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Abstract
Given a base field k of characteristic zero, for each graphG, we associate the artinian algebra
A(G) defined by the edge ideal of G and the squares of the variables. We study the weak
Lefschetz property of A(G). We classify some classes of graphs with relatively few edges,
including paths and cycles, such that its associated artinian ring has the weak Lefschetz
property.
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1 Introduction

Agraded artinian algebra A = [A]0⊕[A]1⊕· · ·⊕[A]D over a field k has the weak Lefschetz
property (WLP for short) if there exists a linear form � ∈ [A]1 such that each multiplication
maps ·� : [A]i → [A]i+1 have maximal rank for all i , while A has the strong Lefschetz
property (SLP for short) if there exists a linear form � such that each multiplication map
·� j : [A]i −→ [A]i+ j has maximal rank for all i and all j . The study of Lefschetz properties
of graded algebras has connections to several areas of mathematics. Many authors have
studied the problem from many different points of view, applying tools from representation
theory, algebraic topology, differential geometry, commutative algebra, among others (see,
for instance, [6, 16, 22, 24–28, 30–33, 37]). Even the characteristic of k plays an interesting
role in the study of the Lefschetz properties; see, for example, [7–9, 20, 21, 26].
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The case of artinian k-algebras defined by monomial ideals, while being rather accessible,
is far from simple and the literature concerning their Lefschetz properties is quite extensive;
see, for instance, [2, 3, 11, 12, 22, 23, 26, 29] and the references therein. In this work, we focus
on a special class of artinian algebras defined by quadratic monomials, given as follows. Let
G = (V , E) be a simple graph on the vertex set V = {1, 2, . . . , n} and R = k[x1, . . . , xn]
be the standard graded polynomial ring over k. The edge ideal of G is given by

I (G) = (xi x j | {i, j} ∈ E) ⊂ R.

Then, we say that

A(G) = R

(x21 , . . . , x
2
n ) + I (G)

is the artinian algebra associated to G. We are interested in the following question.

Question 1.1 For which graphs G does A(G) have the WLP or the SLP? If A(G) does not
have the WLP or the SLP, in which degrees do the multiplication maps fail to have maximal
rank?

The algebra A(G) has been studied in [38] where the second author classifies the WLP/SLP
for some special classes of graphs including the complete graphs, the star graphs, the
Barbell graphs, and the wheel graphs. Note that artinian algebras defined by quadratic
monomial relations were considered in previous work by Michałek–Miró-Roig [23], and
Migliore–Nagel–Schenck [29]. These rings can be regarded as special cases of a more gen-
eral construction due to Dao and Nair [11] where they associate to each simplicial complex
Δ on n vertices the ring

A(Δ) = R
(
x21 , . . . , x

2
n

) + IΔ
,

in which IΔ is the Stanley-Reisner ideal of Δ. A recent work due to Cooper et al. [10] also
investigates the WLP of A(G) where the focus was on whiskered graphs.

Our main goal in this note is to classify some important classes of graphs G where A(G)

has the weak Lefschetz property, such as paths, cycles, and certain tadpole graphs. More
precisely, denote by Pn,Cn,Pann the paths, cycles, pan graphs (namely a cycle together with
a pendant attached to one vertex), respectively. Our main results are the following.

Theorem 1.2 (Theorems 4.2, 4.4 and 4.7) Assume that char(k) = 0.

(1) For an integer n ≥ 1, the ring A(Pn) has theWLP if andonly if n ∈ {1, 2, . . . , 7, 9, 10, 13}.
(2) For an integer n ≥ 3, the ring A(Cn) has theWLP if and only if n ∈ {3, 4, . . . , 11, 13, 14,

17}.
(3) For an integer n ≥ 3, the ring A(Pann) has the WLP if and only if n ∈

{3, 4, . . . , 10, 12, 13, 16}.
The proof combines Macaulay2 [13] computations with inductive arguments based on the
unimodality of the independence polynomials of the relevant graphs. We hope that our main
results will inspire further research on Question 1.1.

Our paper is structured as follows. In the next section we recall relevant terminologies and
results on artinian algebras, Lefschetz properties, and graph theory. In Section 3, we investi-
gate the unimodality and the mode of the independence polynomials of familiar graphs, such
as paths, cycles and pan graphs. These results are useful to study theWLP of artinian algebras
associated to these graphs. In Section 4, we prove our main theorems (see Theorems 4.2, 4.4
and 4.7) on the WLP of the artinian algebras associated to paths, cycles and the pan graphs.
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2 Preliminaries

In this sectionwe recall some standard terminologies and notations fromcommutative algebra
and combinatorial commutative algebra, as well as some results needed later on. For a general
introduction to artinian rings and theweak and strongLefschetz propertieswe refer the readers
to [17] and [28].

2.1 TheWeak Lefschetz Property

In this paper we consider artinian algebras defined by monomial ideals, and in this case it
suffices to choose the Lefschetz element to be the sum of the variables.

Proposition 2.1 [26, 35] Let I ⊂ R = k[x1, . . . , xn] be an artinian monomial ideal. Then
A = R/I has the WLP if and only if � = x1 + x2 + · · · + xn is a Lefschetz element for A.

A necessary condition for the WLP and SLP of an artinian algebra A is the unimodality
of the Hilbert series of A.

Definition 2.2 Let A = ⊕ j≥0[A] j be a standard graded k-algebra. The Hilbert series of A
is the power series

∑
dimk[A]i t i and is denoted by HS(A, t). The Hilbert function of A is

the function hA : N −→ N defined by hA( j) = dimk[A] j .
If A is an artinian graded algebra, then [A]i = 0 for i � 0. Denote

D = max{i | [A]i �= 0},
the socle degree of A. In this case, the Hilbert series of A is a polynomial

HS(A, t) = 1 + h1t + · · · + hDt
D,

where hi = dimk[A]i > 0. By definition, the degree of the Hilbert series for an artinian
graded algebra A is equal to its socle degree D. Since A is artinian and non-zero, this number
also agrees with the Castelnuovo-Mumford regularity of A, i.e.,

reg (A) = D = deg(HS(A, t)).

The algebra A is called level if its socle is concentrated in one degree.

Definition 2.3 A polynomial
∑n

k=0 akt
k ∈ R[t] with non-negative coefficients is called

unimodal if there is some m, such that

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an .

Set a−1 = 0. The mode of the unimodal polynomial
∑n

k=0 akt
k is defined to be the unique

integer i between 0 and n such that

ai−1 < ai ≥ ai+1 ≥ · · · ≥ an .

Proposition 2.4 [17, Proposition 3.2] If A has the WLP or SLP then the Hilbert series of A
is unimodal.

Finally, to study the failure of the WLP of tensor products of k-algebras, the following
simple lemma turns out to be quite useful.

Lemma 2.5 [5, Lemma 7.8] Let A = A′ ⊗k A′′ be a tensor product of two graded artinian
k-algebras A′ and A′′. Let �′ ∈ A′ and �′′ ∈ A′′ be linear elements, and set � = �′ + �′′ =
�′ ⊗ 1 + 1 ⊗ �′′ ∈ A. Then
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(a) If the multiplication maps ·�′ : [A′]i −→ [A′]i+1 and ·�′′ : [A′′] j −→ [A′′] j+1 are
both not surjective, then neither is the map

·� : [A]i+ j+1 −→ [A]i+ j+2.

(b) If the multiplication maps ·�′ : [A′]i −→ [A′]i+1 and ·�′′ : [A′′] j −→ [A′′] j+1 are
both not injective, then neither is the map

·� : [A]i+ j −→ [A]i+ j+1.

2.2 Graph Theory

From now on, by a graph wemean a simple graphG = (V , E)with the vertex set V = V (G)

and the edge set E = E(G). We start by recalling some basic definitions.

Definition 2.6 The disjoint union of the graphs G1 and G2 is a graph G = G1 ∪ G2 having
as vertex set the disjoint union of V (G1) and V (G2), and as edge set the disjoint union of
E(G1) and E(G2). In particular,∪nG denotes the disjoint union of n > 1 copies of the graph
G.

Definition 2.7 Let G = (V , E) be a graph.

(i) A subset X of V is called an independent set of G if for any i, j ∈ X , {i, j} /∈ E , i.e.,
the vertices in X are pairwise non-adjacent. If an independent set X has k elements,
then we say that X is an independent set of size k or a k-independent set of G.

(ii) An independent set X is called maximal if for every vertices v ∈ V \ X , X ∪ {v} is not
an independent set of G.

(iii) The independence number of a graph G is the largest cardinality of an independent set
of G. We denote this value by α(G).

(iv) A graph G is said to be well-covered if every maximal independent set of G has the
same size α(G).

Definition 2.8 The independence polynomial of a graph G is a polynomial in one variable t
whose coefficient of tk is given by the number of independent sets of size k of G. We denote
this polynomial by I (G; t), i.e.,

I (G; t) =
α(G)∑

k=0

sk(G)tk,

where sk(G) is the number of independent sets of size k in G. Note that s0(G) = 1 since ∅
is an independent set of any graph G.

The independence polynomial of a graph was defined by Gutman and Harary in [14]
as a generalization of the matching polynomial of a graph. For a vertex v ∈ V , define
N (v) = {w | w ∈ V and {v,w} ∈ E} and N [v] = N (v) ∪ {v}. The following equalities are
very useful for the calculation of the independence polynomial for various families of graphs
(see, for instance, [14, 18]).

Proposition 2.9 Let G1,G2,G be the graphs. Assume that G = (V , E), w ∈ V and e =
{u, v} ∈ E. Then the following equalities hold:

(i) I (G; t) = I (G \ w; t) + t · I (G \ N [w]; t);
(ii) I (G; t) = I (G \ e; t) − t2 · I (G \ (N (u) ∪ N (v)); t);
(iii) I (G1 ∪ G2; t) = I (G1; t)I (G2; t).
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2.3 Artinian Algebras Associated to Graphs

LetG = (V , E) be a graph, with the set of vertices V = {1, 2, . . . , n}. Let R = k[x1, . . . , xn]
be a standard graded polynomial ring over k. The edge ideal of G is the ideal

I (G) = (xi x j | {i, j} ∈ E) ⊂ R.

Then, we say that

A(G) = R

(x21 , . . . , x
2
n ) + I (G)

is the artinian algebra associated to G. The algebra A(G) contains significant combinatorial
information about G, as witnessed by

Proposition 2.10 The Hilbert series of A(G) is equal to the independence polynomial of G,
i.e.,

H S(A(G); t) = I (G; t) =
α(G)∑

k=0

sk(G)tk .

As a consequence, the Castelnuovo–Mumford regularity of A(G) is reg(A(G)) = α(G) and
A(G) is level if and only G is well-covered.

Therefore, the WLP/SLP of A(G) has strong consequences on the unimodality of the
independence polynomial of G. Indeed, if I (G; t) is not unimodal, then A(G) fails the WLP
by Proposition 2.4. Thus, to study the WLP/ SLP of A(G), it is enough to consider the
graphs whose independence polynomials are unimodal. Concerning the unimodality of the
independence polynomial of graphs, we have the following famous conjecture.

Conjecture 2.11 [1] If G is a tree or forest, then the independence polynomial of G is uni-
modal.

To our best knowledge, until now, the largest class of graphs for which the independence
polynomial is known to be unimodal is the class of claw-free graphs [15]. Recall that a
graph is said to be claw-free if it does not admit the complete bipartite graph K1,3 as an
induced subgraph. Conjecture 2.11 remains widely open. The following example due to
Bhattacharyya and Kahn [4] shows that one cannot expect the statement of Conjecture 2.11
to be true for bipartite graphs.

Example 2.12 Given positive integersm and n > m, let G = (V , E)with V = V1∪V2∪V3,
where V1, V2, V3 are disjoint; |V1| = n − m and |V2| = |V3| = m; E consists of the edges
of the complete bipartite graph with the bipartition V1 ∪ V2 and a perfect matching between
V2 and V3. Then G is a bipartite graph and for every i ≥ 0, si (G) = (2i − 1)

(m
i

) + (n
i

)
.

Therefore, for m ≥ 95 and n = �m log2(3)�, I (G; t) is not unimodal. As a consequence,
A(G) fails the WLP.

It is known that the Lefschetz properties depend strongly on the characteristic of the field.

Example 2.13 An empty graph is simply a graph with no edges. We denote the empty graph
on n vertices by En . Then

A(En) = R/(x21 , . . . , x
2
n ) and I (En; t) = (1 + t)n .

A well-known result of Stanley on complete intersections says that A(En) has the SLP if
char(k) = 0 or char(k) > n [36, 37]. This result does not hold if char(k) ≤ n, even for the

123



N. D. Hop and T. Q. Hoa

WLP. Indeed, in the case where char(k) = 2, it was known that A(En) has the WLP if and
only if n = 3 [7, 20]. In [20] Kustin and Vraciu showed that if n ≥ 5 and char(k) = p is
odd, then A(En) has the WLP if and only if p ≥ � n+3

2 �.
The complete graph on n vertices, denoted by Kn , is the graph where each vertex is

adjacent to every other. It follows that

A(Kn) = R/(x1, . . . , xn)
2 and I (Kn; t) = 1 + nt .

It is easy to see that A(Kn) has the SLP for any fieldk. Concerning disjoint unions of complete
graphs, we have the following.

Proposition 2.14 [29, Theorem 4.8] Let char(k) �= 2 and A(G) be the artinian algebra
associated to G = ∪r

i=1Kni . Assume n1 ≥ n2 ≥ · · · ≥ nr ≥ 1. Then A(G) has the WLP if
and only if one of the following holds:

(1) n2 = · · · = nr = 1, i.e., G is the disjoint union of a complete graph Kn1 and an empty
graph on r − 1 vertices.

(2) n3 = · · · = nr = 1 and r is odd.

In particular for every n ≥ 2, if G is the disjoint union of n complete graphs, none of which
is a singleton, then A(G) does not have the WLP.

3 Independence Polynomial of Some Graphs

In this section, we provide some results on the independence polynomial of some familiar
graphs, namely paths, cycles, and pan graphs. These results will be useful to prove our main
theorems in the next section.

3.1 Paths

Let Pn be the path on n vertices (n ≥ 1) (Fig. 1).

Proposition 3.1 The independence polynomial of Pn is

I (Pn; t) =
� n+1

2 �∑

i=0

(
n + 1 − i

i

)
t i .

Moreover, for every n ≥ 1, I (Pn; t) is unimodal, with the mode

λn =
⌈
5n + 2 − √

5n2 + 20n + 24

10

⌉

.

Proof Hopkins and Staton [19] showed that

I (Pn; t) = Fn+1(t),

1 2 3 4 5 6

Fig. 1 The path P6
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where Fn(t), n ≥ 0, are the so-called Fibonacci polynomials, which are defined recursively
by

F0(t) = 1; F1(t) = 1; Fn(t) = Fn−1(t) + t Fn−2(t).

Based on this recurrence, one can deduce that

I (Pn; t) =
� n+1

2 �∑

i=0

(
n + 1 − i

i

)
t i .

The unimodality of the independence polynomial of Pn is implied from the fact that the
independence polynomial of a claw-free graph is unimodal [15]. Now we determine the
mode of I (Pn; t). Let i be an integer such that 0 ≤ i ≤ � n+1

2 � and
(
n + 1 − i

i

)
≥

(
n − i

i + 1

)
.

This is clearly true if i ≥ n/2. If i < n/2, we have
(
n + 1 − i

i

)
≥

(
n − i

i + 1

)

⇔ n + 1 − i

(n − 2i)(n − 2i + 1)
≥ 1

i + 1

⇔5i2 − (5n + 2)i + n2 − 1 ≤ 0

⇔5n + 2 − √
5n2 + 20n + 24

10
≤ i ≤ 5n + 2 + √

5n2 + 20n + 24

10
.

As the inequality on the right holds for any i ≤ � n+1
2 �, we have

(
n + 1 − i

i

)
≥

(
n − i

i + 1

)
⇔ i ≥ 5n + 2 − √

5n2 + 20n + 24

10
.

This means that the mode of I (Pn; t) is equal to λn = � 5n+2−√
5n2+20n+24
10 �. ��

We summarize the important properties of the mode of I (Pn; t).
Lemma 3.2 For any n ≥ 1, one has the following.

(i) λn+1 ≥ λn;
(ii) λn+3 − 1 ≤ λn ≤ λn+4 − 1;
(iii) λn+11 ≥ λn + 3.

Proof Set αn = 5n+2−√
5n2+20n+24
10 . A straightforward computation shows that

αn+1 ≥ αn; αn+3 − 1 ≤ αn ≤ αn+4 − 1 and αn+11 ≥ αn + 3.

The lemma follows from basic properties of the ceiling function. ��

Table 1 provides information about the initial values of the mode of the independence
polynomial I (G; t) for the classes of graphs considered in this paper, by using Macaulay2
[34]. A dash indicates an undefined value.

123



N. D. Hop and T. Q. Hoa

Table 1 Graphs and modes of their independence polynomials

G
mode
of I (G; t)

n 1 2 3 4 5 6 7 8 9 10 11 12 13

Pn λn 0 1 1 1 2 2 2 2 3 3 3 4 4

Cn ρn – – 1 1 1 2 2 2 3 3 3 3 4

CEn χn – – – 1 1 2 2 2 2 3 3 3 4

Pann ζn – – 1 1 2 2 2 3 3 3 3 4 4

3.2 Cycles

Let Cn be the cycle on n vertices (n ≥ 3) (Fig. 2).

Proposition 3.3 The independence polynomial of Cn is

I (Cn; t) = I (Pn−1; t) + t I (Pn−3; t)

= 1 +
� n
2 �∑

i=1

n

i

(
n − i − 1

i − 1

)
t i .

Moreover, I (Cn; t) is unimodal, with the mode ρn = � 5n−4−√
5n2−4

10 � for all n ≥ 3.

Proof Hopkins and Staton [19] showed that

I (Cn; t) = 1 +
� n
2 �∑

i=1

n

i

(
n − i − 1

i − 1

)
t i .

The unimodality of the independence polynomial of Cn is implied from the fact that the
independence polynomial of a claw-free graph is unimodal [15]. Arguing as in the proof of
Proposition 3.1, solving for 1 ≤ i ≤ � n

2 � − 1 from

n

i

(
n − i − 1

i − 1

)
≥ n

i + 1

(
n − i − 2

i

)

2 1

6

54

3

Fig. 2 The cycle C6
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we get

(i + 1)(n − i − 1) ≥ (n − 2i − 1)(n − 2i).

Equivalently 5i2 − i(5n − 4) + n2 − 2n + 1 ≤ 0. Thus

5n − 4 − √
5n2 − 4

10
≤ i ≤ 5n − 4 + √

5n2 − 4

10
.

This implies that the mode of I (Cn; t) is equal to ρn =
⌈
5n−4−√

5n2−4
10

⌉
, as desired. ��

Lemma 3.4 For all n ≥ 5, there are inequalities λn−1 ≤ ρn ≤ λn−4 + 1 ≤ λn.

Proof By Lemma 3.2, λn−4 + 1 ≤ λn , hence it suffices to show that

λn−1 ≤ ρn ≤ λn−4 + 1.

For the inequality on the left, we have to show that

5(n − 1) + 2 − √
5(n − 1)2 + 20(n − 1) + 24

10
≤ 5n − 4 − √

5n2 − 4

10

⇔5n − 3 −
√
5n2 + 10n + 9 ≤ 5n − 4 −

√
5n2 − 4

⇔
√
5n2 − 4 + 1 ≤

√
5n2 + 10n + 9

⇔5n2 − 3 + 2
√
5n2 − 4 ≤ 5n2 + 10n + 9

⇔
√
5n2 − 4 ≤ 5n + 6 ⇔ (5n + 6)2 − (5n2 − 4) ≥ 0

⇔20n2 + 60n + 40 ≥ 0,

which is clear.
For the inequality on the right, we have to show that

5n − 4 − √
5n2 − 4

10
≤ 5(n − 4) + 2 − √

5(n − 4)2 + 20(n − 4) + 24

10
+ 1

⇔5n − 4 −
√
5n2 − 4 ≤ 5n − 8 −

√
5n2 − 20n + 24

⇔
√
5n2 − 20n + 24 + 4 ≤

√
5n2 − 4

⇔5n2 − 20n + 24 + 16 + 8
√
5n2 − 20n + 24 ≤ 5n2 − 4 (by squaring)

⇔8
√
5n2 − 20n + 24 ≤ 20n − 44

⇔2
√
5n2 − 20n + 24 ≤ 5n − 11

⇔4(5n2 − 20n + 24) ≤ (5n − 11)2

⇔5n2 − 30n + 25 ≥ 0 ⇔ 5(n − 1)(n − 5) ≥ 0

which is true for all n ≥ 5. The proof is complete. ��

3.3 Pans

The n-pan graph is the graph obtained by joining a cycle graph Cn to a singleton graph K1

with a bridge. We denote this graph by Pann .
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2 1

6

54

3

7

2 1

6

54

3

Fig. 3 Pan6 and CE6

Our goal is to show the independence polynomial of Pann is unimodal. For this, we
consider a family of graphs formed by adding an edge {n − 2, n} to the cycles Cn (n ≥ 4).
We denote this graph by CEn (Fig. 3).

Note that CEn is a claw-free graph, and hence its independence polynomial is unimodal
[15].

Lemma 3.5 The independence polynomial of CEn is

I (CEn; t) =
α(CEn)∑

i=0

si (CEn)t
i

= I (Pn−1; t) + t I (Pn−4; t)

=
� n
2 �∑

i=0

[(
n − i

i

)
+

(
n − i − 2

i − 1

)]
t i .

Let χn be the mode of I (CEn; t) and λn be the mode of I (Pn; t) as in Proposition 3.1. For
any n ≥ 5, one has λn−1 ≤ χn ≤ λn−4 + 1.

Proof The first assertion follows from applying Proposition 2.9 (i) for the vertex numbered
n.

Let 1 ≤ i ≤ λn−1. We need to show that

si−1(CEn) < si (CEn),

namely, (
n − i + 1

i − 1

)
+

(
n − i − 1

i − 2

)
<

(
n − i

i

)
+

(
n − i − 2

i − 1

)
.

This is clear for i = 1, so we assume that i ≥ 2.
Since i ≤ λn−1,

(n−i+1
i−1

) ≤ (n−i
i

)
. It suffices to show that

(
n − i − 1

i − 2

)
<

(
n − i − 2

i − 1

)

⇔(n − i − 1)(i − 1) < (n − 2i)(n − 2i + 1)

⇔5i2 − (5n + 2)i + n2 + 2n − 1 > 0

⇔i <
5n + 2 − √

5n2 − 20n + 24

10
or i >

5n + 2 + √
5n2 − 20n + 24

10
.
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As i ≤ λn−1, it is enough to show that

5(n − 1) + 2 − √
5(n − 1)2 + 20(n − 1) + 24

10
<

5n + 2 − √
5n2 − 20n + 24

10
− 1

⇔5n − 3 −
√
5n2 + 10n + 9 < 5n − 8 −

√
5n2 − 20n + 24

⇔5 +
√
5n2 − 20n + 24 <

√
5n2 + 10n + 9

⇔
√
5n2 − 20n + 24 < 3n − 4 (after squaring and simplifying)

⇔n2 − n − 2 > 0

⇔(n + 1)(n − 2) > 0,

which is clear for any n ≥ 4. It follows that λn−1 ≤ χn . It remains to show that if � n
2 � ≥ i ≥

λn−4 + 1 (note that � n
2 � is the independence number of CEn), then

si (CEn) ≥ si+1(CEn) ⇐⇒
(
n − i

i

)
+

(
n − i − 2

i − 1

)
≥

(
n − i − 1

i + 1

)
+

(
n − i − 3

i

)
.

By Lemma 3.2, i ≥ λn−4 + 1 ≥ λn−1, so
(n−i

i

) ≥ (n−i−1
i+1

)
thanks to Proposition 3.1. We

have to show that
(
n − i − 2

i − 1

)
≥

(
n − i − 3

i

)

⇔ i(n − i − 2) ≥ (n − 2i − 2)(n − 2i − 1)

⇔ 5i2 − (5n − 8)i + n2 − 3n + 2 ≤ 0

⇔ 5n − 8 − √
5n2 − 20n + 24

10
≤ i ≤ 5n − 8 + √

5n2 − 20n + 24

10
.

Since � n
2 � ≥ i ≥ λn−4 + 1, and by simple computations,

⌊n
2

⌋
≤ 5n − 8 + √

5n2 − 20n + 24

10
for all n ≥ 5,

the inequality on the right of the last chain is always true. Thus it is enough to prove the
inequality on the left, which would be true if

5n − 8 − √
5n2 − 20n + 24

10
≤ 5(n − 4) + 2 − √

5(n − 4)2 + 20(n − 4) + 24

10
+ 1

⇔5n − 8 − √
5n2 − 20n + 24

10
≤ 5n − 18 + √

5n2 − 20n + 24

10
+ 1,

which is clear. Thus χn ≤ λn−4 + 1. The proof is complete. ��
Note that Pann is not a claw-free graph. Hence, we need to show the unimodality of its

independence polynomial. We have the following.

Lemma 3.6 The independence polynomial I (Pann; t) of the n-pan graph is unimodal. Let ζn
be the mode of I (Pann; t). Then for all n ≥ 5, there are inequalities

χn+1 ≤ ζn ≤ ρn + 1 ≤ λn + 1 ≤ χn+1 + 1, (3.1)

where λn, ρn, χn are as in Propositions 3.1, 3.3 and Lemma 3.5.
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Proof By using Proposition 2.9 (i) for the vertex of K1, Propositions 3.1 and 3.3, we have

I (Pann; t) =
α(Pann)∑

i=0

si (Pann)t
i

= I (Cn; t) + t I (Pn−1; t)
= I (Pn−1; t) + t

(
I (Pn−3; t) + I (Pn−1; t)

)

=
� n
2 �+1∑

i=0

[(
n − i

i

)
+

(
n − i − 1

i − 1

)
+

(
n − i + 1

i − 1

)]
t i .

Therefore, we have

si (Pann) =
(
n − i

i

)
+

(
n − i − 1

i − 1

)
+

(
n − i + 1

i − 1

)

=
(
n − i + 1

i

)
+

(
n − i − 1

i − 1

)
+

(
n − i

i − 2

)

(
using

(
n

p

)
=

(
n − 1

p

)
+

(
n − 1

p − 1

))

= si (CEn+1) +
(
n − i

i − 2

)
(by Lemma 3.5). (3.2)

We first have the following assertion.
Claim 1: si−1(Pann) < si (Pann) for any i ≤ χn+1.

Proof of Claim 1: For any 1 ≤ i ≤ χn+1, si−1(CEn+1) ≤ si (CEn+1). Therefore by (3.2),
it suffices to show that

(
n − i + 1

i − 3

)
<

(
n − i

i − 2

)

⇐⇒(n − i + 1)(i − 2) < (n − 2i + 3)(n − 2i + 4)

⇐⇒5i2 − (5n + 17)i + n2 + 9n + 14 > 0

⇐⇒i <
5n + 17 − √

5n2 − 10n + 9

10
or i >

5n + 17 + √
5n2 − 10n + 9

10
.

By Lemma 3.5,

i ≤ χn+1 ≤ λn−3 + 1

<
5(n − 3) + 2 − √

5(n − 3)2 + 20(n − 3) + 24

10
+ 2

= 5n + 7 − √
5n2 − 10n + 9

10
.

Consequently, it suffices to show that

5n + 7 − √
5n2 − 10n + 9

10
≤ 5n + 17 − √

5n2 − 10n + 9

10
,

which is clear. Thus, we finish the proof of Claim 1.
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Now, by again Proposition 2.9, we have

I (Pann; t) =
α(Pann)∑

i=0

si (Pann)t
i

= I (Cn; t) + t I (Pn−1; t),
we get si (Pann) = si (Cn) + si−1(Pn−1). Next we have the following.
Claim 2: si (Pann) ≥ si+1(Pann) for any i ≥ ρn + 1.

Proof of Claim 2: Since i ≥ ρn + 1 and n ≥ 5, i − 1 ≥ ρn ≥ λn−1 by Lemma 3.4. It
follows that si (Cn) ≥ si+1(Cn) and si−1(Pn−1) ≥ si (Pn−1). Thus si (Pann) ≥ si+1(Pann),
as desired.

By Lemmas 3.4 and 3.5, ρn ≤ λn ≤ χn+1, which yields the last two inequalities in (3.1).
Moreover, it follows from Claims 1 and 2 that si−1(Pann) < si (Pann) for any i ≤ χn+1 and
si (Pann) ≥ si+1(Pann) for any i ≥ χn+1 +1. Thus, the independence polynomial I (Pann; t)
of the n-pan graph is unimodal. Moreover, χn+1 ≤ ζn by Claim 1 and ζn ≤ ρn + 1 by Claim
2. This concludes the proof. ��

4 WLP for Algebras Associated to Paths and Cycles

In this section, we study the WLP for artinian algebras associated to paths and cycles. From
nowon,we always assume char(k) = 0 and denote by � the sumof variables in the polynomial
ring we are working with.

4.1 Paths

The artinian algebra associated to Pn is

A(Pn) = R/K ,

where K = (x21 , . . . , x
2
n ) + (x1x2, x2x3, . . . , xn−1xn) ⊂ R = k[x1, . . . , xn]. The following

lemma is useful to an inductive argument on the WLP of A(Pn).

Lemma 4.1 For every integer i , there is a commutative diagram with exact rows

0 [A(Pn−2)]i−1

·�

[A(Pn)]i
·�

[A(Pn−1)]i
·�

0

0 [A(Pn−2)]i [A(Pn)]i+1 [A(Pn−1)]i+1 0.

Proof Assume A(Pn) = R/K and set I = K+(xn) and J = (K : xn). Then A(Pn−1) ∼= R/I
and A(Pn−2) ∼= R/J and we have the following exact sequence

0 R/J (−1)
·xn

R/K R/I 0.

The desired conclusion follows. ��
We now prove our first main result.

Theorem 4.2 The ring A(Pn) has the WLP if and only if n ∈ {1, 2, . . . , 7, 9, 10, 13}.
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Proof Using Macaulay2 [34] to compute the Hilbert series of the rings A(Pn) and
A(Pn)/�A(Pn) with 1 ≤ n ≤ 17, we see that A(Pn) has the WLP for each n ∈
{1, 2, . . . , 7, 9, 10, 13}. Furthermore, for each n ∈ {8, 11, 14, 15, 17}, A(Pn) only fails the
surjectivity in the multiplication map by � from degree λn to degree λn + 1. However, for
n ∈ {12, 16}, A(Pn) only fails the injectivity in the multiplication map by � from degree
λn − 1 to degree λn .

It remains to show the following.
Claim: The multiplication map ·� : [A(Pn)]λn −→ [A(Pn)]λn+1 is not surjective for all
n ≥ 17.

We will prove the above claim by induction on n, having just established the case n = 17.
For n ≥ 18, we consider the multiplication map

·� : [A(Pn)]λn −→ [A(Pn)]λn+1.

By Lemma 3.2, one has λn−1 ≤ λn ≤ λn−1 + 1, hence we consider the following two cases.
Case 1: λn = λn−1. In the diagram of Lemma 4.1, where i = λn−1 = λn , the right vertical
map is not surjective by the induction hypothesis, so neither is the middle vertical map.
Case 2: λn = λn−1 + 1.By Lemma 3.2, one has λn−1 = λn−2 = λn−3. In this case, wemust
have n ≥ 20 since λ16 = λ17 = λ18 = λ19 = 5.

Assume A(Pn) = R/K and set I = K + (xn−2) and J = K : xn−2. Then we have the
following exact sequence

0 R/J (−1)
·xn−2

R/K R/I 0,

where R/J ∼= A(Pn−4) ⊗k k[xn]/(x2n ) and R/I ∼= A(Pn−3) ⊗k A(P2), with

A(P2) = k[xn−1, xn]/(xn−1, xn)
2.

This exact sequence gives rise to the following commutative diagram, with exact rows

0 [R/J ]λn−1

·�

[A(Pn)]λn
·�

[R/I ]λn
·�

0

0 [R/J ]λn [A(Pn)]λn+1 [R/I ]λn+1 0.

To prove that themiddle vertical map is not surjective, it suffices to show that the right vertical
map

·� : [R/I ]λn −→ [R/I ]λn+1

is not surjective. By the inductive hypothesis, A(Pn−3) fails the surjectivity from degree
λn − 1 to degree λn , as λn−3 = λn − 1. Clearly, the Hilbert function of A(P2) is (1, 2),
and hence A(P2) fails the surjectivity from degree 0 to degree 1. Then by Lemma 2.5 (a),
R/I ∼= A(Pn−3) ⊗k A(P2) fails the surjectivity from degree λn to degree λn + 1, as desired.

��
The above theorem shows that A(Pn) fails theWLP since surjectivity fails for any n ≥ 17.

The next result also prove that A(Pn) fails the injectivity for some cases.

Proposition 4.3 Recall the mode λn of the independence polynomial of I (Pn; t). If n ≥ 12
is an integer such that λn = λn−1 + 1, then A(Pn) fails the injectivity from degree λn − 1 to
degree λn.
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Proof We prove the above proposition by induction on n ≥ 12. A computation with
Macaulay2 [34] shows that the proposition holds for n ∈ {12, 16, 20}. This covers all
cases from 12 to 20 due to Lemma 3.2. Now consider an n ≥ 21 such that λn = λn−1 + 1.
Set

n1 = max{ j | j < n and λ j = λ j−1 + 1},
n2 = max{ j | j < n1 and λ j = λ j−1 + 1},
m = max{ j | j < n2 and λ j = λ j−1 + 1}.

Then, by Lemma 3.2, 9 ≤ n − m ≤ 11. We have the following exact sequence

0 → A(Pm) ⊗k A(Pn−m−3)(−1)
·xm+2−−−→ A(Pn) → A(Pm+1) ⊗k A(Pn−m−2) → 0.

By using this exact sequence, it suffices to show that

·� : [A(Pm) ⊗k A(Pn−m−3)]λn−2 −→ [A(Pm) ⊗k A(Pn−m−3)]λn−1

is not injective. By the inductive hypothesis, A(Pm) fails the injectivity from degree λm − 1
to λm . Observe that λm = λn −3 and 6 ≤ n−m−3 ≤ 8. Hence by Table 1, λn−m−3 = 2 and
consequently, A(Pn−m−3) fails the injectivity from degree 2 to degree 3. By Lemma 2.5 (b),
A(Pm) ⊗k A(Pn−m−3) fails the injectivity from degree λm + 1 = λn − 2 to λn − 1, as
desired. ��

4.2 Cycles

The artinian algebra associated to the cycle on n vertices is

(Cn) = R/K ,

where K = (x21 , . . . , x
2
n ) + (x1x2, x2x3, . . . , xn−1xn, xnx1) ⊂ R = k[x1, . . . , xn]. Our

second main result is the following.

Theorem 4.4 The algebra A(Cn) has the WLP if and only if n ∈ {3, 4, . . . , 11, 13, 14, 17}.

Proof Recall that ρn is the mode of the independence polynomial ofCn . Using Macaulay2
[34] to compute the Hilbert series of A(Cn) and A(Cn)/�A(Cn) with 3 ≤ n ≤ 20, we can
check that:

• A(Cn) has the WLP for each 3 ≤ n ≤ 17 and n /∈ {12, 15, 16};
• for n ∈ {12, 15, 18, 19}, then A(Cn) fails the surjectivity from degree ρn to degree ρn+1;
• for n ∈ {16, 20}, then A(Cn) fails the injectivity from degree ρn − 1 to degree ρn .

Now assume that n ≥ 21. By Lemmas 3.2 and 3.4, λn−1 ≤ ρn ≤ λn−4 + 1 ≤ λn−1 + 1.
Consider the following two cases.
Case 1: ρn = λn−1. In this case, we will show that A(Cn) fails the WLP due to the failure
of the surjectivity from degree ρn to degree ρn + 1. Indeed, write A(Cn) = R/K , and let
I = K + (xn) and J = K : xn . Then A(Pn−1) ∼= R/I and A(Pn−3) ∼= R/J and we have the
following exact sequence

0 R/J (−1)
·xn

R/K R/I 0.
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This yields a commutative diagram

0 [A(Pn−3)]ρn−1

·�

[A(Cn)]ρn
·�

[A(Pn−1)]ρn
·�

0

0 [A(Pn−3)]ρn [A(Cn)]ρn+1 [A(Pn−1)]ρn+1 0.

The proof of Theorem 4.2 shows that the multiplication map

·� : [A(Pn−1)]ρn −→ [A(Pn−1)]ρn+1

is not surjective for any n ≥ 18. Hence the middle vertical map

·� : [A(Cn)]ρn −→ [A(Cn)]ρn+1

is not surjective, as desired.
Case 2: ρn = λn−1 + 1. In this case, Lemmas 3.2 and 3.4 yield λn−1 = λn−4.

Denote y1 = xn−1, y2 = xn−2. We have the following diagram

[A(Cn)]ρn
/(xn)

·�

[A(Pn−1)]λn−1+1
/(xn−3)

[
A(Pn−4) ⊗k

k[y1,y2]
(y1,y2)2

]

λn−4+1

·�

[A(Cn)]ρn+1 [A(Pn−1)]λn−1+2

[
A(Pn−4) ⊗k

k[y1,y2]
(y1,y2)2

]

λn−4+2
.

By the proof of Theorem 4.2 and the fact that n − 4 ≥ 17, the map

A(Pn−4)
·�−→ A(Pn−4)

fails the surjectivity at degree λn−4. Since the map

k[y1, y2]/(y1, y2)2 ·(y1+y2)−−−−−→ k[y1, y2]/(y1, y2)2

fails the surjectivity at degree 0, Lemma 2.5 (a) yields that the right vertical map of the
diagram fails the surjectivity at degree λn−4 + 1.

By the surjectivity of the horizontal maps in the diagram, we conclude that left vertical
map in the diagram fails the surjectivity at degree λn−4 + 1 = ρn . Hence A(Cn) does not
have the WLP. This concludes the proof. ��

Next, we consider a special case of the tadpole graphs. The tadpole graph T3,n is obtained
by joining a cycle C3 to a path Pn with a bridge (Fig. 4).

Clearly, T3,n is a claw-free graph. Therefore, the independence polynomial of T3,n is
unimodal [15]. By Proposition 2.9 for either of the vertices on the left of the three cycle, we

x1

x2

x3 y1 y2 y3 y4 y5

Fig. 4 Tadpole T3,5
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have

I (T3,n; t) = I (Pn+2; t) + t I (Pn; t) = I (Cn+3; t).
By Proposition 3.3, it follows that the mode of I (T3,n; t) is equal to that of I (Cn+3; t), which
is

ρn+3 =
⌈
5(n + 3) − 4 − √

5(n + 3)2 − 4

10

⌉

.

Corollary 4.5 The algebra A(T3,n) has the WLP if and only if n ∈ {1, 3, 4, 7}.
Proof The artinian algebra associated to T3,n is

A(T3,n) = k[x1, x2, x3, y1, . . . , yn]
(x21 , x

2
2 , x

2
3 , y

2
1 , . . . , y

2
n ) + (x1x2, x2x3, x3x1, x3y1, y1y2, . . . , yn−1yn)

.

Using Macaulay2 [34] to compute the Hilbert series of A(T3,n) and A(T3,n)/�A(T3,n)with
1 ≤ n ≤ 17, we can check that:

• A(T3,n) has the WLP for each n ∈ {1, 3, 4, 7};
• for n ∈ {2, 5, 8, 9, 11, 12, 14, 15, 16, 17}, then A(T3,n) fails the surjectivity from degree

ρn+3 to degree ρn+3 + 1;
• for n ∈ {2, 6, 10, 13, 14, 17}, then A(T3,n) fails the injectivity from degree ρn+3 − 1 to
degree ρn+3.

Now assume that n ≥ 18. By Lemmas 3.2 and 3.4, λn+2 ≤ ρn+3 ≤ λn+2 + 1. We consider
the following commutative diagram

0 [A(Pn)]ρn+3−1
·x1

·�

[A(T3,n)]ρn+3

·�

[A(Pn+2)]ρn+3

·�

0

0 [A(Pn)]ρn+3

·x1 [A(T3,n)]ρn+3+1 [A(Pn+2)]ρn+3+1 0.

The proof proceeds along the same lines as that of Theorem 4.4, replacing A(Cn+3) by
A(T3,n) and noting that n + 3 ≥ 21. ��

4.3 Pans

To study the WLP of rings associated to pans, we first examine the WLP of rings associated
to CEn (Fig. 5). The latter is by definition

A(CEn) = k[x1, . . . , xn]
(x21 , . . . , x

2
n ) + (x1x2, x2x3, . . . , xn−1xn, xnx1) + (xn−2xn)

.

Theorem 4.6 For an integer n ≥ 4, the algebra A(CEn) has the WLP if and only if n ∈
{4, 5, . . . , 8, 10, 11, 14}.
Proof By using Macaulay2 [34] to compute the Hilbert series of A(CEn)/�A(CEn) and
A(CEn) with 4 ≤ n ≤ 20, we can check that:

• A(CEn) has the WLP for each 4 ≤ n ≤ 14 and n /∈ {9, 12, 13};
• for n ∈ {9, 12, 15, 16, 18, 19}, A(CEn) fails the surjectivity from degree χn to degree

χn + 1;

123



N. D. Hop and T. Q. Hoa

x2 x1

x6

x5x4

x3

Fig. 5 The graph CE6

• for n ∈ {13, 17, 20}, A(CEn) fails the injectivity from degree χn − 1 to degree χn .

Now assume that n ≥ 21. We will prove that A(CEn) fails the surjectivity from degree χn to
degree χn + 1. The proof is similar to that of Theorem 4.4. Recall that by Lemmas 3.2 and
3.5,

λn−1 ≤ χn ≤ λn−4 + 1 ≤ λn−1 + 1. (4.1)

We consider the following two cases.
Case 1: χn = λn−1. Consider the exact sequence

0 A(Pn−4)(−1)
·xn

A(CEn) A(Pn−1) 0.

The proof of Theorem 4.2 shows that the multiplication map

·� : [A(Pn−1)]χn −→ [A(Pn−1)]χn+1

is not surjective for any n ≥ 18. Hence, the map

·� : [A(CEn)]χn −→ [A(CEn)]χn+1

is also not surjective, as desired.
Case 2: χn = λn−1 + 1. In this case, the chain (4.1) yields λn−1 = λn−4. As in the proof of
Theorem 4.4, denoting y1 = xn−1, y2 = xn−2, we have the following diagram

[A(CEn)]χn

/(xn)

·�

[A(Pn−1)]λn−1+1
/(xn−3)

[
A(Pn−4) ⊗k

k[y1,y2]
(y1,y2)2

]

λn−4+1

·�

[A(CEn)]χn+1 [A(Pn−1)]λn−1+2

[
A(Pn−4) ⊗k

k[y1,y2]
(y1,y2)2

]

λn−4+2
.

Since the right vertical map of the diagram fails the surjectivity at degree λn−4 + 1, we
conclude that the left verticalmap in the diagram fails the surjectivity at degreeλn−4+1 = χn ,
as desired. ��

Finally, we show the last main result.

Theorem 4.7 The algebra A(Pann) associated to the pan graph Pann has the WLP if and
only if n ∈ {3, 4, . . . , 10, 12, 13, 16}.
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x2 x1

x6

x5x4

x3
x7

Fig. 6 Pan6

Proof The artinian algebra associated to Pann (see Fig. 6) is

A(Pann) = k[x1, . . . , xn+1]
(x21 , . . . , x

2
n+1) + (x1x2, x2x3, . . . , xn−1xn, xnxn+1) + (x1xn)

.

By using Macaulay2 [34] to compute the Hilbert series of A(Pann) and
A(Pann)

�A(Pann)
with

3 ≤ n ≤ 20, we can check that:

• A(Pann) has the WLP for each 3 ≤ n ≤ 16 and n /∈ {11, 14, 15};
• for n ∈ {11, 14, 17, 18, 20}, A(Pann) fails the surjectivity fromdegree ζn to degree ζn+1;
• for n ∈ {15, 19}, A(Pann) fails the injectivity from degree ζn − 1 to degree ζn .

Now assume that n ≥ 21. Recall that by Lemma 3.6,

χn+1 ≤ ζn ≤ ρn + 1 ≤ λn + 1 ≤ χn+1 + 1. (4.2)

We consider the following two cases.
Case 1: ζn = χn+1. In this case, A(Pann) fails the surjectivity from degree ζn to degree ζn+1
by using the exact sequence

0 A(Pn−3)(−2)
·x1xn+1

A(Pann) A(CEn+1) 0.

Indeed, the proof of Theorem 4.6 shows that the multiplication map

·� : [A(CEn+1)]ζn −→ [A(CEn+1)]ζn+1

is not surjective for any n ≥ 21. Hence the map

·� : [A(Pann)]ζn −→ [A(Pann)]ζn+1

is also not surjective, as desired.
Case 2: ζn = χn+1 + 1. In this case, the chain (4.2) yields λn = ρn = ζn − 1. Since λn −
λn−3 ≤ 1 by Lemma 3.2, we have the following two subcases.
Subcase 2.1: λn = λn−3. As in the proof of Theorem 4.4, denote y1 = xn, y2 = xn+1, we
have the following diagram

[A(Pann)]ζn
/(xn−1)

·�

[A(Pn)]λn+1
/(x1)

[
A(Pn−3) ⊗k

k[y1,y2]
(y1,y2)2

]

λn−3+1

·�

[A(Pann)]ζn+1 [A(Pn)]λn+2

[
A(Pn−3) ⊗k

k[y1,y2]
(y1,y2)2

]

λn−3+2
.
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Since the right verticalmap of the above diagram fails the surjectivity at degreeλn−3+1 = ζn ,
we conclude that the left vertical map fails the surjectivity at the same degree.
Subcase 2.2: λn = λn−3 + 1. Set

m = max{ j | j ≤ n and λ j = λ j−1 + 1}.
Then by Lemma 3.2, n−2 ≤ m ≤ n and λm = λn . First, we consider the case wherem �= n.
Set

y =
{
xn−2 if m = n − 2,

xn+1 if m = n − 1.

Then we have the following diagram

0 [A(Pm)]ζn−2
·y

·�

[A(Pann)]ζn−1

·�

0 [A(Pm)]ζn−1 ·y [A(Pann)]ζn .

Since ζn − 2 = λn − 1 = λm − 1, we have the first vertical map of the diagram fails the
injectivity at degree λm − 1 by Proposition 4.3. It follows that the second vertical map of the
diagram fails the injectivity at degree ζn − 1.

To complete the proof of the theorem, we consider the case where m = n. In this case,
one has ρn = λn = λn−1 + 1. By Lemmas 3.2 and 3.4, λn−1 = λn−4 = λn−5 + 1. Hence
λn−4 = ζn − 2. Now we consider the following diagram

0 [A(Pn−4)]ζn−3
·xn−4xn−2

·�

[A(Pann)]ζn−1

·�

0 [A(Pn−4)]ζn−2 ·xn−4xn−2
[A(Pann)]ζn .

By Proposition 4.3, the first vertical map of the diagram fails the injectivity at degree λn−4 −
1 = ζn − 3. It follows that the second vertical map of the diagram fails the injectivity at
degree ζn − 1. Thus we complete the proof. ��
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