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Abstract
We study the problem of reconstructing an unknown source term in parabolic equations
from integral observations. It is reformulated into a variational problem in combination with
Tikhonov regularization and then a formula for the gradient of the objective functional to
be minimized is computed via a solution of an adjoint problem. The variational problem
is discretized by the splitting method based on finite difference schemes and solved by the
conjugate gradient method. A numerical scheme for numerically estimating singular values
of the solution operator in the inverse problem is suggested. Some numerical examples are
presented to show the efficiency of the method.
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1 Introduction

The problem of determining a source term in parabolic equations from some observations
plays an important role in practice [4, 9, 10]. Because of its importance, many researchers
devoted their attention to it [1–3, 5, 7, 8, 12, 14, 17, 18, 22, 24]. For more details, let Ω be
a bounded domain in R

n with boundary ∂Ω . Denote the cylinder Q := Ω × (0, T ], where
T > 0 and S := ∂Ω × (0, T ]. Let

ai j , i, j ∈ {1, 2, . . . , n}, b ∈ L∞(Q), (1)

ai j = a ji , i, j ∈ {1, 2, . . . , n}, (2)

λ‖ξ‖2
Rn ≤

n∑

i, j=1

ai j (x, t)ξiξ j ≤ Λ‖ξ‖2
Rn , ∀ξ ∈ R

n, (3)

0 ≤ b(x, t) ≤ μ1 a.e. in Q, (4)

B Nguyen Thi Ngoc Oanh
oanhntn@tnus.edu.vn

1 Thai Nguyen University of Sciences, Tan Thinh Ward, Thai Nguyen 250000, Vietnam

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40306-024-00536-6&domain=pdf


284 N. T. N. Oanh

v ∈ L2(Ω), F ∈ L2(Q), (5)

λ and � be positive constants and μ1 ≥ 0. (6)

Consider the initial boundary value problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t −

n∑
i, j=1

∂
∂xi

(
ai j (x, t) ∂u

∂x j

)
+ b(x, t)u = F(x, t), (x, t) ∈ Q,

u(x, t) = 0, (x, t) ∈ S,

u(x, 0) = v(x), x ∈ Ω.

(7)

Let F have either one of the following forms

F(x, t) = f (x, t)ϕ(x, t) + g(x, t), (8)

F(x, t) = f (x)ϕ(x, t) + g(x, t), (9)

F(x, t) = f (t)ϕ(x, t) + g(x, t) (10)

with ϕ(x, t) ∈ L2(Q) and g(x, t) ∈ L2(Q) being given.
We consider the problem of determining f from N integral observations of the solution u

li u =
∫

Ω

ωi (x)u(x, t)dx = zi (t), t ∈ (0, T ), i = 1, . . . , N (11)

withωi (x) ∈ L∞(Ω), nonnegative almost everywhere and
∫
Ω

ωi (x)dx > 0, being weighted
functions. Suppose that zi , i = 1, 2, . . . , N are approximately given by zδ

i satisfying

‖zi − zδ
i ‖L2(0,T ) ≤ δ.

These inverse problems may have many solutions, especially in the case f depends on x
and t . Indeed, suppose that the coefficients of (7) are sufficiently smooth. If ϕ(x, t) �= 0 and
u(x, t) is given for all (x, t) ∈ Q = Ω × (0, T ), the inverse problem has a unique solution

f (x, t) =
∂u
∂t −

n∑
i, j=1

∂
∂xi

(
ai j (x, t) ∂u

∂x j

)+ b(x, t)u − g(x, t)

ϕ(x, t)
.

We show that if there is a u satisfying (11), then there are infinitely many u ∈ C∞(Q), u|S =
0 satisfying (11). Indeed, for v(x) ∈ C∞(Ω) satisfying (11), consider the following equation

〈ωi , v〉L2(Ω) =
∫

Ω

ωi (x)v(x)dx = 0, i = 1, 2, . . . , N . (12)

Denote P = span{ω1, ω2, . . . , ωN }. Then P is a subspace of L2(Ω) and dimP ≤ N . So
Q = P⊥ is an infinite-dimensional space. Moreover, we have presentation v = v1 + v2,
where v1 ∈ P, v2 ∈ Q and

∫
Ω

v1(x)v2(x)dx = 0. It concludes that there are infinite
functions v ∈ C∞(Ω) satisfying equation (12). So, there are infinitely many functions
u(·, t) ∈ C∞(Ω) satisfying equation

∫

Ω

ωi (x)u(x, t)dx = 0, i = 1, 2, . . . , N .

Or, there are infinite functions u(·, t) ∈ C∞(Ω) satisfying (11). We conclude that the inverse
problem of finding f from (11) has infinite solutions. Therefore, we have to introduce a
notion to its solution.
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Source Identification for Parabolic Equations... 285

This paper is organized as follows. In Section 2 we will describe the variational method
with the splitting finite difference scheme to solve the inverse problem. In Section 3 we
present the discretized the variational problem and the conjugate gradient method. Finally in
Section 4 we simulate the proposed algorithms for some concrete examples.

2 Variational Problem

To introduce the concept of weak solution, we use the standard Sobolev spaces H1(Ω),
H1
0 (Ω), H1,0(Q) and H1,1(Q) [11, 21, 23]. Further, for a Banach space B, we define

L2(0, T ; B) = {u : u(t) ∈ B a.e. t ∈ (0, T ) and ‖u‖L2(0,T ;B) < ∞},
with the norm

‖u‖2L2(0,T ;B)
=
∫ T

0
‖u(t)‖2Bdt .

In the sequel, we shall use the space W (0, T ) defined as

W (0, T ) = {u : u ∈ L2(0, T ; H1
0 (Ω)), ut ∈ L2(0, T ; (H1

0 (Ω))′)},
equipped with the norm

‖u‖2W (0,T ) = ‖u‖2
L2(0,T ;H1

0 (Ω))
+ ‖ut‖2L2(0,T ;(H1

0 (Ω))′).

We note here that (H1
0 (Ω))′ = H−1(Ω).

The solution of the problem (7) is understood in theweak sense as follows:Aweak solution
in W (0, T ) of the problem (7) is a function u(x, t) ∈ W (0, T ) satisfying the identity

∫ T

0
(ut , η)H−1(Ω),H1

0 (Ω)dt +
∫ T

0

∫

Ω

⎛

⎝
n∑

i, j=1

ai j (x, t)
∂u

∂x j

∂η

∂xi
+ b(x, t)uη

⎞

⎠ dxdt

=
∫ T

0

∫

Ω

( f ϕη + gη)dxdt, ∀η ∈ L2(0, T ; H1
0 (Ω))

(13)

and
u(x, 0) = v(x), x ∈ Ω. (14)

Based on the standard hypotheses (1), (2), (3), (4), (5) and 6, the existence and uniqueness
of a solution, as well as an a priori estimate to the problem (7), can be established. More
precisely, following [23, Chapter IV] and [21, pp. 141–152] there exists a unique solution
in W (0, T ) of the problem (7). Furthermore, there is a positive constant cd independent of
ai , b, f , ϕ, g and v such that

‖u‖W (0,T ) ≤ cd
(‖ f ϕ‖L2(Q) + ‖g‖L2(Q) + ‖v‖L2(Ω)

)
.

We denote the solution u(x, t) of the problem (7) by u(x, t; f ) or u( f ) to emphasize its
dependence on f . To identify f from (11), we minimize the misfit functional

J0( f ) = 1

2

N∑

i=1

‖li u( f ) − zi‖2L2(0,T )
(15)
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with respect to f . However, this minimization problem is unstable and there might be many
minimizers to it. Therefore, we minimize the Tikhonov functional instead of (15). In fact,
we minimize

Jγ ( f ) = 1

2

N∑

i=1

‖li u( f ) − zi‖2L2(0,T )
+ γ

2
‖ f − f ∗‖2L2(Q)

, f ∗ ∈ L2(Q) (16)

for the case F has form (8).

Jγ ( f ) = 1

2

N∑

i=1

‖li u( f ) − zi‖2L2(0,T )
+ γ

2
‖ f − f ∗‖2L2(Ω)

, f ∗ ∈ L2(Ω) (17)

for the case F has form (9).

Jγ ( f ) = 1

2

N∑

i=1

‖li u( f ) − zi‖2L2(0,T )
+ γ

2
‖ f − f ∗‖2L2(0,T )

, f ∗ ∈ L2(0, T ) (18)

for the case F has form (10). Here, γ > 0 is the Tikhonov regularization parameter, f ∗ is an a
priori estimation of f . By the standard method, we can prove that Jγ is Fréchet differentiable
and derive a formula for its gradient. As li u( f ) is affine, the functional Jα is strictly convex.
Hence, it attains a unique minimizer which we call f ∗− least square solution to the inverse
problems (7) and (11). As the inverse problem may have many solutions, we will see that the
choice of f ∗ is crucial for selecting which one among these solutions to the inverse problem.

Indeed, introducing the adjoint problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∂ p
∂t −

n∑
i, j=1

∂
∂x j

(
ai j (x, t) ∂ p

∂xi

)
+ b(x, t)p =

N∑
i=1

ωi (x) (li u(t) − zi (t)) , (x, t) ∈ Q,

p(x, t) = 0, (x, t) ∈ S,

p(x, T ) = 0, x ∈ Ω,

(19)
we can prove the following results [17, 19].

Theorem 1 The functional Jγ (8) is Fréchet differentiable and its gradient ∇ Jγ at f has the
form

∇ Jγ ( f ) = ϕ(x, t)p(x, t) + γ ( f (x, t) − f ∗(x, t)),

where p(x, t) is the solution to the adjoint problem (19).

Remark 1 When Jγ has the form in (17) or (18), we have

i)

∇ Jγ ( f ) =
∫ T

0
ϕ(x, t)p(x, t)dt + γ ( f (x) − f ∗(x)) for the functional (17).

ii)

∇ Jγ ( f ) =
∫

Ω

ϕ(x, t)p(x, t)dx + γ ( f (t) − f ∗(t)) for the functional (18).

2.1 Conjugate Gradient Method

To find the minimizer of (16), we use the conjugate gradient method (CG). It proceeds as
follows: Assume that at the k−th iteration we have f k . Then the next iteration is

f k+1 = f k + αkdk,
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with

dk =
{

−∇ Jγ ( f k) if k = 0,

−∇ Jγ ( f k) + βkdk−1 if k > 0,

βk =
‖∇ Jγ ( f k)‖2

L2(Q)

‖∇ Jγ ( f k−1)‖2
L2(Q)

,

and
αk = argminα≥0 Jγ ( f k + αdk).

To evaluate αk we denote by ū(v, g) the solution to the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t −

n∑
i, j=1

∂
∂xi

(
ai j (x, t) ∂u

∂x j

)
+ b(x, t)u = g(x, t), (x, t) ∈ Q,

u(x, t) = 0, (x, t) ∈ S,

u(x, 0) = v(x), x ∈ Ω

with ũ[ f ] being the solution to the linear problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t −

n∑
i, j=1

∂
∂xi

(
ai j (x, t) ∂u

∂x j

)
+ b(x, t)u = f (x, t)ϕ(x, t), (x, t) ∈ Q,

u(x, t) = 0, (x, t) ∈ S,

u(x, 0) = 0, x ∈ Ω.

In this case, the observation operators have the form

li u( f ) = li ũ[ f ] + li ū(v, g) := Ai f + li ū(v, g), i = 1, . . . , N (20)

with Ai being bounded linear operators from L2(Q) into L2(0, T ). We have

Jγ ( f k + αdk) =
N∑

i=1

1

2
‖li u( f k + αdk) − zi ‖2L2(0,T )

+ γ

2
‖ f k + αdk − f ∗‖2L2(Q)

=
N∑

i=1

1

2
‖αAi d

k + Ai f k + li ū(v, g) − zi ‖2L2(0,T )
+ γ

2
‖αdk + f k − f ∗‖2L2(Q)

=
N∑

i=1

1

2
‖αAi d

k + li u( f k) − zi ‖2L2(0,T )
+ γ

2
‖αdk + f k − f ∗‖2L2(Q)

.

Differentiating Jγ ( f k + αdk) with respect to α and putting ∂ Jγ ( f k+αdk )

∂α
= 0, after some

elementary calculations, we obtain

αk = −
〈
dk,∇ Jγ ( f k)

〉
L2(Q)

N∑
i=1

‖Ai dk‖2
L2(0,T )

+ γ ‖dk‖2
L2(Q)

.

Since dk = −∇γ ( f k) + βkdk−1, rk = −∇ Jγ ( f k) and
〈
rk, dk−1

〉
L2(Q)

= 0, we have

αk =
‖rk‖2

L2(Q)

N∑
i=1

‖Ai dk‖2
L2(0,T )

+ γ ‖dk‖2
L2(Q)

, k = 0, 1, 2, . . . .
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288 N. T. N. Oanh

Thus, the CG has the form
Step 1: Set k = 0, initiate f 0.
Step 2: Calculate r0 = −∇ Jγ ( f 0) and set d0 = r0.
Step 3: Evaluate

α0 =
‖r0‖2

L2(Q)

N∑
i=1

‖Ai d0‖2
L2(0,T )

+ γ ‖d0‖2
L2(Q)

.

Set f 1 = f 0 + α0d0.

Step 4: For k = 1, 2, . . . . Calculate

rk = −∇ Jγ ( f k), dk = rk + βkdk−1

with

βk =
‖rk‖2

L2(Q)

‖rk−1‖2
L2(Q)

.

Step 5: Calculate

αk =
‖rk‖2

L2(Q)

N∑
i=1

‖Ai dk‖2
L2(0,T )

+ γ ‖dk‖2
L2(Q)

.

Update
f k+1 = f k + αkdk .

2.2 Singular Values

Set

A = (A1, A2, . . . , AN ), z = (z1, z2, . . . , zn),

where Ai is defined in (20). The problem of determining f in (7) ( f has form in (8) or (9)
or (10)) from (11) can be written in the form A f = z, where

A : L2(Q)
(
L2(Ω) or L2(0, T )

) → (
L2(0, T )

)N
.

To characterize the ill-posedness degree of the inverse source problem, we have to estimate
the singular values of A, i.e., the eigenvalues of A∗ A. In doing so, we proceed as follows.

Wewill present for the case f depends on both time and space variable, i.e.,A : L2(Q) →
(L2(0, T ))N . For the operator Ai , we have A∗

i g̃ = ϕ(x, t) p̃(x, t), where g̃ ∈ L2(0, T ) and
p̃(x, t) is the solution to the adjoint problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∂ p̃
∂t −

n∑
i, j=1

∂
∂x j

(
ai j (x, t) ∂ p̃

∂xi

)
+ b(x, t) p̃ = ωi (x)g̃, (x, t) ∈ Q,

p̃(x, t) = 0, (x, t) ∈ S,

p̃(x, T ) = 0, x ∈ Ω.

From (20), we have

J0( f ) = 1

2

N∑

i=1

‖li u( f ) − zi‖2L2(0,T )
= 1

2

N∑

i=1

‖Ai f − (zi − li ū(v, g))‖2L2(0,T )
.
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Hence,

J ′
0( f ) =

N∑

i=1

A∗
i

(
Ai f − (

zi − li ū(v, g)
))

.

If we take zi such that zi = li ū(v, g), then due to Theorem 1, we have J ′
0( f ) =∑N

i=1 A∗
i Ai f = ϕ(x, t)p∗(x, t), where p∗ is the solution of the adjoint problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∂ p∗
∂t −

n∑
i, j=1

∂
∂x j

(
ai j (x, t) ∂ p∗

∂xi

)
+ b(x, t)p∗ =

N∑
i=1

ωi (x)li ũ[ f ], (x, t) ∈ Q,

p∗(x, t) = 0, (x, t) ∈ S,

p∗(x, T ) = 0, x ∈ Ω.

Thus, if f (x, t) ∈ L2(Q) is given, we can calculate the value J ′
0( f ) = ∑N

i=1 A∗
i Ai f =

ϕ(x, t)p∗(x, t). Although we do not know the explicit form of A∗
i A, we can use the Lanczos

algorithm [20] to estimate its eigenvalues when we discretize the problem. The algorithm
looks as follows:

Initialization: Let β0 = 0, q0 = 0 and an arbitrary vector b, calculate q1 = b
‖b‖ .

Put Q = q1 and k = 0.
Iteration: For k = 1, 2, 3, . . .

p = A∗Aqk,

αk = qT
k p,

p = p − βn−1qn−1 − αkqk,

βk = ‖p‖,
qk+1 = p

‖βk‖ .

We will present some numerical examples showing the efficiency of this algorithm in
Section 4.

3 Variational Method for Discretized Problem

In this section, we have to restrict some conditions on the domain and coefficients. We
start with Problem (13)–(14). First, we suppose that Ω is the open parallelepiped (0, L1) ×
(0, L2) × · · · × (0, Ln) in R

n . Second, in (7), we suppose that ai j = 0, if i �= j , and for
simplicity from now on we denote aii by ai . Following [15, 16, 25] (see also [6, 19]), we
subdivide the domain Ω into small cells by the rectangular uniform grid specified by

0 = x0i < x1i = hi < · · · < x Ni
i = Li , i = 1, . . . , n

with hi = Li/Ni being the grid size in the xi -direction, i = 1, . . . , n. To simplify the
notation, we denote by xk := (xk1

1 , . . . , xkn
n ), where k := (k1, . . . , kn), 0 ≤ ki ≤ Ni . We

also denote by h := (h1, . . . , hn) the vector of spatial grid sizes and Δh := h1 · · · hn . Let ei

be the unit vector in the xi -direction, i = 1, . . . , n, i.e., e1 = (1, 0, . . . , 0) and so on. Denote
by

ω(k) = {x ∈ Ω : (ki − 0.5)hi ≤ xi ≤ (ki + 0.5)hi , ∀i = 1, . . . , n}.
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290 N. T. N. Oanh

In the following, Ωh denotes the set of the indices of all interior grid points and Ω̄h denotes
the set of the indices of all grid points belonging to Ω̄h , i.e.,

Ωh = {k = (k1, . . . , kn) : 1 ≤ ki ≤ Ni − 1, ∀i = 1, . . . , n}.
We also make use of the following sets

Ω i
h = {k = (k1, . . . , kn) : 0 ≤ ki ≤ Ni − 1, 1 ≤ k j ≤ N j − 1,∀ j �= i}

for i = 1, . . . , n. For a function u(x, t) defined in QT , we denote by uk(t) its approximate
value at (xk, t). We define the following forward finite difference quotient with respect to xi

uk
xi

:= uk+ei − uk

hi
.

Now, taking into account the homogeneous boundary condition, we approximate the integrals
in (13) as follows

∫

Q

∂u

∂t
ηdxdt ≈ Δh

∫ T

0

∑

k∈Ωh

duk(t)

dt
ηk(t)dt, (21)

∫

Q
ai (x, t)

∂u

∂xi

∂η

∂xi
dxdt ≈ Δh

∫ T

0

∑

k∈Ω i
h

a
k+ ei

2
i (t)uk

xi
(t)ηk

xi
(t)dt, (22)

∫

Q
b(x, t)uηdxdt ≈ Δh

∫ T

0

∑

k∈Ωh

bk(t)uk(t)ηk(t)dt, (23)

∫

Q
f (x, t)ϕ(x, t)ηdxdt ≈ Δh

∫ T

0

∑

k∈Ωh

f k(t)ϕk(t)ηk(t)dt, (24)

∫

Q
g(x, t)ηdxdt ≈ Δh

∫ T

0

∑

k∈Ωh

gk(t)ηk(t)dt . (25)

Here bk(t), f k(t), ϕk(t), gk(t) and a
k+ ei

2
i (t) are approximations to the functions b(x, t),

f (x, t), ϕ(x, t), g(x, t) and ai (x, t) at the grid point xk . More precisely, if these functions

are continuous at xk , we take their approximations by their value at xk and a
k+ ei

2
i (t) =

ai (xk+ ei
2 , t). Otherwise, we take

bk(t) = 1

|ω(k)|
∫

ω(k)

b(x, t)dx, f k(t) = 1

|ω(k)|
∫

ω(k)

f (x, t)dx,

ϕk(t) = 1

|ω(k)|
∫

ω(k)

ϕ(x, t)dx, gk(t) = 1

|ω(k)|
∫

ω(k)

g(x, t)dx,

and

a
k+ ei

2
i (t) = 1

|ω(k)|
∫

ω(k)

ai (x, t)dx .

With the approximations (21), (22), (23), (24) and (25), we have the following discrete
analogue of (13)

∫ T

0

[ ∑

k∈Ωh

(
duk

dt
+ bkuk − f k

)
ηk +

n∑

i=1

∑

k∈Ω i
h

a
k+ ei

2
i uk

xi
ηk

xi

]
dt = 0. (26)
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We note that, using the discrete analogue of integration by parts with boundary condition
u0 = η0 = 0 and uNi = ηNi = 0, we obtain

∑

k∈Ω i
h

a
k+ ei

2
i uk

xi
ηk

xi
=
∑

k∈Ω i
h

a
k+ ei

2
i

uk+ei − uk

hi

ηk+ei − ηk

hi

=
∑

k∈Ω i
h

a
k+ ei

2
i

uk+ei − uk

h2
i

ηk+ei −
∑

k∈Ω i
h

a
k+ ei

2
i

uk+ei − uk

h2
i

ηk

=
∑

k∈Ωh

(
a

k− ei
2

i

uk − uk−ei

h2
i

− a
k+ ei

2
i

uk+ei − uk

h2
i

)
ηk .

Hence, replacing this equality into (26), we obtain the following system which approximates
the original problem (7)

{
dū
dt + (Λ1 + · · · + �n)ū − F̄ = 0,

ū(0) = v̄,
(27)

with ū = {uk, k ∈ Ωh} being the grid function. The function v̄ is the grid function approxi-
mating the initial condition v and

(Λi ū)k = bkuk

n
+

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a
k− ei

2
i
h2i

(
uk − uk−ei

)− a
k+ ei

2
i
h2i

(
uk+ei − uk

)
, 2 ≤ ki ≤ Ni − 2,

a
k− ei

2
i
h2i

uk − a
k+ ei

2
i
h2i

(
uk+ei − uk

)
, ki = 1,

a
k− ei

2
i
h2i

(
uk − uk−ei

)+ a
k+ ei

2
i
h2i

uk, ki = Ni − 1

for k ∈ Ωh and
F̄ = { f kϕk + gk, k ∈ Ωh}.

We note that the coefficient matrices �i are positive semi-definite (see, e.g., [19]). The
boundedness of the solution of (27) has shown in the following theorem.

Theorem 2 Let ū be a solution of the Cauchy problem (27). There exists a constant c inde-
pendent of h and the coefficients of the equation such that

max
t∈[0,T ]

∑

k∈Ω̄h

|ūk(t)|2 +
∫ T

0

n∑

i=1

∑

k∈Ω i
h

|ūk
xi

|2dt ≤ c

⎛

⎝
∫ T

0

∑

k∈Ω̄h

| f̄ k |2dt +
∑

k∈Ω̄h

|v̄k |2
⎞

⎠ . (28)

Proof For arbitrary t∗ ∈ (0, T ], set

η̄k(t) =
{

ūk(t) if t ∈ [0, t∗],
0 if t /∈ [0, t∗].

Since ∫ t∗

0
dt
∑

k∈Ωh

ūk
t (t)ū

k(t) = 1

2

∑

k∈Ω̄h

|ūk(t∗)|2 − 1

2

∑

k∈Ω̄h

|ūk(0)|2,
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and ūk(0) = v̄, it follows from (26) that

1

2

∑

k∈Ω̄h

|ūk(t∗)|2 +
∫ t∗

0

⎡

⎢⎣
∑

k∈Ω̄h

b̄k |uk |2 +
n∑

i=1

∑

k∈Ω i
h

āk
i |ūk

xi
|2
⎤

⎥⎦ dt

=
∫ t∗

0

∑

k∈Ω̄h

f̄ k ūkdt + 1

2

∑

k∈Ω̄h

|v̄k |2.
(29)

Multiplying the both sides of the equality (29) by 2, applying Cauchy’s inequality to the first
term in the right hand side, noting that bk ≥ 0, we obtain

∑

k∈Ω̄h

|ūk(t∗)|2 + 2
∫ t∗

0

n∑

i=1

∑

k∈Ω i
h

āk
i |ūk

xi
|2dt

≤
∫ t∗

0

∑

k∈Ω̄h

| f̄ k |2dt +
∫ t∗

0

∑

k∈Ω̄h

|ūk |2dt +
∑

k∈Ω̄h

|v̄k |2.
(30)

Put
y(t) =

∑

k∈Ω̄h

|ūk(t∗)|2.

From (30) we have

y(t∗) ≤
∫ t∗

0
y(t)dt +

∫ t∗

0

∑

k∈Ω̄h

| f̄ k |2dt +
∑

k∈Ω̄h

|v̄k |2.

Applying Gronwall’s inequality, we obtain

y(t∗) ≤
⎛

⎝
∫ t∗

0

∑

k∈Ω̄h

| f̄ k |2dt +
∑

k∈Ω̄h

|v̄k |2
⎞

⎠ et . (31)

Hence, we have

max
t∈[0,T ]

∑

k∈Ω̄h

|ūk(t)|2 ≤ c

⎛

⎝
∫ T

0

∑

k∈Ω̄h

| f̄ k |2dt +
∑

k∈Ω̄h

|v̄k |2
⎞

⎠ .

From the conditions (1), (2) and (3) about the coefficient ai , the inequalities (30) and (31)
we have

∫ T

0

⎛

⎜⎝
∑

k∈Ω̄h

|ūk(t)|2 +
n∑

i=1

∑

k∈Ω i
h

|ūk
xi

|2
⎞

⎟⎠ dt ≤ c

⎛

⎝
∫ T

0

∑

k∈Ω̄h

| f̄ k |2dt +
∑

k∈Ω̄h

|v̄k |2
⎞

⎠ .

Combining the two inequalities, we obtain the inequality (28). ��

3.1 Time Discretization

To obtain the finite difference scheme for (27), we divide the time interval [0, T ] into M
sub-intervals by the points ti , i = 0, . . . , M, t0 = 0, t1 = Δt, . . . , tM = MΔt = T . For
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simplifying the notation, we set uk,m := uk(tm). We also denote by Fk,m := Fk(tm) and
Λm

i = Λi (tm), m = 0, . . . , M . In the following, we drop the spatial index for simplifying
the notation. The finite difference scheme is written as follows

{
um+1 = mm + Δt[Fm − (Λm

1 + · · · + Λm
n )um)],

u0 = v̄.

3.2 SplittingMethod

In order to obtain a splitting scheme for the Cauchy problem (27), we also discrete the time
interval in the same with finite difference method. We denote um+δ := ū(tm + δΔt),Λm

i :=
Λi (tm + �t/2). We introduce the following implicit two-circle component-by-component
splitting scheme [15]

um+ i
2n − um+ i−1

2n

Δt
+ Λm

i

um+ i
2n + um+ i−1

2n

4
= 0, i = 1, 2, . . . , n − 1,

um+ 1
2 − um+ n−1

2n

Δt
+ Λm

n
um+ 1

2 + um+ n−1
2n

4
= Fm

2
+ Δt

8
Λm

n Fm,

um+ n+1
2n − um+ 1

2

Δt
+ Λm

n
um+ n+1

2n + um+ 1
2

4
= Fm

2
− Δt

8
Λm

n Fm,

um+1− i−1
2n − um+1− i

2n

Δt
+ Λm

i

um+1− i−1
2n + um+1− i

2n

4
= 0, i = n − 1, n − 2, . . . , 1,

u0 = v̄.

(32)

Equivalently,
(

Ei + Δt

4
Λm

i

)
um+ i

2n =
(

Ei − Δt

4
Λm

i

)
um+ i−1

2n , i = 1, 2, . . . , n − 1,

(
En + Δt

4
Λm

n

)(
um+ 1

2 − Δt

2
Fm
)

=
(

En − Δt

4
Λm

n

)
um+ n−1

2n ,

(
En + Δt

4
Λm

n

)
um+ n+1

2n =
(

En − Δt

4
Λm

n

)(
um+ 1

2 + �t

2
Fm
)

,

(
Ei + Δt

4
Λm

i

)
um+1− i−1

2n =
(

Ei − Δt

4
Λm

i

)
um+1− i

2n , i = n − 1, n − 2, . . . , 1,

u0 = v̄,

(33)

where Ei is the identity matrix corresponding to Λi , i = 1, . . . , n. The splitting scheme (33)
can be rewritten in the following compact form

{
um+1 = Bmum + ΔtCm( f mϕm + gm), m = 0, . . . , M − 1,

u0 = v̄,
(34)

with
Bm = Bm

1 · · · Bm
n Bm

n · · · Bm
1 , Cm = Cm

1 · · · Cm
n ,

where Bm
i := (Ei + Δt

4 Λm
i )−1(Ei − Δt

4 Λm
i ), i = 1, . . . , n.
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3.3 DiscretizedVariational Problem

To complete the variational method for multi-dimensional cases, we use the splitting method
for the forward problem and take the discretized functional

J h,Δt
0 ( f̄ ) := Δt

2

N∑

i=1

M∑

m=1

⎡

⎣Δh
∑

k∈Ωh

ωk
i uk,m( f̄ ) − zm

i

⎤

⎦
2

, (35)

where uk,m( f̄ ) shows its dependence on the right-hand side term f̄ and m is the index of grid
points on time axis. The notation ωk

i = ωi (xk) indicates the approximation of the function
ωi (x) in Ωh at points xk . Normally, we take as its average over the cell where xk is located.

For minimizing the problem (35) by the conjugate gradient method, we first calculate the
gradient of objective function J h,Δt

0 ( f̄ ) and it is shown by the following theorem

Theorem 3 The gradient ∇ J h,Δt
0 ( f̄ ) of the objective function J h,Δt

0 at f̄ is given by

∇ J h,Δt
0 ( f̄ ) = Δt

M−1∑

m=0

(Cm)∗ϕmηm, (36)

where η satisfies the adjoint problem

{
ηm = (Bm+1)∗ηm+1 + ψm+1, m = M − 1, M − 2, . . . , 0,

ηM = 0,
(37)

with

ψk,m = Δh
N∑

i=1

ωk
i

⎛

⎝
∑

k∈Ωh

ωk
i uk,m − zm

i

⎞

⎠ , k ∈ Ωh, m = 0, . . . , M .

Here the matrix (Bm)∗ is given by

(Bm)∗ =
(

E1 − Δt

4
Λm

1

)(
E1 + Δt

4
Λm

1

)−1

. . .

(
En − Δt

4
Λm

n

)(
En + Δt

4
Λm

n

)−1

×
(

En − �t

4
Λm

n

)(
En + �t

4
Λm

n

)−1

. . .

(
E1 − Δt

4
Λm

1

)(
E1 + Δt

4
Λm

1

)−1

.

Proof For an infinitesimally small variation δ f̄ of f̄ , we have from (35) that

J h,Δt
0 ( f̄ + δ f̄ ) − J h,Δt

0 ( f̄ ) = Δt

2

N∑

i=1

M∑

m=1

⎡

⎣Δh
∑

k∈Ωh

ωk
i uk,m( f̄ + δ f̄ ) − zm

i

⎤

⎦
2

−Δt

2

N∑

i=1

M∑

m=1

⎡

⎣Δh
∑

k∈Ωh

ωk
i uk,m( f̄ ) − zm

i

⎤

⎦
2

= Δt

2

N∑

i=1

M∑

m=1

∑

k∈Ωh

(
Δhωk

i wk,m)2
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+Δt
N∑

i=1

M∑

m=1

Δh
∑

k∈Ωh

ωk
i wk,m

⎡

⎣Δh
∑

k∈Ωh

ωk
i uk,m( f̄ ) − zm

i

⎤

⎦

= Δt

2

N∑

i=1

M∑

m=1

∑

k∈Ωh

(
Δhωk

i wk,m)2+Δt
N∑

i=1

M∑

m=1

Δh
∑

k∈Ωh

wk,mψ
k,m
i

= Δt

2

N∑

i=1

M∑

m=1

∑

k∈Ωh

(
Δhωk

i wk,m)2+Δt
N∑

i=1

M∑

m=1

〈wm , ψm
i 〉, (38)

wherewk,m := uk,m( f̄ +δ f̄ )−uk,m( f̄ ) andψ
k,m
i = Δhωk

i (
∑

k∈Ωh
ωk

i uk,m −zm
i ), k ∈ Ωh .

It follows from (34) that w is the solution to the problem
{

wm+1 = Amwm + ΔtCmδ f̄ ϕm, m = 0, . . . , M − 1,

w0 = 0.
(39)

Taking the inner product of both sides of the mth equation of (39) with an arbitrary vector
ηm ∈ R

N1×···×Nn , summing the results over m = 0, . . . , M − 1, we obtain

M−1∑

m=0

〈wm+1, ηm〉 =
M−1∑

m=0

〈Bmwm, ηm〉 +
M−1∑

m=0

〈ΔtCmδ f̄ ϕm, ηm〉

=
M−1∑

m=0

〈wm,
(
Bm)∗ηm〉 +

M−1∑

m=0

〈ΔtCmδ f̄ ϕm, ηm〉.
(40)

Here
(
Bm
)∗ is the adjoint matrix of Bm .

Taking the inner product of both sides of the first equation of (37) with an arbitrary vector
wm+1, summing the results over m = 0, . . . , M − 1, we obtain

M−1∑

m=0

〈wm+1, ηm〉 =
M−1∑

m=0

〈wm+1, (Bm+1)∗ηm+1〉 +
M−1∑

m=0

〈wm+1, ψm+1〉

=
M∑

m=1

〈wm, (Bm)∗ηm〉 +
M∑

m=1

〈wm, ψm〉.
(41)

Note that w0 = ηM = 0, from (40) and (41), we have

M∑

m=1

〈wm, ψm〉 =
M−1∑

m=0

〈ΔtCmδ f̄ ϕm, ηm〉. (42)

On the other hand, it can be proved by induction that
∑N

i=1
∑M

m=1
∑

k∈Ωh

(
ωk

i w
k,m
)2=

o(‖δ f̄ ‖). Hence, from (38) and(42), we obtain

J h,Δt
0 ( f̄ + δ f̄ ) − J h,Δt

0 ( f̄ ) =
M−1∑

m=0

(δ f̄ ,Δt(Cm)∗ϕmηm) + o(‖δ f̄ ‖).

Consequently, the gradient of the objective function J h
0 can be written as

∂ J h,Δt
0 ( f̄ )

∂ f̄
= Δt

M−1∑

m=0

(Cm)∗ϕmηm .
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Note that, since the coefficient matricesΛm
i , i = 1, . . . , n, m = 0, . . . , M −1 are symmetric,

we have

(Bm)∗ =
(

E1 − Δt

4
Λm

1

)(
E1 + Δt

4
Λm

1

)−1

. . .

(
En − Δt

4
Λm

n

)(
En + Δt

4
Λm

n

)−1

×
(

En − Δt

4
Λm

n

)(
En + Δt

4
Λm

n

)−1 (
E1 − Δt

4
Λm

1

)(
E1 + Δt

4
Λm

1

)−1

and

(Cm)∗ =
(

En − Δt

4
Λm

n

)(
En + Δt

4
Λm

n

)−1 (
E1 − Δt

4
�m

1

)(
E1 + �t

4
�m

1

)−1

.

The proof is complete. ��
The conjugate gradient method for the discretized function (35) can be written by following
steps:

Step 1. Given an initial approximation f 0 and calculate the residual r̂0 = ∑N
i=1[li u( f 0)−

zi ] by solving the splitting (32) with f being replaced by initial approximation f 0 and set
k = 0.

Step 2. Calculate the gradient r0 = −∇ Jγ ( f 0) given in (36) by solving the adjoint
problem (37). Then we set d0 = r0.

Step 3. Calculate

α0 = ‖r0‖2
N∑

i=1
‖li d0‖2 + γ ‖d0‖

,

where li d0 can be calculated from the splitting scheme (32) with f being replaced by d0 and
g(x, t) = 0, v = 0. Then, we set

f 1 = f 0 + α0d0.

Step 4. For k = 1, 2, . . . , calculate rk = −∇ Jγ ( f k), dk = rk + βkdk−1, where

βk = ‖rk‖2
‖rk−1‖2.

Step 5. Calculate αk

αk = ‖rk‖2
N∑

i=1
‖li dk‖2 + γ ‖dk‖

,

where li dk can be calculated from the splitting scheme (32) with f being replaced by dk and
g(x, t) = 0, v = 0. Then, set

f k+1 = f k + αkdk .

4 Numerical Example

To illustrate the performance of the proposed algorithm, we present in this section some
numerical tests. These algorithms were implemented in Matlab and run on a personal laptop
with 11th Gen Intel(R) Core(TM) i5 2.4Mhz 2419 Mhz 4 Core(s) 8 Logical Processors.
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4.1 One-Dimensional Problems

In this subsection, we present some numerical examples to estimate singular values and
determine f . Let Ω = (0, 1) and T = 1. Consider the one-dimensional system

⎧
⎪⎨

⎪⎩

ut − (aux )x = f ϕ(x, t) + g(x, t), x ∈ (0, 1), 0 ≤ t ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

u(x, 0) = v, x ∈ (0, 1),

where

a = 2xt + x2t + 1; v = sin(2πx) and ϕ(x, t) = (x2 + 1)(t2 + 1).

For discretization, we take the grid size to be 0.02 in x and t . We take 3 observations at
x10 = 0.2, x25 = 0.5 and x35 = 0.7. The weighted functions ωi (x), i = 1, 2, 3 are chosen
as follows

ω1(x) =
{

1
2ε if x ∈ (x10 − ε, x10 + ε)

0 otherwise
with ε = 0.01,

ω2(x) =
{

1
2ε if x ∈ (x25 − ε, x25 + ε)

0 otherwise
with ε = 0.01,

ω3(x) =
{

1
2ε if x ∈ (x35 − ε, x35 + ε)

0 otherwise
with ε = 0.01.

Approximate singular values of A for the case f depends only on time variable t and space
variable x are drawn in Fig. 1. From this figure, we see that the singular values for the case
when f depends only on x is much smaller than that for the case f depends only on t .
Therefore, the problem of reconstructing f = f (x) is much more ill-posed than f = f (t).

Nowwepresent numerical results for reconstructing f (x, t).We test three types of f (x, t):
smooth, non-smooth and discontinuous in the following examples.

10-15

10-10

10-5

Singular Values

Sing. val. when f=f(t)
Sing. val. when f=f(x)

Fig. 1 Approximation singular values: (a) f depends only on x ; (b) f depends only on t
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Example 1
f (x, t) = sin(πx) sin(π t).

Example 2

f (x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2t if t ≤ 1/2 and t ≤ x and x ≤ 1 − t,

2(1 − t) if t ≥ 1/2 and t ≥ x and x ≥ 1 − t,

2x if x ≤ 1/2 and x ≤ t and t ≤ 1 − x,

2(1 − x) otherwise.

Example 3

f (x, t) =
{
1, 0.25 ≤ x, t ≤ 0.75,

0 otherwise.

In all of three above examples, the initial guess f ∗ = 0, 02(rand(Nx , M) − 0, 5) + f , noisy
level δ = 0, 02, γ = 10−2 and the initial iteration of the conjugate gradient method f 0 = 0.
Numerical solutions are presented in Figs. 2, 3 and 4.
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Fig. 2 Example 1. The exact solution in comparisonwith the numerical solution: (a) Exact function f (x, t); (b)
Reconstruction of f ; (c) Comparison of the exact and approximation solutions at x = 0, 24; (d) Comparison
of the exact and approximation solutions at x = 0, 5
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Fig. 3 Example 2. The exact solution in comparisonwith the numerical solution: (a) Exact function f (x, t); (b)
Reconstruction of f ; (c) Comparison of the exact and approximation solutions at x = 0, 24; (d) Comparison
of the exact and approximation solutions at x = 0, 5
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Fig. 4 Example 3. The exact solution in comparisonwith the numerical solution: (a) Exact function f (x, t); (b)
Reconstruction of f ; (c) Comparison of the exact and approximation solutions at x = 0, 24; (d) Comparison
of the exact and approximation solutions at x = 0, 5
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4.2 Two-Dimensional Problems

We consider the domain Ω = (0, 1) × (0, 1), T = 1 and denote the space variable x =
(x1, x2). We take 4 observation distributed in 4 parts: (0, 0.5) × (0, 0.5), (0.5, 1) × (0, 0.5),
(0.5, 1) × (0.5, 1) and (0, 0.5) × (0.5, 1).

Consider the system
⎧
⎪⎨

⎪⎩

ut − (a1ux1)x1 − (a2ux2)x2 + a(x, t)u = f ϕ(x, t) + g(x, t), (x, t) ∈ Q,

u(0, x2, t) = u(1, x2, t) = u(x1, 0, t) = u(x2, 1, t) = 0, 0 < t ≤ T ,

u(x, 0) = v, x ∈ Ω.

The grid sizes are chosen 0.02 in x and in t . The weighted functions ωi (x), i = 1, 2, 3, 4
are chosen as follows

ω1(x) =
{

1
2ε if x ∈ (0, 24 − ε, 0, 24 + ε) × (0, 24 − ε, 0, 24 + ε)

0 otherwise
with ε = 0, 01,

ω2(x) =
{

1
2ε if x ∈ (0, 74 − ε, 0, 74 + ε) × (0, 24 − ε, 0, 24 + ε)

0 otherwise
with ε = 0, 01,

ω3(x) =
{

1
2ε if x ∈ (0, 24 − ε, 0, 24 + ε) × (0, 74 − ε, 0, 74 + ε)

0 otherwise
with ε = 0, 01,

ω4(x) =
{

1
2ε if x ∈ (0, 74 − ε, 0, 74 + ε) × (0, 74 − ε, 0, 74 + ε)

0 otherwise
with ε = 0, 01.

We test our algorithm for three cases f : (1) f = f (t), (2) f = f (x) and (3) f = f (x, t).

Example 4 We choose the a priori estimation f ∗ = 0, regularization parameter γ = 10−2,
f 0 = 0, noise level δ = 0, 02 and

a1(x, t) = a2(x, t) = 0.2
(
1 − 0.5 cos(3πx1) cos(3πx2) cos(3π t)

)
,

a = x21 + x22 + 2x1t + 1, v = sin(πx1) sin(πx2),

ϕ(x, t) = (x21 + 3)(x22 + 3)(t2 + 3).

We suppose that f depends only on the time variable and has the form

1)
f (t) = sin(2π t).

2)

f (t) =
{
2t if t < 0.5,

2(1 − t) otherwise.

3)

f (t) =
{
1 if 0.25 ≤ t ≤ 0.75,

0 otherwise.

The numerical results of Example 4 are shown in Fig. 5.
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Fig. 5 Example 4: the exact solution in comparison with the numerical solution: (a) f is of the form 1); (b) f
is of the form 2); (c) f is of the form 3)

Example 5 We choose the a priori estimation f ∗ = 0, 02(rand(N1, N2) − 0, 5) + f , regu-
larization parameter γ = 10−2, f 0 = 0, noise level δ = 0, 02 and

a1(x, t) = a2(x, t) = a = 1, a = x21 + x22 + 2x1t + 1

v = sin(πx1) sin(πx2), ϕ(x, t) = (x21 + 1)(x22 + 2)(t2 + 2).

We suppose that f depends only on the space variable and has the form

1)
f (x1, x2) = sin(πx1) sin(πx2).

2)

f (x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2x2 if x2 ≤ 0.5 and x2 ≤ x1 ≤ 1 − x2,

2(1 − x2) if x2 ≥ 0.5 and x2 ≥ x1 ≥ 1 − x2,

2x1 if x1 ≤ 0.5 and x1 ≤ x2 ≤ 1 − x1,

2(1 − x1) otherwise.
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3)

f (x1, x2) =
{
1 if 0.25 ≤ x1 ≤ 0.75 and 0.25 ≤ x2 ≤ 0.75,

0 otherwise.

The numerical results of Example 5 are shown in Figs. 6, 7 and 8.

Example 6 We choose the a priori estimation f ∗ = 0, 02(rand(N1, N2, M) − 0, 5) + f ,
regularization parameter γ = 10−2, f 0 = 0, noise level δ = 0, 02 and

a1(x, t) = a2(x, t) = a = 0.5, a = x21 + x22 + 2x1t + 1

v = sin(πx1) sin(πx2), ϕ(x, t) = (x21 + 2)(x22 + 2)(t2 + 2).

We suppose that f depends on both the space and time variable as follows

f (x1, x2, t) = sin(πx1) sin(πx2)t .

The results of Example 6 are shown in Fig. 9.
We now discuss on the role of f ∗. We will see that its choice is important in the case the

inverse problem has many solutions.
We assume that f depends only on time variable. This guarantee the uniqueness solution

to inverse problem. We take some different values for f ∗. However, the choice of f ∗ does
not affect much the numerical solution. The information of this test as in the case f depends
only on time variable as in Example 4, regularization parameter γ = 10−2, f 0 = 0, noise
level δ = 0, 02. The numerical results with f ∗ = 0, f ∗ = 2 and f ∗ = 5 are presented in
Fig. 10 and Table 1 are not much different from each other.
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Fig. 6 Example 5, form 1): the exact solution in comparison with the numerical solution: (a) Exact function
f ; (b) Reconstruction of f ; (c) Point-wise error; (d) Comparison at x1 = 1/2
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Fig. 7 Example 5, form 2): the exact solution in comparison with the numerical solution: (a) Exact function
f ; (b) Reconstruction of f ; (c) Point-wise error; (d) Comparison at x1 = 1/2

In the case when the solution is not unique, the choice of f ∗ is crucial. As mention above,
there may be infinitely many solutions to the inverse problem, the prediction f ∗ plays a
significant role for selecting the solution. We use the system as in the case f depends both
on time and space variables as in Example 6, regularization parameter γ = 10−2, f 0 = 0,
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Fig. 8 Example 5, form 3): the exact solution in comparison with the numerical solution: (a) Exact function
f ; (b) Reconstruction of f ; (c) Point-wise error; (d) Comparison at x1 = 1/2
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Fig. 9 Example 6. The exact solution in comparison with the numerical solution at t = 1/2: (a) Exact function
f ; (b) Reconstruction of f ; (c) Point-wise error; (d) Comparison at x1 = 1/2 and t = 1/2
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Fig. 10 Exact solution and its approximation with f ∗ = 0, f ∗ = 2, f ∗ = 5

Table 1 L2−error with
prediction
f ∗ = 0, f ∗ = 2, f ∗ = 5

f ∗ 0 2 5

L2− error 0.070528 0.077008 0.89275

123



Source Identification for Parabolic Equations... 305

-0.2

0

0.2

0.79 

0.4

0.6

0.79 

0.8

Exact function

x
2

1

0.39 

x
1

0.39 

-0.01 -0.01

(a)

0

0.79 

0.5

0.79 

Approximation

x
2

1

0.39 

x
1

0.39 

-0.01 -0.01

(b)

-0.6

-0.4

-0.2

0.79 

0

er
ro

r

0.2

0.79 

Error

x
2

0.4

0.39 

x
1

0.6

0.39 

-0.01 -0.01

(c)
Fig. 11 The exact solution in comparison with the numerical solution with f ∗ = f ∗

1 : (a) Exact solution; (b)
Reconstruction of f ; (c) Point-wise error
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Fig. 12 The exact solution in comparison with the numerical solution with f ∗ = f ∗

2 : (a) Exact solution; (b)
Reconstruction of f ; (c) Point-wise error
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Fig. 13 The exact solution in comparison with the numerical solution with f ∗ = f ∗

3 : (a) Exact solution; (b)
Reconstruction of f ; (c) Point-wise error

Table 2 L2−error with the
prediction f ∗

1 , f ∗
2 , f ∗

3
f ∗
1 f ∗

2 f ∗
3

L2− error 0,23757 0,26129 0,30358
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Fig. 14 The exact solution in comparison with the its approximation with 9 observations: (a) f = sin(2π t);

(b) f =
{
2t if t < 0.5,
2(1 − t) otherwise

; (c) f =
{
1 if 0.25 ≤ t ≤ 0.75,
0 otherwise.

noise level δ = 0, 02. By varying f ∗ near f , we can see that the conjugate gradient method
will reconstruct the approximation which is closest f ∗.

In the test, if we choose f ∗ by

f ∗
1 = 0, 02

(
rand(N1, N2, M) − 0, 5

)
+ f ,

f ∗
2 = 0, 1

(
rand(N1, N2, M) − 0, 5

)
+ f ,

f ∗
3 = 0, 5

(
rand(N1, N2, M) − 0, 5

)
+ f .

Table 3 L2−error with 3 observations and 9 observations

f = sin(2π t) f =
{
2t if t < 0.5,
2(1 − t) otherwise

f =
{
1 if 0.25 ≤ t ≤ 0.75,
0 otherwise

3 observations 0,052077 0,055625 0,074178

9 observations 0,049649 0,050122 0,054525
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The numerical results are presented as in Figs. 11, 12, 13 and Table 2. We can see that if
f ∗ is not close to the exact f , the algorithm cannot reconstruct the chosen f , but maybe the
other one.

In the last example, we will test in case we have more observations. The priori esti-
mation f ∗ = 0, noise level δ = 0, 02, regularization parameter γ = 10−2, f 0 =
0, a1(x, t), a2(x, t), a(x, t) and the initial condition v are chosen as in Example 4.
The grid sizes are chosen 0.02 in x and in t . We choose 9 observations in domains
(0, 0, 34) × (0, 0, 34), (0, 0, 34) × (0, 34, 0, 68), (0, 0, 34) × (0, 68, 1), (0, 34, 0, 68) ×
(0, 0, 34), (0, 34, 0, 68)×(0, 34, 0, 68), (0, 34, 0, 68)×(0, 68, 1), (0, 68, 1)×(0, 0, 34), (0,
68, 1) × (0, 34, 0, 68), (0, 68, 1) × (0, 68, 1). The results for reconstructing f are shown in
Fig. 14. The comparison of the error between 3 observations and 9 observations is presented
in Table 3. We can see that the numerical results for the case of 9 observations are better than
that for the case of 3 observations.

Acknowledgements This work was supported by Vietnam Ministry of Education and Training under grant
number B2024-TDV-12.

References

1. Borukhov, V.T., Vabishchevich, P.N.: Numerical solution of an inverse problem of source reconstructions
in a parabolic equation. Mat. Model. 10(11), 93–100 (1998). (Russian)

2. Erdem, A., Lesnic, D., Hasanov, A.: Identification of a spacewise dependent heat source. Appl. Math.
Model. 37, 10231–10244 (2013)

3. Hào, D.N.: A noncharacteristic Cauchy problem for linear parabolic equations II: a variational method.
Numer. Funct. Anal. Optim. 13, 541–564 (1992)

4. Hào, D.N.: Methods for Inverse Heat Conduction Problems. Peter Lang Verlag, Frankfurt/Main, Bern,
New York, Paris (1998)

5. Hào, D.N., Huong, B.V., Oanh, N.T.N., Thanh, P.X.: Determination of a term in the right-hand side of
parabolic equations. J. Comput. Appl. Math. 309, 28–43 (2017)

6. Hào, D.N., Thành, N.T., Sahli, H.: Splitting-based gradient method for multi-dimensional inverse con-
duction problems. J. Comput. Appl. Math. 232, 361–377 (2009)

7. Hamdi, A.: Identification of a time-varying point source in a system of two coupled linear diffusion-
advection-reaction equations: application to surface water pollution. Inverse Prob. 25, 115009 (2009)
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