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Abstract
Let (R,m) be a Noetherian local ring such that ̂R is reduced. We prove that, when ̂R is S2, if
there exists a parameter ideal Q ⊆ R such that ē1(Q) = 0, then R is regular and ν(m/Q) ≤ 1.
This leads to an affirmative answer to a problem raised by Goto-Hong-Mandal [Goto, S.,
Hong, J., Mandal, M.: The positivity of the first coefficients of normal Hilbert polynomials.
Proc. Amer. Math. Soc. 139(7), 2399–2406 (2011)]. We also give an alternative proof (in
fact a strengthening) of their main result. In particular, we show that if ̂R is equidimensional,
then ē1(Q) ≥ 0 for all parameter ideals Q ⊆ R, and in characteristic p > 0, we actually
have e∗

1(Q) ≥ 0. Our proofs rely on the existence of big Cohen-Macaulay algebras.

Keywords Normal hilbert polynomial · Normal hilbert coefficients · Tight hilbert
coefficients · Regular local rings · Big cohen-macaulay algebras

Mathematics Subject Classification (2010) 13H15 · 13D40

1 Introduction

Let (R,m) be a Noetherian local ring of dimension d such that ̂R is reduced and let I ⊆ R
be an m-primary ideal. Then for n � 0, �(R/I n+1) agrees with a polynomial in n of degree
d , and we have integers e0(I ), . . . , ed(I ) such that

�(R/I n+1) = e0(I )

(

n + d

d

)

− e1(I )

(

n + d − 1

d − 1

)

+ · · · + (−1)ded(I ).

These integers ei (I ) are called the normal Hilbert coefficients of I .
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It is well-known that e0(I ) is the Hilbert-Samuel multiplicity of I , which is always a
positive integer. In this paper, we are interested in the first coefficient e1(I ). It was proved by
Goto-Hong-Mandal [10] that when ̂R is unmixed, e1(I ) ≥ 0 for allm-primary ideals I ⊆ R
(which answers a question posed by Vasconcelos [30]). They proposed a further problem in
[10, Section 3] regarding the vanishing of e1(I ) and the regularity of the normalization of
R. Since any m-primary ideal I is integral over a parameter ideal when the residue field is
infinite, to study e1(I )wemay assume that I = Q is a parameter ideal (i.e., it is generated by
a system of parameters). In this paper, we prove the following main result which will lead to
an affirmative answer to the question proposed in [10]. This theorem is also a generalization
of the main result of [27].

Theorem 1.1 (Theorem 3.7) Let (R,m) be a Noetherian local ring such that ̂R is reduced
and S2. If e1(Q) = 0 for some parameter ideal Q ⊆ R, then R is regular and ν(m/Q) ≤ 1.

In [7], it was shown that when R has characteristic p > 0, for n � 0, �(R/(I n+1)∗)
also agrees with a polynomial of degree d and one can define the tight Hilbert coefficients
e∗
0(I ), . . . , e

∗
d(I ) in a similar way (see Section 2 for more details). It is easy to see that

e1(I ) ≥ e∗
1(I ). We strengthen the main result of [10] in characteristic p > 0 by showing that

e∗
1(Q) ≥ 0 for any parameter ideal Q ⊆ R under mild assumptions.

Theorem 1.2 (Corollary 3.3) Let (R,m) be an excellent local ring of characteristic p > 0
such that ̂R is reduced and equidimensional. Then we have e∗

1(Q) ≥ 0 for all parameter
ideals Q ⊆ R.

Our proofs of both theorems rely on the existence of big Cohen-Macaulay algebras. In
fact, we show that the tight Hilbert coefficients e∗

i (I ) is a special case of what we call the
BCM Hilbert coefficients eBi (I ) associated to a big Cohen-Macaulay algebra B, and the
latter can be defined in arbitrary characteristic. In this context, we will show in Theorem 3.1
that e1(Q) ≥ eB1 (Q) ≥ 0 for all parameter ideals Q ⊆ R when B satisfies some mild
assumptions. This recovers and extends the main result of [10] in arbitrary characteristic.

Throughout this article, all rings are commutative with multiplicative identity 1. We will
use (R,m) to denote a Noetherian local ring with unique maximal ideal m. We refer the
reader to [4, Chapter 1-4] for basic notions such as Cohen-Macaulay rings, regular sequence,
Euler characteristic, integral closure, and the Hilbert-Samuel multiplicity.We refer the reader
to [29, Section 07QS] for the definition and basic properties of excellent rings. The paper
is organized as follows. In Section 2 we collect the definitions and some basic results on
big Cohen-Macaulay algebras and variants of Hilbert coefficients. In Section 3 we prove our
main results and we propose some further questions.

2 Preliminaries

Recall that an element x in a ring R is integral over an ideal I ⊆ R if it satisfies an equation
of the form xn + a1xn−1 + · · · + an−1x + an = 0, where ak ∈ I k . The set of all elements
integral over I forms an ideal and is denoted by I , called the integral closure of I . An ideal
I ⊆ R is called integrally closed if I = I . It is well-known that an element x ∈ R is integral
over I if and only if the image of x in R/p is integral over I (R/p) for all minimal primes p,
see [21, Proposition 1.1.5].
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Suppose that R is a Noetherian ring of prime characteristic p > 0. The tight closure of
an ideal I ⊆ R, introduced by Hochster–Huneke, is defined as follows:

I ∗ := {x ∈ R | there exists c ∈ R − ∪p∈Min(R)p such that cx pe ∈ I [pe] for all e � 0}.
An ideal I ⊆ R is called tightly closed if I = I ∗. In general, tight closure is always contained
in the integral closure, that is, I ∗ ⊆ I (see [15, Proposition on page 58]). Similar to integral
closure, an element x ∈ R is in the tight closure of I if and only if the image of x in R/p is
in the tight closure of I (R/p) for all minimal primes p, see [15, Theorem on page 49].

Let R be a Noetherian complete local domain and let I ⊆ R be an ideal. The solid closure
of I , denoted by I�, consists of those element x ∈ R such that there exists an R-algebra S
such that HomR(S, R) 	= 0 and such that x ∈ I S. One can define solid closure of ideals in
more general rings, see [16, Definition 1.2], but we will only need this notion for complete
local domains. It was shown in [16, Theorem 5.10] that solid closure is contained in the
integral closure, i.e., I� ⊆ I . If R has prime characteristic p > 0, then solid closure agrees
with tight closure I� = I ∗, see [16, Theorem 8.6].

2.1 Big Cohen-Macaulay Algebras

Let (R,m) be a Noetherian local ring. An R-algebra B, not necessarily Noetherian, is called
balanced bigCohen-Macaulay over R if every systemof parameters of R is a regular sequence
on B and mB 	= B. Balanced big Cohen-Macaulay algebras exist, in equal characteristic,
this is due to Hochster-Huneke [18], and in mixed characteristic, this is proved by André [1]
(see also [2, 3, 12]). In this article, we need to compare the closure operation induced by a
balanced big Cohen-Macaulay algebra with integral closure. We begin with the following
result.

In what follows, when R → S is a (not necessarily injective) homomorphism of rings,
I S ∩ R should be interpreted as the contraction of I S to R. That is, those elements of R
whose image in S are contained in I S.

Lemma 2.1 Let (R,m) be a Noetherian local ring. Then the following conditions are equiv-
alent:

(1) ̂R is equidimensional.
(2) There exists a balanced big Cohen-Macaulay R-algebra B such that

I B := I B ∩ R ⊆ I for all m-primary ideals I ⊆ R. (†)

(3) There exists a balanced big Cohen-Macaulay R-algebra B such that I B ⊆ I for all
I ⊆ R.

Proof Since (3) ⇒ (2) is obvious, we only need to show (1) ⇒ (3) and (2) ⇒ (1). Suppose
that ̂R is equidimensional and let P1, . . . , Pn be the minimal primes of ̂R. Let Bi be any
balanced big Cohen-Macaulay algebra over ̂R/Pi . Since ̂R is equidimensional, each system
of parameters of ̂R is also a systemof parameters of ̂R/Pi and thus Bi is a balanced bigCohen-
Macaulay algebra over ̂R. It follows that B := ∏n

i=1 Bi is a balanced big Cohen-Macaulay
algebra over ̂R.

Claim 2.2 (I ̂R)B = I B ∩ ̂R ⊆ I ̂R.
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Proof of the Claim Since integral closure can be checked after modulo each minimal prime,

it suffices to show that (I ̂R)B · (̂R/Pi ) ⊆ I (̂R/Pi ). It is easy to see (by our construction of
B) that

(I ̂R)B · (̂R/Pi ) = (I (̂R/Pi ))
Bi .

Since Bi is a solid algebra over the complete local domain ̂R/Pi by [16, Corollary 2.4], we
have

(I (̂R/Pi ))
Bi ⊆ (I (̂R/Pi ))

� ⊆ I (̂R/Pi ),

where the second inclusion follows from [16, Theorem 5.10]. 
�
By the claim above, we have

I B ⊆ (I ̂R)B ∩ R ⊆ I ̂R ∩ R = I ,

where the last equality follows from [21, Proposition 1.6.2].
We next assume there exists a balanced big Cohen-Macaulay R-algebra B that satisfies

(†). We first note that ̂B (them-adic completion of B) is still a balanced big Cohen-Macaulay
algebra over ̂R by [4, Corollary 8.5.3]. If I is anm-primary ideal, then we have R/I ∼= ̂R/I ̂R

and B/I B ∼= ̂B/ÎB (see [29, Tag 05GG]). It follows that (I ̂R)
̂B = (I B)̂R ⊆ I ̂R = I ̂R

(where the last equality follows from [21, Lemma 9.1.1]). Thus without loss of generality,
we may replace R by ̂R and B by ̂B to assume that R is complete. Suppose that R is not
equidimensional. Let P1, . . . , Pn be all the minimal primes of R such that dim(R/Pi ) =
dim(R), and Q1, . . . , Qm be all the minimal primes of R such that dim(R/Q j ) < d . We
pick y ∈ Q1 ∩ · · · ∩ Qm \ P1 ∪ · · · ∪ Pn . Then y is a parameter element in R, and thus y is a
nonzerodivisor on B, since B is balanced bigCohen-Macaulay. Since y ·(P1∩· · ·∩Pn) ⊆ √

0,
there exists t such that yt · (P1 ∩· · ·∩ Pn)t = 0. It follows that (P1 ∩· · ·∩ Pn)t B = 0. Hence

(P1 ∩ · · · ∩ Pn)
t ⊆ mk B ∩ R ⊆ mk

for all k by (†). Thus (P1 ∩ · · · ∩ Pn)t ⊆ ∩kmk = √
0 by [21, Exercise 5.14], which is a

contradiction. 
�
Remark 2.3 In the proof of Lemma 2.1, we have proved the fact that when (R,m) is a Noethe-
rian complete local domain, then every balanced big Cohen-Macaulay algebra B satisfies (†).
We suspect that when (R,m) is Noetherian, complete, reduced and equidimensional, then
every balanced big Cohen-Macaulay algebra B such that Supp(̂B) = Spec(R) satisfies (†).

2.2 Hilbert Coefficients

Let (R,m) be a Noetherian local ring of dimension d and let I ⊆ R be an m-primary ideal.
Then for all n � 0 we have

�(R/I n+1) = e0(I )

(

n + d

d

)

− e1(I )

(

n + d − 1

d − 1

)

+ · · · + (−1)ded(I ),

where e0(I ), . . . , ed(I ) are all integers, and are called the Hilbert coefficients of I .
Now suppose that R ⊕ I t ⊕ I 2t2 ⊕ · · · is module-finite over the Rees algebra R[I t]. For

instance, by a famous result of Rees (see [21, Corollary 9.2.1]), this is the case when ̂R is
reduced. Then one can show that for all n � 0, �(R/I n+1) agrees with a polynomial in n
and one can write

�(R/I n+1) = e0(I )

(

n + d

d

)

− e1(I )

(

n + d − 1

d − 1

)

+ · · · + (−1)ded(I ),
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where the integers e0(Q), . . . , ed(Q) are called the normal Hilbert coefficients. It is well-
known that e0(I ) = e0(I ) agrees with the Hilbert-Samuel multiplicity e(I , R) of I .

We also recall the tight Hilbert coefficients studied in [7]. Again, we suppose that ̂R is
reduced and R has characteristic p > 0. Then we have

�(R/(I n+1)∗) = e∗
0(I )

(

n + d

d

)

− e∗
1(I )

(

n + d − 1

d − 1

)

+ · · · + (−1)de∗
d(I )

for all n � 0, and the integers e∗
0(I ), . . . , e

∗
d(I ) are called the tight Hilbert coefficients, see

[7] for more details.
Now if B is a balanced big Cohen-Macaulay R-algebra that satisfies (†), thenwe know that

R⊕ I Bt ⊕ (I 2)Bt2 ⊕· · · is an R-algebra that is also module-finite over R[I t]: the fact that it
is an R-algebra follows from the fact that (I a)B(I b)B ⊆ (I a+b)B for all a, b (i.e., {(I n)B}n
form a graded family of ideals), and that it is module-finite over R[I t] follows because by
(†), it is an R[I t]-submodule of R ⊕ I t ⊕ I 2t2 ⊕ · · · , and the latter is module-finite over
R[I t] (note that R[I t] is Noetherian). Based on the discussion above, one can show that for
all n � 0, �(R/(I n+1)B) also agrees with a polynomial in n, and we write

�(R/(I n+1)B) = eB0 (I )

(

n + d

d

)

− eB1 (I )

(

n + d − 1

d − 1

)

+ · · · + (−1)deBd (I )

for all n � 0 (see [19] for more general results). We call the integers eB0 (I ), . . . , eBd (I ) the
BCM Hilbert coefficients with respect to B. It is easy to see that eB0 (I ) = e(I , R) is still
the Hilbert-Samuel multiplicity of I , and that we always have e1(I ) ≥ eB1 (I ) ≥ e1(I ) by
comparing the coefficients of nd−1 and noting that I n ⊆ (I n)B ⊆ I n for all n by (†).

Remark 2.4 Wepoint out that when (R,m) is excellent and ̂R is reduced and equidimensional
of characteristic p > 0, the tight Hilbert coefficient is a particular case of BCM Hilbert
coefficient. This follows from the fact that under these assumptions, there exists a balanced
big Cohen-Macaulay algebra B such that I ∗ = I B for all I ⊆ R (and any such B will satisfy
(†), since tight closure is contained in the integral closure [20, Theorem 1.3]). When R is
a complete local domain this is proved in [15, Theorem on page 250]. In general, one can
take such a Bi for each complete local domain ̂R/Pi , where Pi is a minimal prime of ̂R, and
let B = ∏

Bi . Since R is excellent, I ∗
̂R = (I ̂R)∗ (see [20, Proposition 1.5]) and as tight

closure can be checked after modulo each minimal prime, it follows that I ∗
̂R = (I ̂R)B and

thus I ∗ = I B .

Throughout the rest of this article, we will be mainly working with parameter ideals, i.e.,
ideals generated by a system of parameters. As we mentioned in the introduction, this will
not affect the study of e1(I ), since we can often enlarge the residue field and replace I by its
minimal reduction.

3 TheMain Results

In this section we prove our main results that eB1 (Q) (and hence e1(Q)) is always nonnegative
for a parameter ideal Q, and that e1(Q) = 0 for some parameter ideal Q implies R is regular.
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3.1 Non-negativity of ē1(Q) and eB1(Q)

Theorem 3.1 Let (R,m) be a Noetherian local ring such that ̂R is reduced and equidimen-
sional. Let B be any balanced big Cohen-Macaulay R-algebra that satisfies (†). Then for all
parameter ideals Q ⊆ R we have

e1(Q) ≥ eB1 (Q) ≥ 0 ≥ e1(Q).

Remark 3.2 e1(Q) ≥ 0 was the main theorem of [10, Theorem 1.1], and 0 ≥ e1(Q)was first
proved in full generality in [26, Theorem 3.6]. Our method gives alternative proofs, and is
inspired by some work of Goto [9] (in fact the proof that e1(Q) ≤ 0 via this method is due
to Goto [9], see also [13, Theorem 1.1] for a generalization).

Corollary 3.3 Let (R,m) be an excellent local ring of characteristic p > 0 such that ̂R is
reduced and equidimensional. Then we have e∗

1(Q) ≥ 0 for all parameter ideals Q ⊆ R.

Proof This follows from Theorem 3.1 and Remark 2.4. 
�
Proof of Theorem 3.1 Let Q = (x1, . . . , xd) ⊆ R. Set S = R[[y1, . . . , yd ]] and q = (y1 −
x1, . . . , yd −xd) ⊆ S. For all n ≥ 0 we have y1, . . . , yd is a system of parameters on S/qn+1,
and that

R/Qn+1 = S/(qn+1 + (y1, . . . , yd)).

We next note that

e0(Q) = e(Q, R) = χ(x1, . . . , xd ; R)

= χ(x1, . . . , xd , y1, . . . , yd ; S)

= χ(y1, . . . , yd , y1 − x1, . . . , yd − xd ; S)

= χ(y1, . . . , yd ; S/q)

= e(y1, . . . , yd ; S/q),

where the equalities on the second and the fourth lines follow from the fact that y1, . . . , yd
and y1 − x1, . . . , yd − xd are both regular sequences on S. Now since S/qn+1 has a filtration
by

(n+d
d

)

copies of S/q, by the additivity formula for multiplicity (see [21, Theorem 11.2.3])
we have

e(y1, . . . , yd ; S/qn+1) =
(

n + d

d

)

e(y1, . . . , yd ; S/q).

Putting these together, we have
(

n + d

d

)

e0(Q) =
(

n + d

d

)

e(y1, . . . , yd ; S/q) = e(y1, . . . , yd ; S/qn+1),

and

�(R/Qn+1) = �

(

S/qn+1

(y1, . . . , yd)S/qn+1

)

.

Since y1, . . . , yd is a system of parameters of S/qn+1, we have

�

(

S/qn+1

(y1, . . . , yd)S/qn+1

)

≥ e(y1, . . . , yd ; S/qn+1).

It follows that

�(R/Qn+1) ≥
(

n + d

d

)

e0(Q),
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and thus e1(Q) ≤ 0 (note that this does not require any assumption on ̂R).
It remains to show that eB1 (Q) ≥ 0 (since e1(Q) ≥ eB1 (Q) always holds, see the discussion

in Section 2.2). Since eB0 (Q) = e0(Q), it is enough to show that

�(R/(Qn+1)B) ≤
(

n + d

d

)

e0(Q) (1)

for any balanced big Cohen-Macaulay algebra B. Below we will prove a slightly stronger
result. Recall that for a parameter ideal (z1, . . . , zd) of R, the limit closure is defined as
(z1, . . . , zd)limR := ⋃

t (z
t+1
1 , . . . , zt+1

d ) : (z1z2 · · · zd)t . The limit closure does not depend
on the choice of the elements z1, . . . , zd (i.e., it only depends on the ideal (z1, . . . , zd)). This
is because (z1, . . . , zd)limR/(z1, . . . , zd) is the kernel of the natural map R/(z1, . . . , zd) →
Hd
m(R).

Claim 3.4 Set Λn+1 = {(α1, . . . , αd) ∈ N
d | αi ≥ 1 and

∑d
i=1 αi = 1 + n} and for each

α = (α1, . . . , αd) ∈ Λn+1, set Q(α) = (xα1
1 , . . . , xαd

d ). Then we have

�

⎛

⎝R/(
⋂

α∈Λn+1

Q(α)limR )

⎞

⎠ ≤
(

n + d

d

)

e0(Q).

Proof of the Claim Recall that we have already proved that
(

n + d

d

)

e0(Q) = e(y1, . . . , yd ; S/qn+1).

Moreover, we always have (for example, see [23, Theorem 9])

e(y1, . . . , yd ; S/qn+1) ≥ �

(

S/qn+1

(y1, . . . , yd)
limS/qn+1

)

.

Therefore it is enough to prove that

�

(

S/qn+1

(y1, . . . , yd)
limS/qn+1

)

≥ �

⎛

⎝R/(
⋂

α∈Λn+1

Q(α)limR )

⎞

⎠ . (2)

Consider z ∈ S whose image in S/qn+1 is contained in (y1, . . . , yd)
limS/qn+1 . This means

there exists some t ≥ 1 such that

(y1y2 · · · yd)t z ∈ (yt+1
1 , . . . , yt+1

d , (y1 − x1, . . . , yd − xd)
n+1)

⊆ (yt+1
1 , . . . , yt+1

d , (y1 − x1)
α1 , . . . , (yd − xd)

αd )

for each α = (α1, . . . , αd) ∈ Λn+1. This implies

z ∈ (y1, . . . , yd , (y1 − x1)
α1 , . . . , (yd − xd)

αd )limS = (y1, . . . , yd , x
α1
1 , . . . , xαd

d )limS .

But since S = R[[y1, . . . , yd ]], it is straightforward to check that

(y1, . . . , yd , x
α1
1 , . . . , xαd

d )limS = (xα1
1 , . . . , xαd

d )limR S + (y1, . . . , yd)S.

Thus if the image of z is contained in (y1, . . . , yd)
limS/qn+1 , then after modulo (y1, . . . , yd)S,

z ∈ (xα1
1 , . . . , xαd

d )limR for each (α1, . . . , αd) ∈ Λn+1, i.e., z ∈ ⋂

α∈Λn+1
Q(α)limR . It

follows that the natural surjection

S/qn+1 mod (y1,...,yd )S−−−−−−−−−−→ R/Qn+1
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induces a surjection

S/qn+1

(y1, . . . , yd)
limS/qn+1

� R
⋂

α∈Λn+1
Q(α)limR

.

This clearly establishes (2) and completes the proof of the claim. 
�
Finally, since x1, . . . , xd is a regular sequence on B, we have Q(α)limR ⊆ Q(α)B for

each α. It follows that
⋂

α∈Λn+1
Q(α)limR ⊆ ⋂

α∈Λn+1
Q(α)B . Now if x ∈ ⋂

α∈Λn+1
Q(α)B ,

then we have x ∈ ( ⋂

α∈Λn+1
Q(α)B

) ∩ R. But since x1, . . . , xd is a regular sequence on B,

it is not hard to check that
⋂

α∈Λn+1
Q(α)B = Qn+1B (see [28, Remark 3.3] or [11]) and

thus x ∈ Qn+1B ∩ R = (Qn+1)B . Therefore we have
⋂

α∈Λn+1
Q(α)B = (Qn+1)B . Putting

these together, we have
⋂

α∈Λn+1

Q(α)limR ⊆
⋂

α∈Λn+1

Q(α)B = (Qn+1)B .

Therefore by Claim 3.4, we have

�(R/(Qn+1)B) ≤
(

n + d

d

)

e0(Q)

as wanted. 
�
Remark 3.5 With notation as in Theorem 3.1, we do not know whether we have

�

(

S/qn+1

(y1, . . . , yd)
limS/qn+1

)

= �

(

R
⋂

α∈Λn+1
Q(α)limR

)

.

Remark 3.6 With notation as in Claim 3.4, fix a generating set (x1, . . . , xd) of Q, one may
try to define (Qn)lim := ⋂

α∈Λn
Q(α)lim and call this the limit closure of Qn . However, it

is not clear to us whether this is independent of the choice of the generators x1, . . . , xd . It is
also not clear to us (even when fixing the generators (x1, . . . , xd) of Q) whether {(Qn)lim}n
form a graded family of ideals, i.e., we do not know whether (Qa)lim(Qb)lim ⊆ (Qa+b)lim

for all a, b.

3.2 Vanishing of ē1(Q)

In this subsection we prove our main result. Recall that for a finitely generated R-module M ,
we use the notation ν(M) to denote its minimal number of generators.

Theorem 3.7 Let (R,m) be aNoetherian local ring such that ̂R is reduced and S2. If e1(Q) =
0 for some parameter ideal Q ⊆ R, then R is regular and ν(m/Q) ≤ 1.

Proof We first note that if R is Cohen-Macaulay, then by [19, Corollary 4.9], Q is integrally
closed.1 But then by the main result of [8], R is regular and ν(m/Q) ≤ 1.

We may assume that R is complete. We use induction on d := dim(R). If d ≤ 2, then
R is Cohen-Macaulay and we are done by the previous paragraph. Now suppose that d ≥ 3
and we have established the theorem in dimension < d . Let Q = (x1, . . . , xd), R′ =
R[t1, . . . , td ]mR[t1,...,td ], and x = t1x1 + · · · + td xd .

1 Using the language of [19], e1(Q) = 0 in a Cohen-Macaulay ring implies that the reduction number of the
filtration {Qn}n is 0, i.e., a minimal reduction of Q is equal to Q, this is saying that Q is integrally closed.
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Claim 3.8 We have R′′ := ̂R′/x ̂R′ is reduced, equidimensional, and S2 on the punctured
spectrum. Moreover, we have e1(QR′′) = 0.

Proof This is essentially contained in [10, Proof of Theorem 1.1] under the assumption that
R is (complete and) normal. The key ingredient is [22, Theorem 2.1]. Since [22] does not
require the normal assumption, the same proof as in [10] works in our setup. For the ease
of the reader (and also because the S2 on the punctured spectrum conclusion is not stated in
[10]), we give a complete and self-contained argument here.

First of all, since R′ is S2 and R0, we know that R′/x R′ is S1 and R0 (see [25, Lemma 10]),
so R′/x R′ and thus R′′ is reduced (as R′/x R′ is excellent). R′′ is clearly equidimensional
since ̂R′ is so and x is a parameter in ̂R′. To see R′′ is S2 on the punctured spectrum, it is
enough to show R′/x R′ is S2 on the punctured spectrum (as R′/x R′ is excellent). Nowwe use
a similar argument as in [25, Lemma 10] (the idea follows from [14]): every non-maximal
P ′ ∈ Spec(R′/x R′) corresponds to a prime ideal of R′ that contracts to a non-maximal
P ∈ Spec(R), thus (R′/x R′)P ′ is a localization of RP [t1, . . . , td ]/(t1x1 + · · · + td xd),
but at least one xi is invertible in RP (say x1 is invertible) so the latter is isomorphic to
RP [t2, . . . , td ], which is S2 as RP is S2, thus R′/x R′ is S2 on the punctured spectrum as
wanted.

It remains to show that e1(QR′′) = 0. By [21, Corollary 6.8.13], we have a short exact
sequence

0 → R′/Qn ·x−→ R′/Qn+1 → R′/(x, Qn+1) → 0.

Since e1(Q) = 0, for n � 0 we have

�(R′/Qn+1) = e0(Q) ·
(

n + d

d

)

+ e2(Q) ·
(

n + d − 2

d − 2

)

+ o(nd−2),

�(R′/Qn) = e0(Q) ·
(

n + d − 1

d

)

+ e2(Q) ·
(

n + d − 3

d − 2

)

+ o(nd−2).

It follows that

�(R′/(x, Qn+1)) = e0(Q) ·
(

n + d − 1

d − 1

)

+ o(nd−2). (3)

We next show that for all n � 0, Qn(R′/x R′) = Qn(R′/x R′). Once this is proved, we will
have QnR′′ = QnR′′ for all n � 0 by [21, Lemma 9.1.1] and thus (3) will tell us that

�(R′′/Qn+1R′′) = e0(Q)

(

n + d − 1

d − 1

)

+ o(nd−2).

Since x is a general element of Q, we have e0(Q) = e(Q, R′) = e(QR′′, R′′) = e0(QR′′)
and so the above equation implies that e1(QR′′) = 0 as wanted.

To show Qn(R′/x R′) = Qn(R′/x R′) for n � 0, let R′ denote the integral closure of
R′[Qt, t−1] inside R′[t, t−1]. Concretely, R′ is the Z-graded ring such that Rn = Qntn for
n > 0 and R′

n = R′tn for n ≤ 0. Consider the map

R′/(xt)R′ → R′[t, t−1]/(xt)R′[t, t−1].
If we localize at any prime ideal P of R′[Qt, t−1] that does not contain (Qt, t−1), then we
note that (R′/(xt)R′)P is integrally closed inside (R′[t, t−1]/(xt)R′[t, t−1])P . To see this,
one can “unlocalize" the ring R′, and consider the integral closure of R[t1, . . . , td ][Qt, t−1]
inside R[t1, . . . , td ][t, t−1], call this ring R. If one localizes the map

R/(xt)R → R[t1, . . . , td ][t, t−1]/(xt)R[t1, . . . , td ][t, t−1]
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at any prime ideal that does not contain (Qt, t−1) (say it does not contain x1t), then the
resultingmap is a localization of R[t2, . . . , td ][Qntn, t−1][ 1

x1t
] → R[t2, . . . , td ][t, t−1][ 1

x1t
],

and the former is already integrally closed in the latter.
Since the radical of (Qt, t−1) is the unique homogeneous maximal ideal of R[Qt, t−1],

it follows that R′/(xt)R′ and the integral closure of R′[Qt, t−1]/(xt)R′[Qt, t−1] inside
R′[t, t−1]/(xt)R′[t, t−1] agree in large degree. But note that for n > 0,

[R′/(xt)R′]n ∼= Qn

xQn−1
· tn ∼= Qn

x(Qn : x) · tn ∼= Qn

(x R′) ∩ Qn
· tn ∼= Qn(R′/x R′) · tn,

wherewehave used [21,Corollary 6.8.13] again,while the degree n part of the integral closure
of R′[Qt, t−1]/(xt)R′[Qt, t−1] inside R′[t, t−1]/(xt)R′[t, t−1] is Qn(R′/x R′) · tn . Thus
the fact that they agree in degree n � 0 is precisely saying that Qn(R′/x R′) = Qn(R′/x R′)
for n � 0. 
�

Now we come back to the proof of the theorem. Let S be the S2-ification of R′′. We have
a short exact sequence

0 → R′′ → S → S/R′′ → 0

such that S/R′′ has finite length (since R′′ is S2 on the punctured spectrum). Also note
that (S, n) is (complete) local by [17, Proposition (3.9)] and that S is reduced (since S is
a subring of the total quotient ring of R′′). Since R′′ → S is an integral extension, we
have I S ∩ R′′ = I for every ideal I ⊆ R′′ by [21, Proposition 1.6.1]. It follows that
�R′′(S/QnS) ≥ �R′′(R′′/QnR′′) for all n ≥ 0. Thus for n � 0 we have

e0(QR′′)
(

n + d

d

)

− e1(QR′′)
(

n + d − 1

d − 1

)

+ o(nd−1)

= �R′′(R′′/Qn+1R′′)
≤ �R′′(S/Qn+1S)

= [S/n : R/m] · �S(S/Qn+1S)

= [S/n : R/m] ·
(

e0(QS)

(

n + d

d

)

− e1(QS)

(

n + d − 1

d − 1

)

+ o(nd−1)

)

.

Since S is a rank one module over R′′, we also know that

e0(QR′′) = e(QR′′, R′′) = [S/n : R/m] · e(QS, S) = [S/n : R/m] · e0(QS),

where the second equality is the projection formula for theHilbert-Samuelmultiplicity (which
can be seen by combining [21, Theorems 11.2.4 and 11.2.7]). Putting these together we have

[S/n : R/m] · e1(QS) ≤ e1(QR′′) = 0.

But since e1(QS) ≥ 0 by [10, Theorem 1.1] (see Theorem 3.1), we must have e1(QS) = 0.
Now (S, n) is a reduced complete local ring that is S2 and dim(S) = d − 1, such that
e1(QS) = 0. By our inductive hypothesis, we know that S is regular. But since S/R′′ has
finite length, by the long exact sequence of local cohomology induced by 0 → R′′ → S →
S/R′′ → 0, we obtain that

Hi
m(R′′) = 0 for all i < dim(R′′) and i 	= 1, and H1

m(R′′) ∼= S/R′′.

At this point, we consider the long exact sequence of local cohomology induced by 0 →
̂R′ ·x−→ ̂R′ → R′′ → 0, we get

0 = H1
m(R′) → H1

m(R′′) → H2
m(R′) ·x−→ H2

m(R′) → H2
m(R′′) → · · · .
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If d ≥ 4, then dim(R′′) ≥ 3 and thus H2
m(R′′) = 0. Since ̂R′ is S2, H2

m(R′) has finite
length and the above exact sequence tells us that H2

m(R′) = 0 by Nakayama’s lemma. But
then by the above exact sequence again, we have H1

m(R′′) = 0 and hence S/R′′ = 0. Thus
R′′ ∼= S is regular. But then ̂R′ and hence R is regular as wanted.

Finally, suppose d = 3. Let B be a balanced big Cohen-Macaulay algebra of ̂R′ that is
m-adic complete, then B/x B is a balanced big Cohen-Macaulay algebra of R′′. It follows
that the canonical map R′′ → B/x B factors through S.

Claim 3.9 B/x B is a balanced big Cohen-Macaulay algebra over S.

Proof of the Claim It is clear that some system of parameters of S (namely those coming
from R′′) are regular sequences on B/x B. To see that every system of parameters of S is a
regular sequence on B/x B, we first note that B/x B is m-adically complete: since B is m-
adic complete, B/x B is derived m-complete by [29, Tag 091U], take (y, z) that is a system
of parameters of R′′, then as y, z is a regular sequence on B/x B, the derived completion
with respect to (y, z), which is B/x B itself, agrees with the usual completion with respect
to (y, z) by [29, Tag 0920] (equivalently, with respect to m as

√
(y, z) = m). Hence by

[4, Corollary 8.5.3], every system of parameters of S is a regular sequence on B̂/x B ∼=
B/x B. 
�

Note that dim(R′′) = dim(S) = 2 and S is regular, thus the long exact sequence of local
cohomology induced by 0 → R′′ → S → S/R′′ → 0 implies that H2

m(R′′) ∼= H2
m(S).

Hence we have the following commutative algebra:

H2
m(S)

H2
m(R′) ·x

H2
m(R′) H2

m(R′′)

φ

H3
m(R′) H3

m(R′) 0

0 = H2
m(B) H2

m(B/x B) H3
m(B) H3

m(B) 0

where the injectivity of φ follows from the fact that B/x B is a balanced big Cohen-Macaulay
algebra over S and thus faithfully flat over S (as S is regular). Chasing this diagram we find

that the map H2
m(R′) ·x−→ H2

m(R′) is surjective. But since ̂R′ is S2, H2
m(R′) has finite length,

thus H2
m(R′) = 0 by Nakayama’s lemma. Hence ̂R′ is Cohen-Macaulay and thus R′′ is also

Cohen-Macaulay. But then R′′ ∼= S and so R′′ is regular and thus ̂R′ is regular. Thus R is
regular as wanted.

Nowwehave established that R is regular, we can repeat the argument in the first paragraph
of the proof to show that ν(m/Q) ≤ 1 (essentially, this follows from the main result of [8]).


�
As a consequence, we answer the problem raised in [10, Section 3] for excellent rings.

Corollary 3.10 Let R be an excellent local ring such that ̂R is reduced and equidimensional.
Suppose that I ⊆ R is anm-primary ideal such that e1(I ) = 0. Then RN, the normalization
of R, is regular and I RN is normal (i.e., all powers of I RN are integrally closed in RN).

Proof Replacing R by R[t]mR[t], we may assume that the residue field of R is infinite (we
leave it to the readers to check that the hypotheses and conclusions are stable under such a
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base change). Let S be the S2-ification of R. We will show that the m-adic completion of ̂S
is regular. Since R is excellent, ̂S agrees with the S2-ification of ̂R by [17, Proposition 3.8].

Thus ̂S is semilocal, reduced, and S2. Since ĴS ∩ ̂R = J for every m-primary ideal J ⊆ ̂R

by [21, Proposition 1.6.1], we have �
̂R(̂R/J ) ≤ �

̂R(̂S/ĴS).
Let n1, . . . , ns be the maximal ideals of̂S and let Si := (̂S)ni (in fact, sincêS is complete,

we have ̂S ∼= ∏s
i=1 Si , and each Si is complete local, reduced, and S2). Then we have

e0(I )

(

n + d

d

)

− e1(I )

(

n + d − 1

d − 1

)

+ o(nd−1)

= �R(R/I n+1) = �
̂R(̂R/I n+1̂R)

≤ �
̂R(̂S/I n+1̂S)

=
s

∑

i=1

[Si/ni : R/m] · �Si (Si/I
n+1Si )

=
s

∑

i=1

[Si/ni : R/m] ·
(

e0(I Si )

(

n + d

d

)

− e1(I Si )

(

n + d − 1

d − 1

)

+ o(nd−1)

)

,

where we have used [21, Lemma 9.1.1] for the equality in the second line. Since ̂S is a rank
one module over ̂R, we also know that

e0(I ) = e(I ̂R, ̂R) =
s

∑

i=1

[Si/ni : R/m] · e(I Si , Si ) =
s

∑

i=1

[Si/ni : R/m] · e0(I Si ),

where we have used the projection formula for the Hilbert-Samuel multiplicity (see [21,
Theorems 11.2.4 and 11.2.7]). The above inequality implies that

s
∑

i=1

[Si/ni : R/m] · e1(I Si ) ≤ e1(I ) = 0.

But since e1(I Si ) ≥ 0 by [10, Theorem 1.1], we must have e1(I Si ) = 0 for all i . Let Q
be a minimal reduction of I (note that Q is a parameter ideal of R, since we have reduced
to the case that R has an infinite residue field). It follows that e1(QSi ) = 0 and thus by
Theorem 3.7, Si is regular and ν(ni/Q) ≤ 1. But then QSi is normal in Si . It follows that
̂S ∼= ∏s

i=1 Si is regular, Q̂S is normal in ̂S and in particular, Q̂S = ÎS.
Since S → ̂S ∼= ̂R ⊗R S is faithfully flat with geometrically regular fibers (as R is

excellent). We have S is regular and QS = I S is normal in S by [21, Theorem 19.2.1].
Finally, since S is regular, S agrees with the normalization RN of R.

Remark 3.11 The condition ̂R is S2 cannot be dropped in Theorem 3.7. This was already
observed in [10, Section 3]. We give a different example that is a complete local domain.
Let R = k[[x, xy, y2, y3]], where k is a field. Then the S2-ification of R is S = k[[x, y]]
and we have 0 → R → S → S/R ∼= k · y → 0. Let Q = (x, y2) ⊆ R and we claim that
e1(Q) = 0. To see this, note that QS = (x, y2) ⊆ S is normal and �(S/Qn+1S) = 2 · (n+2

2

)

.
It follows from the short exact sequence

0 → R/Qn+1 → S/Qn+1S → k → 0

that �(R/Qn+1) = 2 · (n+2
2

) − 1. In particular, e1(Q) = 0.
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Recall that a Noetherian local ring (R,m) of prime characteristic p > 0 is called F-
rational if every ideal generated by a system of parameters is tightly closed. It was mentioned
in [5] that Huneke asked that when ̂R is reduced and equidimensional of prime characteristic
p > 0, whether e∗

1(Q) = 0 for some system of parameters Q ⊆ R implies R is F-rational.
In general, counter-examples to the question were constructed in [5, Examples 5.4 and 5.5]
(in fact, the example in Remark 3.11 is a counter-example that is a complete local domain).
However, all these examples do not satisfy Serre’s S2 condition.

Let (R,m) be aNoetherian local ring and let B be a bigCohen-Macaulay R-algebra. Recall
that R is called BCMB -rational if R is Cohen-Macaulay and the natural map Hd

m(R) →
Hd
m(B) is injective, where d = dim(R). If R is an excellent local ring of prime characteristic

p > 0, then R is F-rational if and only if R is BCMB -rational for all big Cohen-Macaulay
algebra B, see [24, Proposition 3.5].

We propose the following conjecture relating the vanishing of eB1 (Q) and BCMB-rational
singularities, which modifies Huneke’s question and makes sense in all characteristics.

Conjecture 3.12 Let (R,m) be a Noetherian local ring such that ̂R is reduced and S2. Let
B be a balanced big Cohen-Macaulay R-algebra that satisfies (†). If eB1 (Q) = 0 for some
parameter ideal Q ⊆ R, then R is BCMB -rational.

In particular, if R is excellent and has characteristic p > 0 (such that ̂R is reduced and
S2), and e∗

1(Q) = 0 for some parameter ideal Q ⊆ R, then R is F-rational.

We have the following partial result towards Conjecture 3.12, which is an analog of the
main result of [27].

Proposition 3.13 Let (R,m) be a Noetherian local ring such that ̂R is reduced and equidi-
mensional. Let B be a balanced big Cohen-Macaulay R-algebra that satisfies (†). If
eB1 (Q) = e1(Q) for some parameter ideal Q ⊆ R, then R is BCMB -rational.

In particular, if R is excellent and has characteristic p > 0, and e∗
1(Q) = e1(Q) for some

parameter ideal Q ⊆ R, then R is F-rational.

Proof By Theorem 3.1, we know that eB1 (Q) = e1(Q) = 0. By the main result of [6],
e1(Q) = 0 implies that R is Cohen-Macaulay. By [19, Corollary 4.9], we have QB = Q.
Now we consider the commutative diagram:

R/Q B/QB

Hd
m(R) Hd

m(B)

where the injectivity of the top row follows from QB = Q, the injectivity of the left column is
because R is Cohen-Macaulay, and the injectivity of the right column is because B is balanced
big Cohen-Macaulay. Since R is Cohen-Macaulay, we know that Soc(R/Q) ∼= Soc(Hd

m(R)).
Chasing the commutative diagram we find that the map Hd

m(R) → Hd
m(B) is injective.

Therefore, R is BCMB -rational. 
�
Remark 3.14 It is clear from the proof of Proposition 3.13 that Conjecture 3.12 holds when
R is Cohen-Macaulay, and this essentially follows from [19, Corollary 4.9].
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