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Abstract
Let R be a commutative Noetherian ring of prime characteristic p. The main goal of this
paper is to study in some detail when

{p ∈ Spec(R) : F Ep is finitely generated as a ring over its degree zero piece}
is an open set in the Zariski topology, where F Ep denotes the Frobenius algebra attached to
the injective hull of the residue field of Rp. We show that this is true when R is a Stanley–
Reisner ring; moreover, in this case, we explicitly compute its closed complement, providing
an algorithmic method for doing so.
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1 Introduction

The main goal of the present paper is to prove the following result:
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4 A. F. Boix et al.

Theorem 1 Let S = K[x1, . . . , xn]/I be a Stanley-Reisner ring, where K is a field of prime
characteristic p and I a squarefree monomial ideal. Then, the set

W S = {p ∈ Spec(S) : F ESp is finitely generated as a ring over its degree zero piece},
where F ESp is the Frobenius algebra of the injective hull of the residue field of the local ring
Sp, is an open set of Spec(S).

Moreover, we determine the defining ideal of its closed complement and provide an
algorithmic method to compute it, both algebraic and combinatorial.

We explain now the context and the meaning of the above statement.
Let R be a commutative Noetherian ring of prime characteristic p, and let M be an R-

module. For each integer e ≥ 0, we denote by Endpe (M) the set of pe-linear maps of M,

that is, Endpe (M) is made up by abelian group endomorphisms M
φ

M such that

φ(rm) = r p
e
φ(m) for all (r ,m) ∈ R × M .

In this way, one can cook up the so-called Frobenius algebra of M

FM :=
⊕

e≥0

Endpe (M),

where multiplication is given by composition of maps. This algebra, introduced in [15] in
the context of tight closure theory has attracted some attention in the last years.

One question raised in [15, p. 3156] is whether this algebra is finitely generated over its
degree zero piece.Wewant to briefly summarize here some of the answers that have appeared
in the last years.

(i) If M = R and R
F

R denotes the Frobenius endomorphism of R, then F R ∼=
R[Θ; F], the algebra is finitely generated [15, Example 3.6]. The same conclusion
holds when (R,m) is a local complete S2-ring, M = Hdim(R)

m (R) is the top local
cohomology module of R supported on m, and F denotes the natural Frobenius action
on this module [15, Example 3.7].

(ii) If M is an R-module of finite length, then FM is finitely generated [6, Theorem 2.11].
(iii) Let R = K[[x1, . . . , xn]]/I , where K is a field of prime characteristic p, and I is a

squarefree monomial ideal. If M = ER is the injective hull of the residue field of R,

then FM is either infinitely generated or FM ∼= R[uθ; F] for some u ∈ R [1, Theorem
3.5].

(iv) If R is a normal, excellent, Q-Gorenstein local ring of prime characteristic p and order
m, and again M = ER is the injective hull of the residue field of R, then FM is finitely
generated if and only if gcd(p,m) = 1 (see [13, Proposition 4.1] and [6, Theorem
4.5]).

However, not too much is known about the following:

Question 1 Let R be a commutative Noetherian ring of prime characteristic p. Is it true that

WR := {p ∈ Spec(R) : F Ep is finitely generated as a ring over its degree zero piece},
where Ep is the injective hull of the residue field of Rp, is an open set?
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On the Infinitely Generated Locus of Frobenius Algebras... 5

In [8], it is shown that this question has a positive answer in some particular cases; however,
to the best of our knowledge, no systematic study of this problem seems to have been carried
out so far.

The goal of this paper is to study Question 1 in some detail; more precisely, let S = R/I
be a commutative Noetherian ring which is a quotient of a regular Noetherian ring R (that
is, locally regular) of prime characteristic p. Under these assumptions, we show that WS

is closed under generalization; moreover, when S is a Stanley–Reisner ring, we will show
that WS is really an open set in the Zariski topology and provide an algorithmic and explicit
description of the defining ideal of its closed complement.

Our approach to the problem is by means of the study of a similar question over another
non-commutative graded algebra, that we denote by AS (see Definition 1). This algebra is
much easier to handle and behaves well under flat morphisms. Moreover, thanks to a well-
known result of R. Fedder [7], if R is a complete regular local ring, then the algebra AS is
isomorphic to F E , where E is the injective envelope of the residue field of S (see Sect. 2 for
the details).

It turns out that, in the Stanley-Reisner case, the graded pieces of the algebra AS are
homogeneous for the natural multigrading of the polynomial ring R = K[x1, . . . , xn]. This
allows to control their local vanishing and in the end the finite generation of ASp , just
by looking at the localization by homogeneous prime ideals of R, which are a finite set.
Analyzing carefully this process, we are able to prove that the complement of the set WS is
the closed set defined by a squarefree monomial ideal (see Theorem 2).

In order to find explicitly the above defining ideal, first, we need to pass from the local
case to the Stanley–Reisner case. This we do by relating through a faithfully flat morphism
the localization of S at a homogeneous prime ideal to an adequate monomial localization
(see Definition 4), which provides the needed frame to apply the criteria from [1] and [2] to
determine whether the corresponding Frobenius algebra of the injective hull of the residue
field is finitely generated or not in the Stanley–Reisner case. Then, we introduce a very simple
algebraic algorithm that computes explicitly our defining ideal (see Theorem 4). From the
combinatorial point of view, this process corresponds to consider all the possible links of the
simplicial complex determined by S and to look for the existence of the so-named free faces
inside them. The details are developed in Sect. 4.

Finally, in Sect. 5, we provide several examples computed bymeans of the implementation
of our algorithm in Macaulay2.

2 The Non-finitely Generated Locus: Definition and General Properties

Definition 1 Let K be a field of prime characteristic p > 0, let R be a commutative Noethe-
rian ring containing K, S = R/I , where I ⊂ R is an ideal, and set

AS :=
⊕

e≥0

(
(I [pe] :R I )

I [pe]

)
=

⊕

e≥0

Ae.

This is a graded abelian group that we can endow with a non-commutative ring structure by
setting its multiplication as

a · b = abpe , a ∈ Ae, b ∈ Ae′ .
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6 A. F. Boix et al.

Finally, set

ASp :=
⊕

e≥0

(
(I [pe]

p :Rp Ip)

I [pe]
p

)
,

where again this is regarded as a non-commutative ring with multiplication defined as before.
Then, we refer to

W := {p ∈ Spec(R) : p ⊇ I , ASp is a not finitely generated ring over Sp},
as the non-finitely generated locus of the algebra AS . Moreover, we denote by W the
complement of W inside V (I ).

The reader might ask why to care about the non-commutative algebra defined above;
actually, this ring is very close to the Frobenius algebra attached to the injective hull of the
residue field of a complete local ring, as the below discussion explains.

Discussion 1 Let (R,m) be a commutative Noetherian regular local ring of prime character-
istic p, let I ⊂ R be an ideal, and set S := R/I . Moreover, let T := Ŝ be the completion of
S with respect to the m-adic topology. Now, consider

GS =
⊕

e≥0

(
(I [pe] :R I )

I [pe]

)
Fe =

⊕

e≥0

GeFe,

where Fe denotes the e-th iteration of the Frobenius map on the injective hull of the residue
field of R. It is clear that GS is an N0-graded ring, not necessarily commutative with G0 = S
which is degree-wise finitely generated and a left S-skew algebra; now, we also consider

GT :=
⊕

e≥0

BeF
e
T , where Be := T ⊗S Ge,

and Fe
T denotes the e-th iteration of the Frobenius map on T . However, notice that, by

Fedder’s Lemma [7, p. 465], GT is isomorphic to F ES , the Frobenius algebra attached to the
injective hull of the residue field of S, which in turn is also isomorphic to F ET because of
[15, Proposition 3.3]. On the other hand, we also have a graded ring isomorphism

AS ∼= GS .

These facts allow us to regard AS as a subring of F ET .

Before going on, we need to review the following notions borrowed from [6].

Discussion 2 Let A = ⊕
e≥0 Ae be an N0-graded ring, not necessarily commutative.

(i) Let Ge := Ge(A) be the subring of A generated by the homogeneous elements of
degree less than or equal than e; we agree that G−1 = A0. Notice also that G0 = A0.

(ii) Let ke := ke(A) be the minimal number of homogeneous generators of Ge as a subring
ofA overA0;we agree that k−1 = 0.One says thatA isdegree-wise finitely generated
if ke < ∞ for any e.

(iii) Again, assume that A is a degree-wise finitely generated ring and set, for each integer
e ≥ 0, ce(A) := ke − ke−1; as pointed out in [6, Remark 2.6], A is finitely generated
as a ring over A0 if and only if the sequence {ce(A)}e≥0 is eventually zero.

123



On the Infinitely Generated Locus of Frobenius Algebras... 7

(iv) Let R be a commutative ring, and let A be a degree-wise finitely generated ring such
that R = A0; moreover, assume that A is a left R-skew algebra (i.e., aR ⊆ Ra for
all homogeneous elements a ∈ A). Then, by [6, Corollary 2.10], ce(A) equals the
minimum number of generators of Ae/(Ge−1)e as a left R-module for any e.

As observed along Discussion 2, we know that when A is a non-commutative, degree-
wise finitely generated ring,A is finitely generated as a ring over its degree zero piece if and
only if the sequence {ce(A)}e≥0 is eventually zero. This fact motivates us to introduce the
following:

Definition 2 Given A a non-commutative, degree-wise finitely generated ring, and given an
integer k ≥ 1, we say thatA is k-generated provided ce(A) = 0 for all e > k; when k = 1,
we say that A is principally generated.

Now, we are in a position to introduce the following:

Definition 3 Under the assumptions and notations of Definition 1, we can define

Wk := {p ∈ Spec(R) : p ⊇ I , ASp is k-generated}.
The reader will easily note that the Wk’s provide a stratification of the set

W = {p ∈ Spec(R) : p ⊇ I , ASp is finitely generated over Sp};
in other words,

W =
⋃

k≥1

Wk .

Our next goal is to compute the sequence {ce(A)}e≥0 for the ring AS and to characterize
when it is eventually zero.

Proposition 1 Let R be a commutative Noetherian ring of prime characteristic p, let I ⊂ R
be an ideal, and set S := R/I . Moreover, for each e ≥ 1, write Ke := (I [pe] :R I ), and set

Le :=
∑

1≤a1,..., as≤e−1
a1+···+as=e

Ka1K
[pa1 ]
a2 K [pa1+a2 ]

a3 · · · K [pa1+···+as−1 ]
as .

Then, the following assertions hold.

(i) For any e ≥ 1, one has that ce(AS) equals the minimum number of generators as a left
S-module of

(I [pe] :R I )

Le
.

(ii) The sequence {ce(AS)}e≥0 is eventually zero if and only if, for all e � 0, one has that

(I [pe] :R I ) = Le.

(iii) Given an integer k ≥ 1, the ring AS is k-generated if and only if, for all e > k, one
has that

(I [pe] :R I ) = Le.
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8 A. F. Boix et al.

Proof Since parts (ii) and (iii) follow immediately from part (i), we only plan to prove part
(i); indeed, as viewed in Discussion 2, ce(AS) equals the minimum number of generators as
a left S-module of Ae/(Ge−1 ∩ Ae), where Ge−1 is as defined in Discussion 2. However,
thanks to [12, Proposition 2.1], we know that

Ge−1 ∩ Ae = Le.

In this way, the result follows directly from this fact. ��
Remark 1 Notice that [12, Proposition 2.1] was only proved for a formal power series ring
in three indeterminates; however, the reader can easily verify that its proof also holds in our
setting.

Now, our aim is to show how the algebra AS behaves under certain base change; this
behavior will play a key role in several places of this paper later.

Proposition 2 Let R
φ

R′ be a faithfully flat ring homomorphism between commutative
Noetherian regular rings of prime characteristic p, let I ⊂ R be an ideal, and set I ′ :=
φ(I )R′ and S′ := R′/I ′. Now, set

AS :=
⊕

e≥0

(
(I [pe] :R I )

I [pe]

)
, AS′ =

⊕

e≥0

(
(I ′[pe] :R′ I ′)

I ′[pe]

)
.

Finally, we assume, for any integer e ≥ 0, that

φ((I [pe] :R I ))R′ = (I ′[pe] :R′ I ′).

Then,AS is k-generated for some integer k ≥ 1 if and only ifAS′
is k-generated; in particular,

this implies thatA is finitely generated as a ring over S, if and only ifAS′
is finitely generated

as a ring over S′.

Proof We know that AS is k-generated as a ring over S if and only if ce(AS) = 0 for all
e > k, which is equivalent to say, thanks to Proposition 1, that for all e > k, one has
(I [pe] :R I ) = Le, where

Le =
∑

1≤a1,...,as≤e−1
a1+···+as=e

(I [pa1 ] :R I ) · (I [pa2 ] :R I )[pa1 ] · · · (I [pas ] :R I )[p
a1+···+as−1 ].

In this way, if for all e > k, one has that (I [pe] :R I ) = Le, then this is equivalent to say,
thanks to our assumptions, that for all e > k (I ′[pe] :R′ I ′) = L ′

e, where

L ′
e =

∑

1≤a1,...,as≤e−1
a1+···+as=e

(I ′[pa1 ] :R′ I ′) · (I ′[pa2 ] :R′ I ′)[pa1 ] · · · (I ′[pas ] :R′ I ′)[p
a1+···+as−1 ].

The proof is therefore complete. ��
By applying Proposition 2 to the completion map, we immediately obtain the following:

Corollary 1 Let (R,m) be a commutative Noetherian regular local ring of prime character-
istic p, let I ⊂ R be an ideal, and set S := R/I . Given an integer k ≥ 1, one has that AS

is k-generated if and only if F ES is k-generated; in particular, AS is finitely generated as a
ring over its degree zero piece if and only if so is F ES .
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On the Infinitely Generated Locus of Frobenius Algebras... 9

Our next goal is to show that the setW introduced in Definition 1 is closed under special-
ization. This is exactly the content of the next:

Proposition 3 Let k ≥ 1 be an integer, and let

Wk = {p ∈ Spec(R) : p ⊇ I , ASp is k-generated}.
Then,Wk is closedunder generalization.Equivalently, givenprime idealsq ⊂ pwithp ∈ Wk,

one has that q ∈ Wk .

Therefore, Wk is closed under specialization, and therefore, by [19, Tag 0EES], Wk can
be expressed as a directed union of closed subsets of V (I ).

In particular, the set

W = {p ∈ Spec(R) : p ⊇ I , ASp is a finitely generated ring over Sp}
is closed under generalization.

Proof Let q ⊂ p be prime ideals with p ∈ W , and we assume that AS is not k-generated;

otherwise, the statement is obvious (indeed, in that case,Wk = ∅). Let R lp
Rp

lp,q
Rq

be the natural localization maps, notice that lq = lp,q ◦ lp. Since p ∈ W , one has that
ce(ASp) = 0 for all e > k, which means, due to Proposition 1, that for all e > k,

(I [pe] :R I )Rp = LeRp.

Applying to this equality the map lp,q and using the equality lq = lp,q◦lp, one finally obtains
that for all e > k,

(I [pe] :R I )Rq = LeRq.

In this way, this is equivalent to say, using once again Proposition 1, that ce(ASq) = 0 for
all e > k, and therefore, q ∈ Wk, as claimed. ��

As an immediate consequence of Proposition 3, one gets the below:

Corollary 2 Let R be a commutative Noetherian regular ring of prime characteristic p, let
I ⊂ R be an ideal, and set S := R/I . Then, for any integer k ≥ 1,

{p ∈ Spec(R) : p ⊇ I , F ESp is k-generated}
is closed under generalization; in particular,

{p ∈ Spec(R) : p ⊇ I , F ESp is a finitely generated ring over Ŝp}
is closed under generalization.

3 The Case of the Stanley–Reisner Ring

In what follows in this section, let K be a field, and let R = K[x1, . . . , xn] be a polynomial
ring over K. We regard R as an N

n-graded ring, where deg(xi ) is the i-th canonical basis
vector in N

n . With this grading, the graded R-submodules of R (aka the graded ideals of R)
are exactly the monomial ideals, and the graded prime ideals of R are the ideals generated by
a subset of the variables; in this way, we denote by ∗ Spec(R) the set of graded prime ideals
of R.
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10 A. F. Boix et al.

In this setting, given p a (not necessarily graded) prime ideal of R containing a monomial
ideal J ⊂ R, it is known that p ⊇ p∗ ⊇ J ,where p∗ is the graded prime ideal of R generated
by the homogeneous elements of p.

The first technical result we need to establish is that, in order to calculate the non-finitely
generated locus of a Stanley–Reisner ring, it is enough to restrict to face ideals; this holds
because of the following:

Lemma 1 Let I ⊂ R be a squarefree monomial ideal, set S := R/I , and assume that there
is a prime p ∈ Spec(R) such that ASp∗ is k-generated for some integer k ≥ 1. Then, ASp is
also k-generated.

In particular, if there is a prime p ∈ Spec(R) such that ASp∗ is finitely generated as a
ring over Sp∗ , then we have that ASp is also finitely generated as a ring over Sp.

Proof Assume thatASp∗ is k-generated as a ring over Sp∗ ; this means that ce(ASp∗ ) = 0 for
all e > k. Hence, for all e > k, one has that

(
(I [pe] :R I )

Le

)

p∗
= 0.

This means, setting Me := (I [pe ]:R I )
Le

, that p∗ /∈ Supp(Me), and this implies, by [5, 13.1.6

(i)], that p /∈ Supp(Me) for all e > k. But, this is equivalent to say that ce(ASp) = 0 for all
e > k, which implies that ASp is k-generated; the proof is therefore complete. ��

Now, we are in a position to prove one of the main results of this paper, namely, the
following:

Theorem 2 Let K be a field of prime characteristic p, let I ⊆ K[x1, . . . , xn] = R be a
squarefree monomial ideal, and set S := R/I . Then, the set

W = {p ∈ Spec(R) : p ⊇ I , ASp is not finitely generated as a ring over Sp}
is closed in the Zariski topology.

Proof If W = ∅, then we are done, so we can assume W �= ∅; now, let p ∈ W . Thanks to
Lemma 1, we have that p∗ ∈ W . This shows that the minimal members of the set W are face
ideals, which turn out to be a finite set. Thus, let p∗

1, . . . , p
∗
t be the face ideals that belong to

W , and set

J :=
t⋂

a=1

p∗
a .

Our above argument shows that W ⊆ V (J ); conversely, let q ⊃ J , in particular q ⊃ pa
for some a = 1, . . . , t . In this way, since pa ∈ W and W is closed under specialization by
Proposition 3, we have that q ∈ W .

Summing up, we have finally checked that W = V (J ), hence a Zariski closed set.

Since we know that, in the Stanley–Reisner case, the finite generation of the Frobenius
algebra is equivalent to its principal generation (equivalently, to its 1-generation using the
terminology that we employ in this paper), Theorem 2 implies the following:

Theorem 3 Let K be a field of prime characteristic p, let I ⊆ K[x1, . . . , xn] = R be a
squarefree monomial ideal, and set S := R/I . Then, we have

W = W 1 = {p ∈ Spec(R) : p ⊇ I , ASp is 1-generated}.
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On the Infinitely Generated Locus of Frobenius Algebras... 11

Remark 2 Theorem 2 is equivalent to say that

W = {p ∈ Spec(R) : p ⊇ I , ASp is finitely generated as a ring over Sp}
is open in the Zariski topology. The reader will easily note that our proof does not involve
the use of the so-called (the terminology is borrowed from [14]) topological Nagata criterion
[16, Theorem 24.2].

Remark 3 Similarly, as we have already done in Corollary 2, both Theorems 2 and 3 can also
be equally formulated for the corresponding Frobenius algebra.

4 An Algorithmic Description of the Non-finitely Generated Locus

Our goal now is to give, in the case of a Stanley–Reisner ring, an explicit and algorithmic
description of the non-finitely generated locus of its corresponding Frobenius algebra. We
continue with the same notations as in Sect. 3.

Hereafter, in this section, [n] will denote the subset {1, . . . , n} of n ≥ 1 elements, let
Δ ⊂ [n] be a simplicial complex, and let I = IΔ ⊆ R be the squarefree monomial ideal
attached to Δ via the Stanley–Reisner correspondence [18, 1.6 and 1.7]; moreover, given
F ⊂ Δ a face, we denote by pF the prime ideal of R generated by the variables whose
indices are not in F . In other words,

pF := (xi : i /∈ F).

On the other hand, given a monomial m = xa11 · · · xann , we denote by supp(m) its support,
that is,

supp(m) = {i ∈ [n] : ai �= 0}.
Finally, set

xF :=
∏

i∈F
xi .

Lemma 2 If F is a face of Δ, then I ⊆ (I :R xF ) ⊆ pF .

Proof Since the inclusion I ⊆ (I :R xF ) holds by the definition of colon ideals, it is enough
to check that (I :R xF ) ⊆ pF .

Indeed, let m1, . . . ,mt be a system of squarefree monomial generators of I , and it is
known [10, 1.2.2] that (I :R xF ) = (g1, . . . , gt ), where

g j = m j

gcd(m j , xF )
, 1 ≤ j ≤ t .

Therefore, it is enough to check that, given 1 ≤ j ≤ t, g j is divisible by a variable xi with
i /∈ F .

So, fix 1 ≤ j ≤ t, and set S j := supp(m j ); notice that, if S j ⊂ F, then m j would divide
xF , and therefore, xF ∈ I , a contradiction because F is a face of Δ. Hence, there is i ∈ S j

such that i /∈ F; thus, xi divides, not only m j , but also g j , as claimed. ��
The reader might ask why one needs to consider the above colon ideal. Next statement

gives a combinatorial reason; recall that, given a simplicial complex Δ and a face F of it, the
link of F inside Δ is defined as link(F) := {G ⊂ Δ : F ∩ G = ∅, F ∪ G ⊂ Δ}.
Lemma 3 Let F ⊂ Δ be a face. Then, (I :R xF ) = Ilink(F).

123



12 A. F. Boix et al.

Proof First of all, let m1, . . . ,mt be a system of squarefree monomial generators of I ; since
[10, 1.2.2] (I :R xF ) = (g1, . . . , gt ), where

g j = m j

gcd(m j , xF )
, 1 ≤ j ≤ t, (1)

one has that (I :R xF ) is also a squarefree monomial ideal, so (I :R xF ) = IΔ′ for some
simplicial complex Δ′. Moreover, as I ⊆ (I :R xF ), one has, again as consequence of the
Stanley–Reisner correspondence, that Δ′ ⊂ Δ. Finally, given G ⊂ [n] such that xG is a
squarefree minimal monomial generator of (I :R xF ), one has that G /∈ Δ′ if and only if
xG ∈ (I :R xF ), which is equivalent to say that xF · xG ∈ I , which is equivalent to say
(notice that F ∩ G = ∅ because of (1)) that xF∪G ∈ I , which is equivalent to say that
F ∪ G /∈ Δ. ��

Now, before establishing the main result of this section, we want to review for the conve-
nience of the reader the notion of monomial localization as introduced in [11, p. 293].

Definition 4 Let J ⊆ R be a (not necessarily squarefree) monomial ideal. We define the
monomial localization of J at the prime ideal pF as the monomial ideal J (pF ) ⊂ K[xi :
i /∈ F] obtained from J by setting x j = 1 for all variables j ∈ F . In other words, J (pF ) is
the extension of J with respect to the K-algebra map

ϕpF : R → K[xi : i /∈ F],

x j �−→
{
x j if j /∈ F,

1 if j ∈ F .

We also need to establish the below technical statement that will play a key role along
the proof of the main result of this section. In the following result, given J a monomial ideal
with minimal monomial generating set {m1, . . . ,mr }, we denote by LCMJ the following
monomial ideal:

LCMJ := (LCM(mi ,m j ) : 1 ≤ i < j ≤ r).

Finally, given I = ( f1, . . . , fs) an ideal inside a commutative Noetherian ring, we set
I [2] := ( f 21 , . . . , f 2s ).

Lemma 4 Let I ⊂ R be a squarefree monomial ideal, and let p = pF ∈ ∗ Spec(R) be a face
ideal. Then, the following statements are equivalent.

(i) ASp is a finitely generated ring over Sp.

(ii) AR̃ is a finitely generated ring over R̃, where R̃ := K[xi : i /∈ F](xi : i /∈F).

(iii) AR′
is a finitely generated ring over R′, where R′ := K[xi : i /∈ F].

(iv) We have (I ′[2] :R′ I ′) = I ′[2] + (LCMI ′), where I ′ := I (pF ).

(v) We have (K [2] :R K ) = K [2] + (LCMK ), where K := (I :R xF ).

Proof We consider the following maps, where starting from the left, the first one is just
ϕ := ϕpF as defined in Definition 4, the second one is the obvious inclusion, and the last one
is localization at p.

R
ϕ

R′ R Rp.

Since the inclusion R′ R is given by adjoining variables and R Rp is a localiza-
tion, the composition R′ Rp is flat; moreover, the ideal (xi : i /∈ F) ⊂ R′ maps under
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this composition to pRp. Combining these two facts, one gets that the induced inclusion

R̃ = K[xi : i /∈ F](xi : i /∈F) Rp

is faithfully flat; this shows, combined with Proposition 2, that parts (i) and (ii) are equivalent.
Moreover, since (xi : i /∈ F) ⊂ R′ is the unique homogeneous maximal ideal of the

graded ring R′, one has that the localization R′ R̃ , restricted to graded R′-modules, is
also faithfully flat; hence, parts (ii) and (iii) are also equivalent again using Proposition 2.

Now, notice that R′ ⊗R (R/I ) ∼= R′/I ′ := S′ is also a Stanley–Reisner ring; therefore,
by [1, Theorem 3.5] and [2, Remark 2 and Lemma 3], the algebra AS′

is finitely generated
as ring over S′ if and only if

(I ′[2] : I ′) = I ′[2] + (LCMI ′),

which proves the equivalence between parts (iii) and (iv).
Finally, set K := (I :R xF ). Along Lemma 3, we saw that K admits a minimal monomial

generating set G such that, if a monomial m belongs to G, then the support of m is disjoint
from F . On the other hand, notice, by the definition of ϕ, that ϕ(K )R′ = I ′; actually, both
K and I ′ admit G as minimal generating set. This implies that

(I ′[2] :R′ I ′) = I ′[2] + (LCMI ′),

if and only if
(K [2] :R K ) = K [2] + (LCMK ),

just what we finally wanted to show. ��
Finally, we are in a position to establish the second main result of this paper, which is the

following:

Theorem 4 Let K be a field of prime characteristic p, let R = K[x1, . . . , xn], S = R/I ,
and I is a squarefree monomial ideal. Then, the set

W = {p ∈ Spec(R) : p ⊇ I , ASp is not finitely generated as a ring over Sp}
= {p ∈ Spec(R) : p ⊇ I , F ESp is not finitely generated as a ring over Ŝp}

is closed in the Zariski topology; more precisely, it is equal to V (J ), where

J =
⋂

F∈IGL(Δ)

pF ,

pF is the prime ideal generated by the variables whose indices are not in F, and

IGL(Δ) := {F ⊂ Δ : (K [2] :R K ) �= K [2] + (LCMK ), K := (I :R xF )}.
In particular, W ∩ ∗ Spec(R) = {pF : F ∈ IGL(Δ)}.
Proof Let p be a prime ideal of R with p ⊃ I and such thatASp is a not finitely generated ring
over Sp. Thanks to Lemma 1, we know that p ⊃ p∗, andASp∗ is also a not finitely generated
ring over Sp∗ . Now, write p∗ = pF for some F ⊂ [n]. Since pF ⊃ I , by [18, Theorem 1.7],
there is a minimal prime ideal pG of I such that pF ⊃ pG for some G ⊂ Δ. This implies
that F ⊂ G, and therefore, since G ⊂ Δ and Δ is a simplicial complex, F ⊂ Δ. This shows
that p ⊃ J , and therefore, W ⊂ V (J ).

Now, let p ∈ V (J ), so p ⊃ pF for some F ∈ IGL(Δ). By construction, pF ∈ W ;
moreover, since W is closed under specialization by Proposition 3, one has that p ∈ W , just
what we finally wanted to prove. ��
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Theorem 4 leads to a very naive algorithm for computing the infinitely generated locus
of the Frobenius algebra attached to a Stanley–Reisner ring; in this method, our input is
a simplicial complex Δ as before, and our output will be the ideal J described along the
statement of Theorem 4. This method has been implemented in Macaulay2 [9].

(i) Step 1: Initialize K as I , p as the ideal (x1, . . . , xn), and L as the empty list.
(ii) Step 2: If (K [2] : K ) �= K [2] + 〈LCMK 〉, then add p to the list L. Otherwise, return

the empty list.
(iii) Step 3: For each non-empty face F ⊂ Δ, assign to K the value (I : xF ). If (K [2] :

K ) �= K [2] + 〈LCMK 〉, then add p = pF to the list L, where p denotes the ideal
generated by the variables that do not belong to F .

(iv) Step 4: Output the intersection of the elements of L.

Discussion 3 Thanks to [2, Theorem 4], we know that the Frobenius algebra attached to the
injective hull of a complete Stanley–Reisner ring is finitely generated if and only if Δ has no
free faces. In this way, we can rewrite the above algorithm in terms of the simplicial complex
Δ as follows:

(i) If Δ has no free faces, then stop and output the empty list.
(ii) For each non-empty face F ⊂ Δ, let link(F) be its corresponding link. If link(F) has

at least one free face, then add p = pF to the list L.

We conclude this section by exhibiting a family of ideals with a quite simple infinitely
generated locus; before so, we want to review the following notion [4, Definition 2.5].

Definition 5 Let K be any field, let R = K[x1, . . . , xn] be the polynomial ring in n variables
over K, let I ⊆ R be a squarefree monomial ideal, and let supp(I ) be the support of I , that
is,

supp(I ) := {i ∈ [n] : xi divides at least one minimal monomial generator of I }.
We say that I is a nearly complete intersection (hereafter, NCI for short) if it is generated in
degree at least two and is not a complete intersection, and for each i ∈ supp(I ), themonomial
localization I (p([n]\supp(I ))∪{i}) is a complete intersection.

The interested reader in this family of ideals may also like to consult [17] where a classi-
fication of these ideals in the degree two case is given. Our reason for considering this class
of ideals is given in the following:

Proposition 4 Let K be a field of prime characteristic p, let R = K[x1, . . . , xn], S = R/I ,
and I is a NCI ideal. Then, the set

W = {p ∈ Spec(R) : p ⊇ I , ASp is not finitely generated as a ring over Sp}
is either empty or is given by the closed set V (J ), where J := (xi : i ∈ supp(I )).

Proof If W = ∅, then we are done, so we assume hereafter W �= ∅. First of all, notice that

J = (xi : i ∈ supp(I )) = p[n]\supp(I )
is a prime ideal. Secondly, sinceW �= ∅, in particular, one has that J ∈ W .Now, we assume,
to reach a contradiction, that there is a face ideal p ∈ W such that p � J . This implies that
there is i ∈ supp(I ) such that

p ⊆ (x j : j ∈ supp(I )\{i}) = p([n]\supp(I ))∪{i}.
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However, sinceW is closed under specialization and p ∈ W , we have that p([n]\supp(I ))∪{i} ∈
W , which is equivalent to say, thanks to Lemma 4, that

(I ′[2] : I ′) �= I ′[2] + (LCMI ′),

where I ′ = I (p([n]\supp(I ))∪{i}).But this is a contradiction because, since I is NCI by assump-
tion, I ′ is a complete intersection, and therefore, in this case, we know that

(I ′[2] : I ′) = I ′[2] + (LCMI ′).

Summing up, we have checked that if W �= ∅, then

W = V (p[n]\supp(I )) = V ((xi : i ∈ supp(I ))),

as claimed. ��

5 Examples

The goal of this section is to show several examples of how to use our method in Macaulay2;
the first one is directly borrowed from [3, Example 5].

Example 1 Let Δ be the simplicial complex given by facets {1, 2, 3}, {1, 2, 6} and {3, 4, 5}.
In the following calculation, the set of vertices {1, 2, 3, 4, 5, 6} is identified with the set of
variables {x, y, z, w, a, b}.

6

1 2

3

4 5

We use our method to determine the non-finitely generated locus of the corresponding
Stanley–Reisner ideal.

loadPackage "SimplicialComplexes";

load "non_finitely_generated_locus_algorithm.m2";

R=QQ[x,y,z,w,a,b];

A= simplicialComplex {x*y*z,x*y*b,z*w*a};

I=monomialIdeal(A);

I

monomialIdeal (x*w, y*w, x*a, y*a, z*b, w*b, a*b)

nonfglocus(I)

monomialIdeal (x, y, w, a, b)
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16 A. F. Boix et al.

Notice that link(3) is a subsimplicial complex of Δ with facets {1, 2} and {4, 5}, and its
corresponding squarefree monomial ideal has an infinitely generated Frobenius algebra [3,
Example 1]. Here, we have depicted this link:

1 2

4 5

The below example is exactly [8, Example 2.10].

Example 2 Let Δ be the simplicial complex given by facets {1, 2, 5}, {1, 3, 5} and {1, 2, 4}.

4

1 2

5

3

We use our method to determine the non-finitely generated locus of the corresponding
Stanley–Reisner ideal.

R=QQ[x_1,x_2,x_3,x_4,x_5];

A= simplicialComplex {x_1*x_2*x_5,x_1*x_3*x_5,x_1*x_2*x_4};

I=monomialIdeal(A);

I

monomialIdeal (x x , x x , x x )
2 3 3 4 4 5

nonfglocus(I)

monomialIdeal (x , x , x , x )
2 3 4 5

We can also explore how far are from Theorem 4 some of the components calculated in [8]
using our method in the following way. The first example is the one studied in [8, Proposition
2.6].

Example 3 Let Δ be the simplicial complex given by facets {2} and {1, 3}. As it is explained
there, the upper bound given by [8, Theorem 2.4] yields the ideal (x2). Our algorithm shows,
in this particular example, that the whole non-finitely generated locus is given by a smaller
ideal.

R=QQ[x_1,x_2,x_3];
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I=monomialIdeal(x_1*x_2,x_2*x_3);

{closedcomponent1(I),nonfglocus(I)}

{monomialIdeal x , monomialIdeal (x , x , x )}
2 1 2 3

The next example is the one studied in [8, Example 2.9]. This example shows, in particular,
that the upper bound given by [8, Theorem 2.7] is, in general, not always equal to the defining
ideal of the non-finitely generated locus.

Example 4 Let Δ be the simplicial complex given by facets {1, 2, 4}, {1, 3} and {2, 3}. We
proceed as before.

R=QQ[x_1,x_2,x_3,x_4];

I=monomialIdeal(x_1*x_2*x_3,x_3*x_4);

{closedcomponent1(I),nonfglocus(I)}

{monomialIdeal x , monomialIdeal (x x , x , x )}
3 1 2 3 4
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