
bounded by ζ , and

D̃n :=
N∑
i=1

∥∥∥(I H1 − PH1
Ci,n

)(vn)

∥∥∥2
H1

+
N∑
i=1

∥∥∥(I H2 − PH2
Qi,n

)(wn)

∥∥∥2
H2

+
N∑
i=1

‖Ai (vn) − Bi (wn) − bi‖2H ,

Ẽn :=
∥∥∥∥∥

N∑
i=1

(
(I H1 − PH1

Ci,n
)(vn) + A∗

i (Ai (vn) − Bi (wn) − bi )
)∥∥∥∥∥

2

H1

,

F̃n :=
∥∥∥∥∥

N∑
i=1

(
(I H2 − PH2

Qi,n
)(wn) − B∗

i (Ai (vn) − Bi (wn) − bi )
)∥∥∥∥∥

2

H2

.

Step 3. Set n ← n + 1, and go to Step 2.

Theorem 5.1 The sequence {xn} generated by Algorithm 5 converges weakly to a solution of
Problem SSEP.

Proof In view of the proof of Theorem 3.1, we can infer that the sequence {xn} is bounded
and ∥∥∥(I H1 − PH1

Ci,n
)(vn))

∥∥∥2
H1

→ 0, (5.1)∥∥∥(I H2 − PH2
Qi,n

)(wn)

∥∥∥2
H2

→ 0, (5.2)

‖Ai (vn) − Bi (wn) − bi‖2H → 0. (5.3)

We will prove that all weak sequential limits of {xn} belong to Ω . Indeed, since {xn} is a
bounded sequence, there exists the subsequence {xnk } := {(vnk , wnk )} of {xn} which con-
verges weakly to some z = (v∗, w∗) ∈ H. It is equivalent to

vnk⇀v∗, wnk⇀w∗.

Since the subdifferential ∂ci is assumed to be bounded on bounded sets and the sequence
{xn} is bounded, there exists a positive real number M3 such that

‖ci,n‖H1 ≤ M3

for all n ∈ N. It follows from PH1
Ci,n

(vn) ∈ Ci,n and the definition of Ci,n that

ci (vnk ) ≤
〈
(I H1 − PH1

Ci,nk
)(vnk )), ci,nk

〉
H1

≤
∥∥∥(I H1 − PH1

Ci,nk
)(vnk )

∥∥∥
H1

‖ci,nk‖H1

≤ M3

∥∥∥(I H1 − PH1
Ci,nk

)(vnk )

∥∥∥
H1

. (5.4)

From (5.1) and (5.4), we can find that

lim inf
k→∞ ci (vnk ) ≤ 0.
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By the lower semicontinuity of the function c, we have

ci (v∗) ≤ lim inf
k→∞ ci (vnk ) ≤ 0.

Therefore, we obtain v∗ ∈ Ci . By an argument similar to the one above and using (5.2), we
also obtain that w∗ ∈ Qi . Furthermore, using (5.3) and repeating the proof of Theorem 3.1
in Claim 3, we can deduce that

Ai (v∗) − Bi (w∗) − bi = 0.

Hence, we have (v∗, w∗) ∈ Ω .
Once again, we use a similar argument to the one employed in the last proof of Theorem3.1

and can conclude that (v∗, w∗) is the unique weak sequential limit of {xn} and that vn → v∗
and wn → w∗.

This completes the proof. ��
From Algorithm 2, we obtain the algorithm below.

Algorithm 6 Step 1. Choose x0 = (v0, w0) ∈ H := H1 × H2 arbitrarily and set n := 0.
Step 2. Given xn = (vn, wn), compute

xn+1 = αnh(xn) + (1 − αn)(xn − γ̃n∇Ũ (xn)),

where h : H → H and {αn} are defined as in Step 2 of Algorithm 2 while {γ̃n} is defined as
in Step 2 of Algorithm 5.
Step 3. Set n ← n + 1, and go to Step 2.

By using a line of proof similar to the one in the proof of Theorem 3.2 and combining it
with Theorem 5.1, we obtain the following theorem.

Theorem 5.2 The sequence {xn} generated by Algorithm 6 converges strongly to p∗ =
PΩ(h(p∗)).

6 Numerical Test

Our algorithms are implemented in MATLAB 14a running on the DESKTOP-8LDGIN0,
Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz with 2.40 GHz and 4GB RAM.

Example 6.1 We consider the Problem SSEP under the following hypotheses:
(D1) H1 = R

m , H2 = R
k and H = R

p are three finite Euclidean spaces. For each
i = 1, 2, 3, the sets Ci and Qi are defined by

Ci = {x ∈ R
m : ‖x − ai‖2 ≤ R2

i },
Qi = {x ∈ R

k : ‖x − âi‖2 ≤ R̂2
i },

where the coordinates of the centers ai and âi are randomly generated in the interval [−2, 2],
the radii Ri and R̂i are also randomly generated in the intervals [10, 20] and [20, 30],
respectively.

(D2) Ai : Rm → R
p and Bi : Rk → R

p (i = 1, 2, 3) are bounded linear operators where
the elements of their representing matrices are randomly generated in the closed interval
[−5, 5].

(D3) bi = 0 for all i = 1, 2, 3.
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Table 1 Numerical results of Algorithm 2 with different choices of αn

s TOL n err CPU-Time (s)

0.05 10−4 7 1.223748605499165e − 05 0.0360

10−6 9 2.701731245917301e − 07 0.0369

10−8 11 6.843509460101972e − 09 0.0383

0.25 10−4 13 8.546088255403800e − 05 0.0397

10−6 20 6.961546898147826e − 07 0.0448

10−8 28 8.508223635581934e − 09 0.0500

0.5 10−4 26 9.588803526858486e − 05 0.0526

10−6 49 9.718300091195404e − 07 0.0726

10−8 87 9.319365234169132e − 09 0.0942

0.75 10−4 45 9.251179259082480e − 05 0.0592

10−6 143 9.833815955402861e − 07 0.1251

10−8 473 9.925476384362636e − 09 0.3404

(D4) Since 0 = (0, 0) ∈ Ω , we have

Ω = {(v,w) ∈ ∩3
i=1(Ci × Qi ) : Ai (v) − Bi (w) = 0, i = 1, 2, 3} �= ∅.

We use Algorithm 2 to m = 100, k = 200, p = 300 and h(x) = 0.05x for all x ∈
R
m × R

k . It is not difficult to see that p∗ = (0, 0). We take the initial point x0 = (v0, w0)

which has the coordinates of v0 and w0 randomly generated in the closed interval [20, 40],
and select the control parameters as follows:

ρn = 1.5, ζn = 0.05, αn = 1

(n + 1)s
(0 < s < 1).

We use the stopping rule

err = ‖xn‖ =
√

‖vn‖2 + ‖wn‖2 < TOL,
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Fig. 1 The behavior of err with TOL=10−6
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Table 2 Numerical results of ALGO-T with different choices of αn

t TOL n err CPU-Time (s)

0.47 10−4 657742 9.999945847476398e − 05 459.5096

10−6 828434 9.999729512234562e − 07 537.7465

10−8 991308 9.999925758077272e − 09 653.8293

0.485 10−4 609990 9.999951236130542e − 05 501.4462

10−6 767229 9.999764897057308e − 07 524.3640

10−8 917084 9.999860550931206e − 09 588.7401

0.5 10−4 566197 9.999722893875010e − 05 383.5082

10−6 711175 9.999743125018068e − 07 474.2676

10−8 849179 9.999927835113614e − 09 569.5937

where TOL is a given tolerant and xn = (vn, wn). The numerical results are presented in
Table 1. The behavior of err is shown in Fig. 1.

We also compare our Algorithm 2 with the algorithm defined by [23, Theorem 3.5]
(ALGO-T, for short). The parameters for the ALGO-T are chosen as follows:

αn = 1

(n + 1)t
, εn = 1.9999

α0.495
n [(N + αn)2 + γ 4

A,B](1 + 4N 2)
,

where N = 3 and γA,B = max1≤i≤3{‖Ai‖, ‖Bi‖}. The numerical results are presented in
Table 2.

Example 6.2 We consider Problem (4.1) under the following hypotheses:
(D1) H1 = H2 = H = L2[0, 1] with the inner product

〈x, y〉 =
∫ 1

0
x(t)y(t)dt, ∀x = x(t), y = y(t) ∈ L2[0, 1],

and the norm

‖x‖ =
(∫ 1

0
x2(t)dt

) 1
2

, ∀x = x(t) ∈ L2[0, 1].

The sets Ci and Qi (i = 1, 2, 3) are given by

Ci = {x ∈ L2[0, 1] : ‖x‖ ≤ ri },
Qi = {x ∈ L2[0, 1] : 〈bi , x〉 = ci },

where

ri = i + 1, bi = exp(t) + i, ci = i + 2

i2 + 1
.

(D2) For each i = 1, 2, 3, the operators Ai : L2[0, 1] → L2[0, 1] are defined by

Ai (x)(t) = 2x(t)

i2 + 1
, ∀x = x(t) ∈ L2[0, 1].

(D3) bi = 0 for all i = 1, 2, 3.
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Table 3 Numerical results of
Algorithm 4 with different
choices of ζn

ζn TOL n err CPU-Time (s)

10 10−4 11 5.723109509087199e − 05 0.0014

10−5 21 9.904141641479197e − 06 0.0033

10−6 221 9.977175102468254e − 07 0.0266

20 10−4 11 5.248590023519470e − 05 0.0014

10−5 14 7.940026272800991e − 06 0.0019

10−6 110 9.926253421438724e − 07 0.0164

30 10−4 11 5.118087290559601e − 05 0.0014

10−5 13 7.933972283986941e − 06 0.0018

10−6 73 9.892201029412421e − 07 0.0091

(D4) It is easy to find that

Ω = {(v,w) ∈ ∩3
i=1(Ci × Qi ) : Ai (v) − w = 0, i = 1, 2, 3}

is a nonempty set because (t, 2t/(i2 + 1)) ∈ Ω .
We use Algorithm 4 with h(x) = 0.25x for all x ∈ L2[0, 1] × L2[0, 1], the initial point

x0 = (exp(t), log(t + 1)), and select the parameters as follows:

ρn = 0.5, ζn = 10i, αn = 1

(n + 1)0.025
.

We use the stopping criterion

err = ‖xn+1 − xn‖ < TOL,

where TOL is a given tolerant. The numerical results are presented in Table 3. The behavior
of err is described in Fig. 2.

We also compare our Algorithm 4 with the ALGO-T. The parameters for the ALGO-T
are chosen as follows:

αn = 1

(n + 1)s
, εn = 1.9999

α0.75
n [(N + αn)2 + γ 4

A,B ](1 + 4N 2)
,

where N = 3 and γA,B = max1≤i≤3{‖Ai‖, ‖Bi‖}. The numerical results are presented in
Table 4.

Example 6.3 LetRm andRk be two finite Euclidean spaces. We consider the signal recovery
problem through the following LASSO problem:

min

{
1

2
‖Av − w‖2 : v ∈ R

k, ‖v‖1 ≤ p

}
,

where A ∈ R
m ×R

k , w ∈ R
m , p > 0 and ‖ · ‖1 is l1-norm. A is a perception matrix, which

is generated from a standard normal distribution. The true sparse signal v∗ is constructed
from the uniform distribution in the interval [−2, 2] with random p nonzero elements. In the
sample data w∗ = Av∗ no noise is assumed.

In relation with the Problem (4.1) and the N = 1 case, we define

C = {v ∈ R
k : ‖v‖1 ≤ p}, Q = {w∗}.
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Table 4 Numerical results of ALGO-T with different choices of αn

s TOL n err CPU-Time (s)

0.025 10−4 1217 9.955781066302840e − 05 0.2601

10−5 1737 9.976146968701992e − 06 0.3232

10−6 7964 9.998917402238431e − 07 1.3724

0.05 10−4 1144 9.981918927409253e − 05 0.2373

10−5 1927 9.993330212057856e − 06 0.4393

10−6 16046 9.999703190770469e − 07 2.7482

0.1 10−4 1052 9.965899513177035e − 05 0.2196

10−5 3291 9.997812913924868e − 06 0.6199

10−6 30645 9.999874607650179e − 07 5.0932

Thus, we define a convex function

c(v) = ‖v‖1 − p

and denote the relaxed set Cn by

Cn = {v ∈ R
k : c(vn) ≤ 〈vn − v, cn〉},

where cn ∈ ∂c(vn). The subdiffrential ∂c at vn ∈ R
k is defined by

[∂c(vn)] j = sign((vn) j ), j = 1, 2, . . . , k.

We use Algorithm 5 and Algorithm 6 with the initial point x0 = (v0, w0), where v0 and w0

are the original points of Rk and Rm , and select the parameters as follows:

ρn = 1, ζn = 1, αn = 1

104n
.

In Algorithm 6, the mapping h : Rm × R
k → R

m × R
k is given by h(x) = 0.5x for all

x ∈ R
m × R

k .
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Fig. 2 The behavior of err with TOL=10−6
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Table 5 Table of numerical results and comparisons among algorithms

k = 1024, m = 2048, p = 128 k = 1024, m = 2048, p = 256
CPU- CPU-

err n Time (s) err n Time (s)

TOL=10−4

Algorithm 5 8.9639e − 05 31 0.0392 9.0156e − 05 34 0.0470

Algorithm 6 9.0195e − 05 31 0.0398 9.0948e − 05 34 0.0477

Algorithm A 9.4987e − 05 73 1.0631 9.3423e − 05 80 1.1726

Algorithm B 9.5222e − 05 64 0.9101 9.9153e − 05 102 1.4686

Algorithm C 9.9863e − 05 73 0.0551 9.8711e − 05 80 0.0647

TOL=10−5

Algorithm 5 9.8757e − 06 47 0.0551 9.7017e − 06 50 0.0636

Algorithm 6 8.9280e − 06 48 0.0603 8.9587e − 06 51 0.0665

Algorithm A 9.8132e − 06 95 1.4282 9.6389e − 06 102 1.4870

Algorithm B 9.9517e − 06 111 1.5908 9.6227e − 06 158 2.2261

Algorithm C 9.4523e − 06 96 0.0726 9.3330e − 06 103 0.0794

TOL=10−6

Algorithm 5 9.8952e − 07 70 0.0784 9.9119e − 07 79 0.0895

Algorithm 6 9.5004e − 07 73 0.0877 9.9963e − 07 92 0.0935

Algorithm A 9.1353e − 07 118 1.7117 9.9407e − 07 124 1.7968

Algorithm B 9.8015e − 07 169 2.4079 9.8293e − 07 217 3.0598

Algorithm C 9.9037e − 07 118 0.0951 9.7732e − 07 125 0.0948

The following method of mean square error is used for measuring the recovery accuracy:

MSE = ‖vn − v∗‖2
k

,
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Fig. 3 Original signal and recovered signal with p = 128 and TOL=10−5

123



New Algorithms...

100 200 300 400 500 600 700 800 900 1000
−1

0

1
Original signal

100 200 300 400 500 600 700 800 900 1000
−1

0

1
Recovered signal by using Algorithm 5

100 200 300 400 500 600 700 800 900 1000
−1

0

1
Recovered signal by using Algorithm 6

100 200 300 400 500 600 700 800 900 1000
−1

0

1
Recovered signal by using Algorithm A

100 200 300 400 500 600 700 800 900 1000
−1

0

1
Recovered signal by using Algorithm B

100 200 300 400 500 600 700 800 900 1000
−1

0

1
Recovered signal by using Algorithm C

Fig. 4 Original signal and recovered signal with p = 256 and TOL=10−5

which is required to be smaller than the given tolerant TOL.
We also compare our Algorithms with some previous algorithms ([24, Algorithm 2-SEF],

[25, Algorithm (2.3)] and [10, Algorithm 4.1]). The parameters for each algorithm are chosen
as follows:

• Algorithm A ([24, Algorithm 2-SEF]): ρn = 3.9.

• Algorithm B ([25, Algorithm (2.3)]): γ = 1

2‖A‖2 .

• Algorithm C ([10, Algorithm 4.1]): ρn = 3.9.

The numerical results that we have obtained are shown in Table 5. In Figs. 3 and 4, we present
the illustration of the original signal and recovered signal by using the above algorithms.

Remark 6.1 The numerical experiments above show that our new algorithms outperform
several previous algorithms proposed in [10, 23–25] concerning the number of iterations and
the CPU time.
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