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Abstract
The invariant v-number was introduced very recently in the study of Reed-Muller-type codes.
Jaramillo and Villarreal (J. Combin. Theory Ser. A 177:105310, 2021) initiated the study of
the v-number of edge ideals. Inspired by their work, we take the initiation to study the v-
number of binomial edge ideals in this paper. We discuss some properties and bounds of the
v-number of binomial edge ideals. We explicitly find the v-number of binomial edge ideals
locally at the associated prime corresponding to the cutset ∅. We show that the v-number
of Knutson binomial edge ideals is less than or equal to the v-number of their initial ideals.
Also, we classify all binomial edge ideals whose v-number is 1. Moreover, we try to relate
the v-number with the Castelnuvo-Mumford regularity of binomial edge ideals and give a
conjecture in this direction.

Keywords v-number · Binomial edge ideals · Castelnuovo-Mumford regularity ·
Initial ideals · Completion set
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1 Introduction

Let R = K [x1, . . . , xn] = ⊕∞
d=0 Rd denote the polynomial ring in n variables over a field

K with the standard grading. For a graded ideal I of R, the set of associated prime ideals of
I , denoted by Ass(I ) or Ass(R/I ), is the collection of prime ideals of R of the form (I : f )
for some f ∈ Rd . In 2020, Cooper et al. introduced a new invariant, called v-number, for
graded ideals of R during the study of Reed-Muller-type codes [7].

Definition 1.1 ([7, Definition 4.1]) Let I be a proper graded ideal of R. The v-number of I ,
denoted by v(I ), is defined by

v(I ) := min{d ≥ 0 | ∃ f ∈ Rd and p ∈ Ass(I ) with (I : f ) = p}.
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For each p ∈ Ass(I ), we can locally define v-number as

vp(I ) := min{d ≥ 0 | ∃ f ∈ Rd with (I : f ) = p}.
Then v(I ) = min{vp(I ) | p ∈ Ass(I )}.

This invariant of I helps us understand the asymptotic behaviour of the minimum distance
function δI of projective Reed-Muller-type codes (see [7]). So far, very little is known about
the v-number, and [3, 11, 16, 32] are the only papers written in this direction. The first paper
entirely devoted to the v-number was written by Jaramillo and Villarreal [16], where they
studied the v-number of edge ideals. Motivated by their work in Jaramillo and Villarreal [16],
we take the initiation to study the v-number of binomial edge ideals.

Definition 1.2 Let G be a simple graph on the vertex set V (G) = [n] = {1, . . . , n} with the
edge set E(G). Consider the polynomial ring S = K [x1, . . . , xn, y1, . . . , yn] over a field K .
Then the binomial edge ideal of G, denoted by JG , is an ideal of S defined as

JG = 〈
fi j = xi y j − x j yi | {i, j} ∈ E(G) with i < j

〉
.

The study of binomial edge ideals was started in 2010 independently through the articles
[13] and [26]. Since then, this has become an intensive research topic in combinatorial
commutative algebra. A binomial edge ideal has a natural determinantal structure in the
sense that it can be seen as an ideal generated by a set of 2 × 2-minors of a 2 × n matrix
X of indeterminates. One of the primary motivations behind studying these ideals is their
connection to algebraic statistics, particularly their appearance in the study of conditional
independence statements [13, Section 4]. Moreover, it is proved in Conca et al. [4] that
binomial edge ideals belong to the class ofCartwright-Sturmfels ideals,whichwas introduced
in Conca et al. [5] inspired by the work of Cartwright and Sturmfels [2] and has many nice
properties.

Generally, people study algebraic properties and invariants of binomial edge ideals by
investigating the underlying graphs’ combinatorics. So far, lots of studies have been done
on binomial edge ideals in several directions (see the survey paper [29] and the references
therein). In this paper, we give a new direction in the study of binomial edge ideals by
investigating their v-number. We discuss some properties of the v-number of binomial edge
ideals and their initial ideals. There are many papers ([9, 18, 19, 21, 28]) on the upper bound
of (Castelnuovo-Mumford) regularity of binomial edge ideals, but the general lower bound
of the regularity of binomial edge ideals is only given by Matsuda and Murai [24]. We try to
establish a new lower bound on the regularity of binomial edge ideals using the v-number and
give a conjecture on the relation between v-number and regularity of binomial edge ideals.
The paper is organized in the following manner:

In Section 2,we discuss the necessary prerequisites. In Section 3,we study some properties
of the v-number of binomial edge ideals. For a vertex v of a graph G, we denote by Gv , the
following graph:

V (Gv) = V (G) and E(Gv) = E(G) ∪ {{i, j} | i, j ∈ NG(v), i �= j}.
Corresponding to a vertex v of a graph G, we have the following exact sequence (see [8,
Proof of Theorem 1.1]):

0 −→ S/JG −→ S/JGv ⊕ S/
〈
JG\{v}, xv, yv

〉 −→ S/
〈
JGv\{v}, xv, yv

〉 −→ 0.

The graphs G \ {v},Gv,Gv \ {v} play an important role in the study of binomial edge
ideals. These graphs and the above exact sequence help inductively to study the invariants
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(like regularity, depth, etc.) and properties (like unmixed, Cohen-Macaulay, etc.) of JG . In
Proposition 3.3, we show how v(JG) is related to v(JGv ) and v(JG\{v}). Then we define
completion set of G (Definition 3.4) with minimum and maximum completion number of G
(denoted by min-comp(G) and max-comp(G), respectively) to find some bounds on v(JG).
We explicitly find v∅(G), the v-number of JG locally at P∅(G), and get a combinatorial upper
bound of v(JG) in the following theorem:

Theorem 3.6 Let G be a simple graph. Then v∅(JG) = min-comp(G). In particular, we have
v(JG) ≤ min-comp(G).

As a corollary of Theorem 3.6, we get γ (G) ≤ v∅(G) in Corollary 3.9, where G is a con-
nected non-complete graph and γ (G) denotes the domination number ofG. In Theorem 3.11,
we prove the additivity of v-number for some radical ideals, and as an application of Theorem
3.11, we get the additivity of v-number of binomial edge ideals as follows:

Corollary 3.12 Let G = G1 � G2 be a graph. Then v(JG) = v(JG1) + v(JG2).

Next, we try to establish a relation between the v-number of binomial edge ideals and their
initial ideals.We show that under some circumstances, v(JG) ≤ v(in<(JG)) in Theorem 3.15
and as an applicationwe get in Corollary 3.17 that v(JG) ≤ v(in<(JG)) for Knutson binomial
edge ideals. In Example 3.18, we show that the v-number of initial ideals of binomial edge
ideals depends on the labelling of vertices. Finally, we end up this section by classifying all
binomial edge ideals with v-number 1 as follows:

Theorem 3.20 Let G be a simple connected graph. Then v(JG) = 1 if and only if G =
cone(v, H) for some non-complete graph H.

Section 4 of this paper is devoted to study the relation between regularity and v-number
of binomial edge ideals. In [6, Corollary 2.7], Conca and Varbaro showed that for a graded
ideal I in a polynomial ring R with a square-free initial ideal in<(I ) for some term order <,
we have reg(R/I ) = reg(R/in<(I )). Using this fact and looking at the initial ideal, we try
to give a relation between the v-number and regularity of binomial edge ideals. One of the
main results of this section is the following:

Theorem 4.5 Let G be a chordal graph. Thenmax-comp(G) ≤ reg(S/JG). In particular, we
have v(JG) ≤ v∅(JG) ≤ max-comp(G) ≤ reg(S/JG).

Also, we show that v∅(JG) ≤ reg(S/JG) in Theorem 4.6 for some classes of graphs,
including whisker graphs (see Corollary 4.8). In Example 4.9, we show that v∅(JG) could
be a better lower bound for reg(S/JG) than the lower bound given by Matsuda and Murai
in [24]. Also, we show in Example 4.10 that this lower bound is tight by providing a graph
G, which satisfies v(JG) = v∅(JG) = reg(S/JG). At the end, we show that for a given
n ∈ N, there exists a graph G satisfying reg(S/JG) − v(JG) = n (see Theorem 4.11), i.e.
the difference between v-number and regularity of JG can be arbitrarily large. In the last
section (Section 5), we put some open problems to give a future direction on the study of
v-number of binomial edge ideals. Also, due to Theorems 4.5, 4.6, and some evidence from
our computations, we conjecture the following:

Conjecture 5.3 Let G be a simple graph. Then v∅(JG) ≤ reg(S/JG). In particular, we have
v(JG) ≤ reg(S/JG).

N.B. Some of the results presented in this article bear resemblance to those found in
Jaramillo-Velez and Seccia [17], it’s worth noting that our approaches were distinct and
undertaken independently.
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2 Preliminaries

Let R = K [x1, . . . , xn] be a polynomial ring over a field K , with the standard gradation.
An ideal I of R is said to be a monomial ideal if I is generated by a set of monomials and
the unique minimal generating set of I is denoted by G(I ). A monomial ideal I is said to
be square-free if G(I ) consists of only square-free monomials. It is a well-known fact that
square-free monomial ideals are radical ideals and their associated prime ideals are generated
by a set of variables. Let < be a monomial order on R. For a graded ideal I ⊆ R, we denote
the initial ideal of I with respect to < by in<(I ). For a monomial m ∈ R, the support of
m, denoted by supp(m), is defined as supp(m) := {xi | xi divides m}. In this article, every
ideal is assumed to be graded.

In this paper, we assume all graphs are simple and whenever applicable connected also.
For T ⊆ V (G), we write G \ T to denote the induced subgraph of G on the vertex set
V (G) \ T . Again by G[T ], we mean the induced subgraph of G on the vertex set T . For a
vertex v ∈ V (G), we say NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)} the neighbour set of v in
G. We write NG [v] := NG(v) ∪ {v}. A path from u to v of length n in G is a sequence of
vertices u = v0, . . . , vn = v ∈ V (G), such that {vi−1, vi } ∈ E(G) for each 1 ≤ i ≤ n, and
vi �= v j if i �= j .

Definition 2.1 A path graph on n vertices, denoted by Pn , is a graph whose vertex set can
be ordered as v1, . . . , vn such that E(Pn) = {{vi , vi+1} | 1 ≤ i ≤ n − 1}. The length of Pn
is the number of edges in Pn , which is n − 1. An induced path of a graph G is an induced
subgraph of G, which is a path graph. We denote by �(G) the maximum length of an induced
path in G.

Definition 2.2 A cycle of length n, denoted by Cn , is a graph with n vertices v1, . . . , vn such
that E(G) = {{vi , vi+1} | 1 ≤ i ≤ n − 1} ∪ {{v1, vn}}. A graph is said to be chordal if it has
no induced cycle Cn for n ≥ 4.

Definition 2.3 Agraph is said to be complete if there is an edge between every pair of vertices.
We denote a complete graph on n vertices by Kn .

Remark 2.4 A vertex v ∈ V (G) is said to be a free vertex of G ifNG(v) is a complete graph.
It follows from [27, Proposition 2.1], that, v is a free vertex of G if and only if v /∈ T for all
T ∈ C (G). Also, from [8, Proof of Theorem 1.1] it is observed that T ∈ C (Gv) if and only
if v /∈ T and T ∈ C (G).

Definition 2.5 Let G be a graph with V (G) = [n]. A path π : i = i0, i1, . . . , ir = j from i
to j with i < j in G is said to be an admissible path if the following hold:

1. ik �= il for k �= l;
2. For each k ∈ {1, . . . , r − 1}, we have either ik < i or ik > j ;
3. The induced subgraph of G on the vertex set {i0, . . . , ir } has no induced cycle.

Remark 2.6 Corresponding to an admissible path π : i = i0, i1, . . . , ir = j from i to j with
i < j in G, we associate the monomial

uπ =
( ∏

ik> j

xik

)( ∏

il<i

yil

)

.

Then G = {uπ fi j | π is an admissible path from i to j with i < j} is a reduced Gröbner
basis of JG with respect to < by [13, Theorem 2.1]. Therefore, we have

G(in<(JG)) = {uπ xi y j | π is an admissible path from i to j with i < j}.
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Primary Decomposition of Binomial Edge Ideals

Avertex v ∈ V (G) is said to be a cut vertex ofG, if removal of v fromG increases the number
of connected components. Let G be a graph on the vertex set V (G) = [n]. A set T ⊆ [n] is
said to be a cutset of G if each t ∈ T is a cut vertex of G \ (T \ {t}). We denote by C (G)

the set of all cutsets of G. For T ⊆ [n], we denote the number of connected components of
the graph G \ T by cG(T ) (or sometimes by c(T ) if the graph is clearly understood from the
context). Let G1, . . . ,Gc(T ) be the connected components of G \ T . For each Gi , we denote
by G̃i , the complete graph on the vertex set V (Gi ). We set

PT (G) =
〈
⋃

i∈T
{xi , yi }, JG̃1

, . . . , JG̃c(T )

〉

.

Then PT (G) is a prime ideal. By [13, Corollary 2.2], JG is a radical ideal and from [13,
Corollary 3.9], the minimal primary decomposition of JG is

JG =
⋂

T∈C (G)

PT (G).

Note: Instead of writing vPT (G)(JG), the v-number of JG locally at an associated prime
PT (G), we will denote it by vT (JG).

Remark 2.7 For a prime ideal p in R, we have (p : 1) = p and hence, v(p) = 0. Note that
for a graph G, P∅(G) is a disjoint union of binomial edge ideals of complete graphs. Hence,
we have v(JKn ) = 0 and if G is a disjoint union of complete graphs, then also v(JG) = 0.

Remark 2.8 Let I be a radical ideal with I = p1 ∩· · ·∩pk as a primary decomposition. Then
we have by [1, Exercise 1.12, Lemma 4.4] that (I : f ) = pi if and only if f /∈ pi and f ∈ p j

for all j �= i . We will use this fact frequently in our proofs.

3 Properties of the v-Number of Binomial Edge Ideals

In this section, we study some properties of the v-number of binomial edge ideals. We
explicitly find v∅(JG) and give a combinatorial upper bound of v(JG). We try to establish the
relation between v(JG) and v(in<(JG)). Finally, we classify all binomial edge ideals with
v-number 1.

Proposition 3.1 Let G be a simple graph on the vertex set [n]. Then for any vertex i ∈ [n],
we have (JG : xi ) = JGi and (JG : yi ) = JGi .

Proof We first prove JGi ⊆ (JG : xi ). Note that JGi = JG + 〈
f pq | p, q ∈ NG(i), p <

q, {p, q} /∈ E(G)
〉
. Since JG ⊆ (JG : xi ), it is enough to show that f pq ∈ (JG : xi ) for

p, q ∈ NG(i) with p < q and {p, q} /∈ E(G). Now we can write

xi f pq = xi (xp yq − xq yp)

= xi x p yq − xpxq yi + xpxq yi − xi xq yp

= xp fiq + xq f pi .

Since {p, i}, {i, q} ∈ E(G), we get xi f pq ∈ JG . Hence, JGi ⊆ (JG : xi ).
Now, we will show (JG : xi ) ⊆ JGi . Let f ∈ (JG : xi ). This implies f xi ∈ JG . We

know that JG ⊆ JGi ⊆ PT (Gi ), for all T ∈ C (Gi ). Thus, we get f xi ∈ PT (Gi ), for
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all T ∈ C (Gi ). By Remark 2.4, C (Gi ) = {T ∈ C (G) | i /∈ T }. Thus, xi /∈ PT (Gi )

for all T ∈ C (Gi ). Therefore, we get f ∈ PT (Gi ) for all T ∈ C (Gi ), which implies
f ∈ ⋂

T∈C (Gi )
PT (Gi ) = JGi . Hence, (JG : xi ) ⊆ JGi .

Similarly, one can show that (JG : yi ) = JGi . The proof follows same as the above, where
for the first part of the proof, we get f pq yi = yq( f pi ) + yp( fiq). ��
Proposition 3.2 Let G be a simple graph on vertex set [n]. Then for i, j ∈ [n] we get
(Gi ) j = (G j )i .

Proof It is enough to prove that J(Gi ) j = J(G j )i . By Proposition 3.1, we can write J(Gi ) j =
(JGi : x j ) = ((JG : xi ) : x j ) = (JG : xi x j ) = (JG : x j xi ) = ((JG : x j ) : xi ) = (JG j :
xi ) = J(G j )i . ��
Proposition 3.3 Let G be a simple graph. Then the following hold:

(a) For any v ∈ V (G), we have v(JG) ≤ v(JGv ) + 1.
(b) For a vertex v of G, if there exists a cutset T of G such that v /∈ T and v(JG) = vT (JG),

then v(JGv ) ≤ v(JG).
(c) For a vertex v of G, if there exists a cutset T of G such that v ∈ T and v(JG) = vT (JG),

then v(JG\{v}) ≤ v(JG).

Proof (a):We knowC (Gv) = {T ∈ C (G) | v /∈ T } byRemark 2.4. Let f be a homogeneous
polynomial and T ∈ C (Gv) such that (JGv : f ) = PT (Gv) and deg( f ) = v(JGv ). Note
that T ∈ C (G) and PT (G) = PT (Gv) as v /∈ T . Then (JGv : f ) = PT (Gv) implies
(JG : xv f ) = PT (G) by Proposition 3.1. Hence, v(JG) ≤ v(JGv ) + 1.

(b): Let f be a homogeneous polynomial such that (JG : f ) = PT (G) and v(JG) =
deg( f ). Since v /∈ T , we have T ∈ C (Gv) by Remark 2.4. Now (JG : f ) = PT (G)

implies f ∈ PT ′(G) for all T ′ ∈ C (G) with T ′ �= T and f /∈ PT (G). Note that for every
T ′ ∈ C (Gv), we have PT ′(Gv) = PT ′(G). Therefore, f ∈ PT ′(Gv) for all T ′ ∈ C (Gv)with
T ′ �= T and f /∈ PT (Gv). Hence, (JGv : f ) = PT (Gv) and so, v(JGv ) ≤ v(JG).

(c): T is a cutset of G implies every t ∈ T is a cut vertex of G \ (T \ {t}). Then every
t ∈ T \ {v} is a cut vertex of G \ (T \ {t}) = (G \ {v}) \ ((T \ {v}) \ {t}), which gives
T \ {v} ∈ C (G \ {v}). Since v ∈ T , we have PT (G) = 〈

xv, yv
〉 + PT \{v}(G \ {v}). Since

xv, yv ∈ PT (G), we can choose a homogeneous polynomial f ∈ K [{xi , yi | i ∈ V (G\{v})}]
such that (JG : f ) = PT (G) and v(JG) = deg( f ). Now f PT (G) ⊆ JG implies f PT \{v}(G\
{v}) ⊆ JG\{v} as f ∈ K [{xi , yi | i ∈ V (G \ {v})}]. Thus, PT \{v}(G \ {v}) ⊆ (JG\{v} : f ).
Let g ∈ (JG\{v} : f ). Then f g ∈ JG\{v} ⊆ PT \{v}(G \ {v}). Since (JG : f ) = PT (G), we
have f /∈ PT (G) and so, f /∈ PT \{v}(G \ {v}). Thus, g ∈ PT \{v}(G \ {v}). Therefore, we get
(JG\{v} : f ) = PT \{v}(G \ {v}). Hence, v(JG\{v}) ≤ v(JG). ��
Definition 3.4 (Completion set) Let G be a simple graph. For a set V = {v1, . . . , vk} ⊆
V (G), we write GV = Gv1v2···vk := (. . . ((Gv1)v2) . . .)vk . Due to Proposition 3.2, GV does
not depend on the ordering of the elements of V , and thus, the definition of GV is well-
defined. A set W ⊆ V (G) is said to be a completion set of G if GW is a disjoint union of
complete graphs. A completion set W is said to be a minimal completion set of G if GU is
not a disjoint union of complete graphs for everyU � W . The minimum (respectively, max-
imum) cardinality among all the minimal completion sets of G is denoted by min-comp(G)

(respectively, max-comp(G)) and we call it theminimum completion (respectively,maximum
completion) number of G.
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Lemma 3.5 Let G be a graph. Let T1, . . . , Tk ∈ C (G) \ {∅} be some collection of cutsets of
G. Write I j = 〈

xi , yi | i ∈ Tj
〉
for each 1 ≤ j ≤ k. Then

(I1 + P∅(G)) ∩ · · · ∩ (Ik + P∅(G)) = (I1 ∩ · · · ∩ Ik) + P∅(G).

Proof It is enough to consider G is connected. Note that (I1 ∩ · · · ∩ Ik) + P∅(G) ⊆ (I1 +
P∅(G)) ∩ · · · ∩ (Ik + P∅(G)) is clear. We use induction on k to prove the reverse inclusion.
If k = 1, then there is nothing to prove. Suppose (I1 + P∅(G)) ∩ · · · ∩ (Ik−1 + P∅(G)) =
(I1 ∩ · · · ∩ Ik−1) + P∅(G) holds. Let f ∈ (I1 + P∅(G)) ∩ · · · ∩ (Ik + P∅(G)) = ((I1 ∩
· · · ∩ Ik−1) + P∅(G)) ∩ (Ik + P∅(G)). Since P∅(G) ⊆ Ik + P∅(G), we have ((I1 ∩ · · · ∩
Ik−1) + P∅(G)) ∩ (Ik + P∅(G)) = (I1 ∩ · · · ∩ Ik−1) ∩ (Ik + P∅(G)) + P∅(G). Then we
can write f = g + h, where g ∈ (I1 ∩ · · · ∩ Ik−1) ∩ (Ik + P∅(G)) and h ∈ P∅(G). Note
that {xi , yi | i ∈ Tk} ∪ { f pq | p < q and p, q ∈ V (G) \ Tk} is a reduced Gröbner basis of
Ik + P∅(G). Therefore, we can write g = g′ + h′ in the reduced form, such that g′ ∈ Ik and
h′ ∈ P∅(G). Now g ∈ I1 ∩ · · · ∩ Ik−1 implies each monomial term of g′ and h′ belongs to
I1 ∩ · · · ∩ Ik−1 as I1 ∩ · · · ∩ Ik−1 is a monomial ideal. Thus, g′ ∈ I1 ∩ · · · ∩ Ik and hence,
f = g′ + h′ + h ∈ (I1 ∩ · · · ∩ Ik) + P∅(G). ��
Theorem 3.6 Let G be a simple graph. Then v∅(JG) = min-comp(G). In particular, we have
v(JG) ≤ min-comp(G).

Proof Let min-comp(G) = k and {v1, . . . , vk} be a minimal completion set of G. Then
JG : xv1 · · · xvk = P∅(G) due to Proposition 3.1. Therefore, v∅(JG) ≤ min-comp(G). For
the reverse inequality, let f be a homogeneous polynomial such that (JG : f ) = P∅(G) and
v∅(JG) = deg( f ). Then f ∈ ⋂

T∈C (G)\{∅} PT (G) and f /∈ P∅(G). For every T ∈ C (G),

we can write PT (G) = 〈
xi , yi | i ∈ T

〉 + IT , where IT is a binomial edge ideal of disjoint
union of some complete graphs such that IT ⊆ P∅(G). Since f /∈ P∅(G), using Lemma 3.5,
we can write f = g + h such that (0 �=) g ∈ I and h ∈ P∅(G), where I is the square-free
monomial ideal given by

I =
⋂

T∈C (G)\{∅}

〈
xi , yi | i ∈ T

〉
.

Thus, deg( f ) ≥ min{deg(m) | m ∈ G(I )}. For every m ∈ G(I ), we have

m ∈
⋂

T∈C (G)\{∅}
PT (G) and m /∈ P∅(G).

Thus, (JG : m) = P∅(G) for every m ∈ G(I ). Therefore, we can choose f such
that f ∈ G(I ). Suppose f = xi1 · · · xir y j1 · · · y js . Then by Proposition 3.1, we get
{i1, . . . , ir , j1, . . . , js} is a completion set of G. Thus, deg( f ) = v∅(JG) ≥ min-comp(G).
Hence, v∅(JG) = min-comp(G) and v(JG) ≤ v∅(JG) = min-comp(G). ��
Remark 3.7 Let G be a graph with connected components G1, . . . ,Gk . It is easy to see
from Definition 3.4 that min-comp(G) = min-comp(G1) + · · · + min-comp(Gk). Then by
Theorem 3.6, we get v∅(JG) = v∅(JG1) + · · · + v∅(JGk ).

Definition 3.8 A dominating set of a graph G is a set D ⊆ V (G) such that every vertex not
in D has a neighbour in D. The domination number ofG, denoted by γ (G), is the cardinality
of a dominating set with minimum vertices.

Corollary 3.9 Let G be a connected non-complete graph. Then γ (G) ≤ v∅(G).
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Proof By Theorem 3.6, we have v∅(G) = min-comp(G). Thus, it is enough to show that any
minimal completion set of G is a dominating set of G. Let V = {v1, . . . , vk} be a minimal
completion set of G. Note that V is non-empty as G is non-complete. Suppose there is a
vertex u ∈ V (G) \ V such that u /∈ NG(vi ) for each 1 ≤ i ≤ k. Then u /∈ NGV (vk), which
gives a contradiction as GV is a complete graph. Thus, V is a dominating set of G and hence,
γ (G) ≤ v∅(G). ��
Lemma 3.10 Let I1 ⊆ R1 = K [x1, . . . , xn] and I2 ⊆ R2 = K [y1, . . . , ym] be two radical
ideals. Suppose P1 ∈ Ass(I1) and I1 + I2 := I1R + I2R, where R = R1 ⊗K R2, is
a radical ideal with Ass(I1 + I2) = {Q1 + Q2 | Q1 ∈ Ass(I1), Q2 ∈ Ass(I2)}. Then
((I1 + I2) : P1) = (I1 : P1) + I2.

Proof Wewrite J = I1 + I2. Let f ∈ (I1 : P1)+ I2. Then f = g+h for some g ∈ (I1 : P1)
and h ∈ I2. Since gP1 ⊆ I1 and h ∈ I2, we have f P1 = gP1 + hP1 ⊆ I1 + I2 = J .
Therefore, f ∈ (J : P1) and (I1 : P1) + I2 ⊆ (J : P1). Let f ′ ∈ (J : P1). Then f ′P1 ⊆ J .
Since G(P1) ⊆ R1 and I1 is radical, we have P1 � Q1 + Q2 for every Q1 ∈ Ass(I1) \ {P1}
and Q2 ∈ Ass(I2). Therefore, f ′ ∈ I ′

1 + I2, where I ′
1 = ⋂

Q1∈Ass(I1)\{P1} Q1. Then we
can write f ′ = g′ + h′ such that g′ ∈ I ′

1 and h′ ∈ I2. If g′ ∈ P1, then g ∈ I1 and hence,
f ′ ∈ J ⊆ ((I1 : P1) + I2). If g′ /∈ P1, then I1 : g′ = P1 as g′ ∈ I ′. In this case, we get
f ′ = g′ + h′ ∈ (I1 : P1) + I2, and hence, (J : P1) = (I1 : P1) + I2. ��
Theorem 3.11 (The v-number is additive) Let I1 ⊆ R1 = K [x1, . . . , xn] and I2 ⊆ R2 =
K [y1, . . . , ym] be two radical ideals. Suppose I1 + I2 := I1R+ I2R, where R = R1 ⊗K R2,
is a radical ideal with Ass(I1 + I2) = {P1 + P2 | P1 ∈ Ass(I1), P2 ∈ Ass(I2)}. Then

v(I1 + I2) = v(I1) + v(I2).

Proof Let fi ∈ Ri be a homogeneous polynomial and Pi ∈ Ass(Ii ) such that Ii : fi = Pi
and v(Ii ) = deg( fi ), where i ∈ {1, 2}. Then fi ∈ P for all P ∈ Ass(Ii ) \ {Pi } and fi /∈ Pi
for i = 1, 2. It is easy to observe that f1 f2 ∈ Q for all Q ∈ Ass(I1 + I2) \ {P1 + P2} and
f1 f2 /∈ P1+ P2. Therefore, ((I1+ I2) : f1 f2) = P1+ P2 and so, v(I1+ I2) ≤ v(I1)+v(I2).
For the reverse inequality, wewill use [11, Theorem 10]. Let v(I1+ I2) = vP1+P2(I1+ I2) for
some P1 ∈ Ass(I1) and P2 ∈ Ass(I2). Let J = I1+ I2, (I1 : P1)/I1 = 〈

g1+ I1, . . . , gr + I1
〉

and (I2 : P2)/I2 = 〈
h1 + I2, . . . , hs + I2

〉
. Consider φ : R �→ R/J and we write φ(x) = x

for any x ∈ R. Then we have
(
(I1 + I2) : (P1 + P2)

)
/J

=((I1 + I2) : P1) ∩ ((I1 + I2) : P2)/J
=((I1 : P1) + I2) ∩ ((I2 : P2) + I1)/J (by Lemma 3.10)

=((I1 : P1) + I2)/J ∩ ((I2 : P2) + I1)/J (by [15, Lemma 3.2])

=((I1 : P1) + J )/J ∩ ((I2 : P2) + J )/J

=((I1 : P1) ∩ (I2 : P2) + J )/J (by [15, Lemma 3.2])

=((I1 : P1)(I2 : P2) + J )/J (by [12, Lemma 3.1])

=(((I1 : P1) + J )/J )(((I1 : P1) + J )/J )

=〈
g1, . . . , gr

〉〈
h1, . . . , hs

〉

=〈
gi h j | 1 ≤ i ≤ r , 1 ≤ j ≤ s

〉
.
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By [11, Theorem 3.2], we have

vP1+P2(J ) = min{deg(gi h j ) | 1 ≤ i ≤ r , 1 ≤ j ≤ s and (J : gi h j ) = P1 + P2}.
Suppose vP1+P2(J ) = deg(gi h j ) = deg(gi ) + deg(h j ) for some gi and h j . Since J , I1, I2
are radical, J : gi h j = P1 + P2 implies I1 : g j = P1 and I2 : h j = P2. Thus,

v(I1) + v(I2) ≤ vP1(I1) + vP2(I2) ≤ deg(gi ) + deg(h j ) = vP1+P2(I1 + I2).

Since v(I1 + I2) = vP1+P2(I1 + I2), we have v(I1 + I2) = v(I1) + v(I2). ��
Corollary 3.12 Let G = G1 � G2 be a graph. Then v(JG) = v(JG1) + v(JG2).

Proof Since binomial edge ideals are radical ideals and Ass(JG) = {PT1(G1) + PT2(G2) |
T1 ∈ C (G1), T2 ∈ C (G2)}, we have v(JG) = v(JG1) + v(JG2) by Theorem 3.11. ��

Now, we will establish the relation between v(JG) and v(in<(JG)) for certain class of
graphs. For that, let us first discuss the primary decomposition of v(in<(JG)).

Let G be a simple graph. Let T ∈ C (G) and G1, . . . ,Gc(T ) be the connected components
of G \ T . For v = (v1, . . . , vc(T )) ∈ V (G1) × · · · × V (Gc(T )), we consider the following
prime ideal:

PT (v) = 〈
xi , yi | i ∈ T

〉 +
c(T )∑

k=1

〈{xi , y j | i, j ∈ V (Gk), i < vk, j > vk}
〉
.

By [22, Lemma 1], we get

in<(PT (G)) =
⋂

v∈V (G1)×···×V (Gc(T ))

PT (v).

Since in<(JG) is radical, by [4, Corollary 1.12], we have

in<(JG) =
⋂

T∈C (G)

in<(PT (G)).

Proposition 3.13 ([31, Proposition 3.3]) Let G be a simple graph. Then we have

Ass(in<(JG)) = {PT (v) | T ∈ C (G) and v ∈ V (G1) × · · · × V (Gc(T ))}.
Lemma 3.14 Let p1, . . . , pk be graded prime ideals of R. If in<(

⋂k
i=1 pi ) is a square-free

monomial ideal, then

in<

( k⋂

i=1

pi

)

=
k⋂

i=1

(
in<(pi )

)
.

Proof We have in<(
⋂k

i=1 pi ) ⊆ ⋂k
i=1(in<(pi )). Let m ∈ ⋂k

i=1(in<(pi )) be a monomial.
Then there exists fi ∈ pi such that in<( fi ) = m for each i ∈ {1, . . . , k}. Consider the
polynomial f = f1 · · · fk . Note that f ∈ ⋂k

i=1 pi and thus, in<( f ) = mk ∈ in<(
⋂k

i=1 pi ).
It is given that in<(

⋂k
i=1 pi ) is square-free, i.e., a radical ideal. Therefore,m ∈ in<(

⋂k
i=1 pi )

and the equality follows. ��
Theorem 3.15 Let G be a graph. If there exists T ′ ∈ C (G) such that v(in<(JG)) is attained
for some PT ′(v′) and in<(

⋂
T∈C (G)\{T ′} PT (G)) is radical, then

v(JG) ≤ v(in<(JG)).
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Proof Let G ′
1, . . . ,G

′
c(T ′) be the connected components of G \ T ′. By the given hypothesis,

there exists a square-free monomial m such that (in<(JG) : m) = PT ′(v′) for some v′ ∈
V (G ′

1) × · · · × V (G ′
c(T ′)) and v(in<(JG)) = deg(m). Then

(
in<(JG) : m) = PT ′(v′)

�⇒
( ⋂

T∈C(G)

in<(PT (G)) : m
)

= PT ′(v′)

�⇒
⋂

T∈C(G)

(
in<(PT (G)) : m) = PT ′(v′)

�⇒
⋂

T∈C(G)

(
( ⋂

v∈V (G1)×···×V (GC(T ))

PT (v)
) : m

)

= PT ′(v′)

�⇒
⋂

T∈C(G)
v∈V (G1)×···×V (GC(T ))

(PT (v) : m) = PT ′(v′).

Therefore, by Proposition 3.13, we getm ∈ PT (v) for all PT (v) ∈ Ass(in<(JG)) \ {PT ′(v′)}
andm /∈ PT ′(v′). This gives us thatm ∈ ⋂

T∈A in<(PT (G)), whereA = C (G)\{T ′}. Since
in<(

⋂
T∈A PT (G)) is radical, it follows from Lemma 3.14 that

⋂

T∈A
in<(PT (G)) = in<

( ⋂

T∈A
PT (G)

)

.

Thus, we have m ∈ in<(
⋂

T∈A PT (G)) and so, there exists f ∈ ⋂
T∈A PT (G) such that

in<( f ) = m. Suppose f ∈ PT ′(G). Then in<( f ) = m ∈ in<(PT ′(G)), which implies
m ∈ PT ′(v′) and this gives a contradiction as m /∈ PT ′(v′). Therefore, f /∈ PT ′(G) and we
get JG : f = PT ′(G). Hence v(JG) ≤ v(in<(JG)). ��

Conca and Varbaro in [6] introduced the notion of Knutson ideals inspired by the work of
Allen Knutson [20] on compatibly split ideals and degeneration.

Definition 3.16 (Knutson ideals) Let f ∈ R = K [x1, . . . , xn] be a polynomial such that its
leading term in<( f ) is a square-free monomial for some term order <. Define C f to be the
smallest set of ideals satisfying the following conditions:

1.
〈
f
〉 ∈ C f ;

2. If I ∈ C f , then I : J ∈ C f for every ideal J ⊆ R;
3. If I and J are in C f , then also I + J and I ∩ J must be in C f .

If I is an ideal in C f , we say that I is a Knutson ideal associated with f . More generally, we
say that I is a Knutson ideal if I ∈ C f for some f .

Matsuda introduced the notion of weakly closed graphs [23, Definition 2.1] as a general-
ization of closed graphs and studied the F-purity of binomial edge ideals of weakly closed
graphs. Later, Seccia [33, Theorem 4.1] proved that a graph G is weakly closed if and only
if JG is a Knutson ideal. As an application of Theorem 3.15, we give the following corollary
regarding the v-number of binomial edge ideals of weakly closed graphs.

Corollary 3.17 Let G be a weakly closed graph. Then v(JG) ≤ v(in<(JG)).
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Proof Since G is weakly closed, JG is a Knutson ideal. Then by the definition of Knutson
ideals, it follows that any associated prime of JG is Knutson. Let v(JG) = vT ′(JG) for some
T ′ ∈ C (G). Then

⋂
T∈C (G)\{T ′} PT (G) is Knutson by condition (3) of Definition 3.16. It

has been proved in Knutson [20] that the initial ideal of any Knutson ideal is radical. Thus,
G satisfies the hypothesis of Theorem 3.15 and hence, v(JG) ≤ v(in<(JG)). ��

Example 3.18 Consider the graph G in Fig. 1 with the labelling shown in (a). Then using the
reduced Gröner basis of JG discussed in Remark 2.6, we get

in<(JG) = 〈
x4y5, x3y6, x3y4, x2y4, x2y3, x1y2, x4y3y6, x5y3y4y6

〉
.

By [11, Procedure A1] and Macaulay2 [10], we get v(JG) = 3 and v(in<(JG)) = 4.
Therefore, in this case, we have v(JG) < v(in<(JG)).

Similarly, considering the same graph G in Fig. 1 with the labelling given in (b), we get
v(in<(JG)) = 3. Thus, v(JG) = v(in<(JG)) in this case.

Since the primary decomposition of JG does not depend on the labelling of V (G), v(JG)

remains the same for any labelling of a given graph. But, v(in<(JG)) may not remain the
same with different labelling of V (G).

We will now classify those graphs whose binomial edge ideals have v-number 1.

Definition 3.19 Let G be a graph and v /∈ V (G) be a vertex. The cone of v on G, denoted by
cone(v,G), is the graph with vertex set V (G)∪{v} and edge set E(G)∪{{u, v} | u ∈ V (G)}.
Theorem 3.20 Let G be a simple connected graph. Then v(JG) = 1 if and only if G =
cone(v, H) for some non-complete graph H.

Proof Suppose v(JG) = 1. Then there exists a homogeneous linear polynomial f such that
(JG : f ) = PT (G) for some T ∈ C (G). Suppose T �= ∅. Then there exists i ∈ T and
so, xi , yi ∈ PT (G). Therefore, f xi ∈ JG ⊆ P∅(G). But, P∅(G) cannot contain any linear
polynomial, and this gives a contradiction. Therefore, the only possibility is T = ∅, i.e.,
JG : f = P∅(G). Since JG = ∩T∈C (G)PT (G), we have f ∈ PT (G) for all T ∈ C (G) with
T �= ∅ and f /∈ P∅(G). Now each PT (G) can be written as PT (G) = 〈

xi , yi | i ∈ T
〉 + IT ,

where IT is an ideal generated by degree two homogeneous binomials. Since f is linear and
IT is a homogeneous binomial ideal of degree two, we have

f ∈
⋂

T∈C (G)\{∅}

〈
xi , yi | i ∈ T

〉
.

Fig. 1 Graph G with different labelling and different v(in<(JG ))
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Now, f belongs to a square-free monomial ideal and degree of f is 1 together imply there
exists v ∈ V (G) such that v ∈ T for all T ∈ C (G) \ {∅}. Suppose there exists u ∈ V (G)

such that u /∈ NG(v). Take T ⊆ NG(v) such that there is no path from u to v in G \ T
and T is minimal with such property. Then it is clear that T ∈ C (G) and T �= ∅ as G is
connected. But, v /∈ T and T is non-empty give a contradiction. Hence,NG [v] = V (G), i.e.,
G = cone(v, H), where H is the induced subgraph of G onNG(v). Suppose H is complete.
ThenG is complete and in this case, v(JG) = 0 as JG is prime. Therefore, H is non-complete
as v(JG) = 1.

Conversely, let G = cone(v, H) for some non-complete graph H . By Proposition 3.1,
we get JG : xv = JGv . Since G = cone(v, H), Gv is complete and JGv = P∅(G). Thus,
v(JG) ≤ deg(xv) = 1. Now H is non-complete, G is also non-complete, and so, JG is not a
prime ideal. Therefore v(JG) ≥ 1, which gives v(JG) = 1. ��

4 The v-Number and Castelnuovo-Mumford Regularity

In this section, we try to establish a relation between the v-number andCastelnuovo-Mumford
regularity of binomial edge ideals. For certain classes of graphs, we show that the v-number is
less than or equal to the regularity of binomial edge ideals. Our main technique is to observe
the inducedmatchings of the hypergraphs corresponding to the initial ideals of binomial edge
ideals.

Definition 4.1 A simple hypergraphH is a pair (V (H), E(H)), where V (H) is a set of finite
elements, known as the vertex set ofH and E(H) is a collection of subsets of V (H) such that
no two elements of E(H) contain each other, called the edge set of H. Elements of V (H)

are called vertices of H and elements of E(H) are called edges of H.

Let H be a simple hypergraph on the vertex set V (H) = {x1, . . . , xn}. For A ⊆ V (C),
we consider XA := ∏

xi∈A xi as a square-free monomial in the polynomial ring R =
K [x1, . . . , xn] over a field K . The edge ideal of the hypergraph H, denoted by I (H), is
an ideal of R defined by

I (H) = 〈
Xe | e ∈ E(H)

〉
.

In this sense, the family of square-free monomial ideals are in one to one correspondence
with the family of simple hypergraphs. For a square-free monomial ideal I of R, we denote
by H(I ) the corresponding simple hypergraph.

Definition 4.2 An induced matching in a simple hypergraph H is a set of pairwise disjoint
edges e1, . . . , er such that the only edges of H contained in

⋃r
i=1 ei are e1, . . . , er .

Proposition 4.3 ([25, Corollary 3.9]) Let H be a simple graph and M = {e1, . . . , er } be an
induced matching in H. Then

∑r
i=1(|ei | − 1) = (

∑r
i=1 |ei |) − r ≤ reg(R/I (H)).

Lemma 4.4 Let {v1, . . . , vk} form a minimal completion set of a connected graph G such
that vi ∈ NG(v1) ∪ · · · ∪ NG(vi−1) for all 2 ≤ i ≤ k. Then for each 2 ≤ i ≤ k, there exists
ui ∈ NG(vi ) such that ui /∈ NG(v1) ∪ · · · ∪ NG(vi−1) and there is no path from ui to v1 in
G[{v1, . . . , v̂i , . . . , vk, ui }].
Proof If NG(vi ) ⊆ NG(v1) ∪ · · · ∪ NG(vi−1), then it is clear that Gv1···v̂i ···vk is com-
plete, and this gives a contradiction to the fact that {v1, . . . , vk} is a minimal completion
set of G. Therefore, NG(vi ) � NG(v1) ∪ · · · ∪ NG(vi−1). Let NG(vi ) \ (NG(v1) ∪ · · · ∪
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NG(vi−1)) = {ui1 , . . . , uir }. Suppose for each 1 ≤ j ≤ r , there is a path from ui j to v1 in
G[{v1, . . . , v̂i , . . . , vk, ui j }]. Then ui j ∈ NG(vs j ) for some s j ∈ {i + 1, . . . , k} and there is
a path from vs j to v1 in G[{v1, . . . , v̂i , . . . , vk}]. Let i ′ = max{s1, . . . , sr } (si ’s need not be
distinct). Then {ui1 , . . . , uir } ⊆ NGv1 ···v̂i ···vi ′ (vi

′). Since there exists a path from vi ′ to v1 in
G[{v1, . . . , v̂i , . . . , vk}], we have Gv1···v̂i ···vk is complete, which contradicts the minimality
of {v1, . . . , vk}. This completes the proof. ��

Theorem 4.5 Let G be a chordal graph. Then max-comp(G) ≤ reg(S/JG). In particular,
we have v(JG) ≤ v∅(JG) ≤ max-comp(G) ≤ reg(S/JG).

Proof It is enough to assume G is connected. Let V = {v1, . . . , vk} be a minimal completion
set of G. Since G is connected, after a suitable relabelling of vertices in V we get an order
v1, . . . , vk such that

vi ∈ NGv1 ···vi−1
(vi−1) = NG(v1) ∪ · · · ∪ NG(vi−1) (1)

for each i = 2, . . . , k. From the Gröbner basis of JG , it is clear that in<(JG) changes with
the labelling of V (G). Our aim is to find a labelling of G for which there exists an induced
matching M in H = H(in<(JG)) such that

∑
e∈M (|e| − 1) ≥ k. We will find such suitable

labelling of V (G) and corresponding induced matching of H in a particular algorithmic
technique. Let us start.

Step-1: (Case-1A) If there exists u1 ∈ NG(v1) such that u1 /∈ NG [v2] ∪ · · · ∪NG [vk], then
label v1 = t1 = 1 and u1 = t1 + 1 = 2. In this case, consider the set M = {e1}, where
e1 = {x1, y2}.

(Case-1B) IfNG(v1) ⊆ NG [v2]∪ · · ·∪NG [vk], then take u1 as v2, and label v1 = t1 = 1
and u1 = v2 = t2 = t1 + 1 = 2. In this case, consider the set M = {e1}, where e1 =
{xt1 , yt1+1} = {x1, y2}.
Step-2: By Lemma 4.4, there exists u2 ∈ NG(v2) such that u2 /∈ NG(v1) and there is no
path from u2 to v1 in G[{v1, v̂2, . . . , vk, u2}]

(Case-2A) If there exists u2 ∈ NG(v2) such that u2 /∈ NG [v1] ∪ N̂G [v2] ∪ · · · ∪NG [vk],
then we choose such u2. In this situation, we label the vertices in the following fashion: If
v2 �= u1, then label v2 = t2 = t1 + 2 = 3 and label u2 = t2 + 1 = 4. In this case, update
M as M = {e1, e2}, where e2 = {xt2 , yt2+1} = {x3, y4}. If v2 = u1, then we have from
the previous case u1 = v2 = t2 = t1 + 1 and label u2 = t2 + 1. In this case, update M as
M = {e1, e2}, where e2 = {xt2 , yt2+1}.

(Case-2B) Suppose NG(v2) ⊆ NG [v1] ∪ N̂G [v2] ∪ · · · ∪ NG [vk]. Then there exists an
u2 ∈ {v3, . . . , vk} satisfying the condition of Lemma 4.4, otherwise {v1, v̂2, . . . , vk} will be
a minimal completion set of G. Let u2 = v2+ j such that j is the smallest. In this case, we
will relabel V as follows:

Label v2+ j as v3,

v3 as v4,

...

v2+ j−1 as v2+ j ,
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and others will remain the same. Note that the new ordering of vertices in V also satisfies
the property (1). So we can continue with this ordering. Now, label

v2 = t2 =
{
t1 + 1 if u1 = v2 in step-1

t1 + 2 if u1 �= v2 in step-1

and u2 = v3 = t3 = t2 + 1. In this case, we update the set M as M = {e1, e2}, where
e2 = {xt2 , yt2+1}.

Continue this process with the following i-th step:

Step-i: By Lemma 4.4, there exists ui ∈ NG(vi ) such that ui /∈ NG(v1) ∪ · · · ∪ NG(vi−1)

and there is no path from ui to v1 in G[{v1, . . . , v̂i , . . . , vk, ui }].
(Case-iA) If there exists ui ∈ NG(vi ) such that ui /∈ NG [v1]∪· · ·∪N̂G [vi ]∪· · ·∪NG [vk],

then we choose such ui . In this situation, we label the vertices in the following fashion: If
vi �= ui−1, then label vi = ti = ti−1 + 2 and label ui = ti + 1. In this case, update M as
M ∪ {ei }, where ei = {xti , yti+1}. Now if vi = ui−1, then we have from the previous case
ui−1 = vi = ti = ti−1 + 1 and label ui = ti + 1. In this case, update M as M ∪ {ei }, where
ei = {xti , yti+1}.

(Case-iB) Suppose NG(vi ) ⊆ NG [v1] ∪ · · · ∪ N̂G [vi ] ∪ · · · ∪ NG [vk]. Then there exists
a ui ∈ {vi+1, . . . , vk} satisfying the condition of Lemma 4.4, otherwise {v1, . . . , v̂i , . . . , vk}
will be a minimal completion set of G. Let ui = vi+ j such that j is the smallest. In this case,
we will relabel V as follows:

Label vi+ j as vi+1,

vi+1 as vi+2,

...

vi+ j−1 as vi+ j ,

and others will remain the same. Note that the new ordering of vertices in V also satisfies
the property (1). So we can continue with this ordering. Now, label

vi = ti =
{
ti−1 + 1 if ui−1 = vi in step-(i-1)

ti−1 + 2 if ui−1 �= vi in step-(i-1)

and ui = vi+1 = ti+1 = ti + 1. In this case, we update the set M as M ∪ {ei }, where
ei = {xti , yti+1}.
After completing k steps, we get a set M consisting of k edges e1, . . . , ek of H, where
ei = {xti , yti+1}, such that

k∑

i=1

(|ei | − 1) = k.

Claim: The set M forms an induced matching in H.
Proof of claim. Let S = ⋃

e∈M e. Then S = {xt1 , . . . , xtk , yt1+1, . . . , ytk+1}. By our choice
and labelling of vertices, it is clear that no two elements of M intersect each other. Now we
will show that the only edges of H contained in S are the edges that belong to M . Suppose
{xti , yt j+1} ∈ E(H) for some i �= j and xti , yt j+1 ∈ S. Then t j +1 > ti +1 and {ti , t j +1} ∈
E(G). We have chosen u j such that u j /∈ NG(v1)∪ · · · ∪NG(v j−1) and so, t j + 1 /∈ NG(ti )
as ti < t j , which is a contradiction. Thus, {xti , yt j+1} /∈ E(H)when i �= j and xti , yt j+1 ∈ S.
Hence the only edges of H with cardinality two contained in S are the edges that belong to
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M . Suppose e ∈ E(H) such that e /∈ M and e ⊆ S. Then |e| > 2. Corresponding to e there
exists an admissible path π : ti = α0, . . . , αl in G such that supp(uπ xti yαl ) ⊆ S. If one of
α1, . . . , αl (say αr ) is tp + 1 such that tp + 1 /∈ {t1, . . . , tk}, then either αr−1 or αr+1 cannot
belong to {t1, . . . , tk} by our choice of ui ’s. Because, if tp + 1 /∈ {t1, . . . , tk}, then tp + 1 is
adjacent to only tp among {t1, . . . , tk}. Suppose αr−1 /∈ {t1, . . . , tk} and αr−1 = tq + 1 for
some tq ∈ {t1, . . . , tk}. In this situation, we will get an induced cycle of length greater than 3
containing the vertices {tp, tp+1, tq+1, tq} and some of {t1, . . . , tk}, which is a contradiction
to the fact that G is chordal. Similarly, we will get a contradiction if αr+1 /∈ {t1, . . . , tk}.
Therefore, we should have {α0, . . . , αl} ⊆ {t1, . . . , tk}. Now αl = u j for some j . Then
v j /∈ {α0, . . . , αl} as ti < label of v j < label of u j as per our choice labelling. Thus, there
will be a path from u j to v1 in G[{v1, . . . , v̂ j , . . . , vk, u j }], which gives a contradiction due
to Lemma 4.4. Hence, M forms an induced matching in H.

By [6, Corollary 2.7], we have reg(S/JG) = reg(S/in<(JG)). Again by Proposition 4.3,
k ≤ reg(R/in<(JG)) as M is an induced matching in H with

∑
e∈M (|e| − 1) = k. The

completion set V is chosen arbitrarily and hence, max-comp(G) ≤ reg(S/JG). ��
Theorem 4.6 If a graph G has a minimal completion set {v1, . . . , vk} such that for each
1 ≤ i ≤ k there exists ui ∈ NG(vi ) such that ui /∈ NG [v1] � · · · � N̂G [vi ] � · · · � NG [vk],
then v∅(JG) ≤ k ≤ reg(S/JG).

Proof Let us label the vertex vi as i and the vertexui as k+i for each 1 ≤ i ≤ k. The remaining
vertices can be labelled arbitrarily. Let H be the corresponding hypergraph of the in<(JG)

with respect to our choice of labelling. Now consider the set M = {e1, . . . , ek} ⊆ E(H),
where ei = {xi , yk+i } ∈ E(H) for each i = 1, . . . , k. Looking at theGröbner basis of JG , it is
easy to see thatM forms an inducedmatching inH as k+i ∈ NG(i), but k+i /∈ NG [1]�· · ·�
N̂G [i] � · · · �NG [k]. Thus, reg(S/I (H)) ≥ ∑k

i=1(|ei | − 1) = k by Proposition 4.3. Hence,
by [6, Corollary 2.7] and Theorem 3.6, we get v∅(JG) ≤ k ≤ reg(S/I (H)) = reg(S/JG).��
Definition 4.7 LetG be a graphwith V (G) = {v1, . . . , vn}. Thewhisker graph ofG, denoted
by WG , is the graph attaching n new vertices {u1, . . . , un} to G as follows:

• V (WG) = {v1, . . . , vn, u1, . . . , un},
• E(WG) = E(G) ∪ {{vi , ui } | i = 1, . . . , n}.

Corollary 4.8 Let G be a graph with V (G) = [n]. Then v∅(WG) = n ≤ reg(S/JWG ).

Proof Note that {1, . . . , n} is contained in every completion set ofWG . But, {1, . . . , n} itself
is a minimal completion set of WG . Thus, {1, . . . , n} is the only minimal completion set of
WG . Hence, we get the desired result by Theorems 3.6 and 4.6. ��

Example 4.9 Let G be the graph given in Fig. 2 and S = Q[x1, . . . , x10, y1, . . . , y10]. Using
Macaulay2, we get reg(S/JG) = 6. Also, we see that �(G) = length of the longest induced
path in G = 4. By Corollary 4.8, we get v∅(JG) = 5. Thus, we have �(G) < v∅(JG) <

reg(S/JG). This example shows that v∅(JG) can be a better lower bound for regularity of
binomial edge ideals than the lower bound given by Matsuda and Murai [24].

Example 4.10 Let G be the graph shown in Fig. 3 and S = Q[x1, . . . , x8, y1, . . . , y8]. Using
[11, Procedure A1] and Macaulay2, we get v(JG) = 4 and reg(S/JG) = 4. On the other
hand, {1, 2, 3, 4} is a completion set of G. Therefore, v∅(JG) = 4 by Theorem 3.6. In this
example, we get v(JG) = v∅(JG) = reg(S/JG). Hence, our given bound in Theorem 4.6 is
sharp.
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Fig. 2 Graph G with
�(G) < v∅(JG ) < reg(S/JG )

Theorem 4.11 For every n ∈ N, there exists a graph G such that reg(S/JG) − v(JG) = n.
Moreover, for every n ∈ N, there exists a graph G such that reg(S/JG) − v∅(JG) = n.

Proof For n = 0, the result follows fromExample 4.10. Let n ∈ N
+. Consider the graph H =

Pn+2, a path graphonn+2vertices. Thenby [14,Corollary 7.35],wehave reg(S/JH ) = n+1.
Now, let G = cone(v, H), where v /∈ V (H). Then v(JG) = v∅(G) = 1 by Theorem 3.20.
Also, using [30, Theorem2.1], we get reg(S/JG) = n+1. Thus, we get reg(S/JG)−v(JG) =
(n + 1) − 1 = n. In this case, v(JG) = v∅(JG) and the further hypothesis follows. ��

5 Some Open Problems on v(JG)

In Section 3, we discuss some properties of v-number of binomial edge ideals and give a
combinatorial bound. In [16], the authors managed to give a combinatorial description of
v-number for edge ideals of graphs. We ask the following question on the combinatorial
aspects of the v-number of binomial edge ideals.

Question 5.1 Let G be a simple graph. Can we find some homogeneous polynomial f just
using the combinatorics of the graph G such that v(JG) = deg( f )? Equivalently, does there
exist any graph invariant of G which is equal to v(JG)?

In Theorem 3.15, we prove that v(JG) ≤ v(in<(JG)) for some classes of binomial edge
ideals and as an application, we get in Corollary 3.17 that v(JG) ≤ v(in<(JG)) hold for

Fig. 3 Graph G with
v(JG ) = v∅(JG ) = reg(S/JG )
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weakly closed graphs. Also, we see in Example 3.18 that v(in<(JG)) depends on the labelling
of vertices and v(JG) can be strictly less than v(in<(JG)). With the virtue of these results
and our computation, we put the following question.

Question 5.2 Is it true that v(JG) ≤ v(in<(JG)) for all graphs G with all possible labelling
of V (G)? If not, then can we say that for a graph G, there exists a labelling of V (G) for
which v(JG) ≤ v(in<(JG)) holds?

In Section 4, we try to relate the v-number with (Castelnuovo-Mumford) regularity of
binomial edge ideals. In Theorems 4.5 and 4.6, we show that v∅(JG) ≤ reg(S/JG) for
some large classes of graphs including chordal and whisker graphs. Using [11, Procedure
A1] and Macaulay2 [10], we investigate many graphs from several classes and witness that
v∅(JG) ≤ reg(S/JG) hold for all of those graphs. Our strong intuition forces us to give the
following conjecture.

Conjecture 5.3 Let G be a simple graph. Then v∅(JG) ≤ reg(S/JG). In particular, we have
v(JG) ≤ reg(S/JG).
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