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Abstract
Partially saturated flow in a porous medium is typically modeled by the Richards equa-
tion, which is nonlinear, parabolic and possibly degenerated. This paper presents domain
decomposition-based numerical schemes for the Richards equation, in which different time
steps can be used in different subdomains. Two global-in-time domain decomposition meth-
ods are derived in mixed formulations: the first method is based on the physical transmission
conditions and the second method is based on equivalent Robin transmission conditions.
For each method, we use substructuring techniques to rewrite the original problem as a
nonlinear problem defined on the space-time interfaces between the subdomains. Such a
space-time interface problem is linearized using Newton’s method and then solved iter-
atively by GMRES; each GMRES iteration involves parallel solution of time-dependent
problems in the subdomains. Numerical experiments in two dimensions are carried out to
verify and compare the convergence and accuracy of the proposed methods with local time
stepping.
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1 Introduction

Porous media flows appear in many applications of societal relevance, such as groundwa-
ter remediation, environmental contamination, nuclear waste geological repositories, CO2
sequestration and enhanced oil recovery. Mathematical modeling and numerical simulation
are key technologies for understanding the physical behavior of such systems, as they have
the minimal environmental impact and cost. The problems are challenging for the numer-
ical simulation since they involve coupled, nonlinear partial differential equations on a
complex domain, which is actually a union of several subdomains with different hydrogeo-
logical properties or even with different models. Thus the time scales may vary significantly
across various geological layers involved in the simulation. It is computationally ineffi-
cient to use a single time step in the whole domain and one should use a different time
step in each subdomain. This can be achieved by using global-in-time domain decomposi-
tion (GT-DD) methods with nonmatching grids in time. The idea of GT-DD is to decouple
the dynamic system into dynamic subsystems defined on the subdomains (resulting from
a spatial decomposition), then solve time-dependent problems in each subdomain at each
iteration and exchange the information over the space-time interfaces between subdomains.
Note that GT-DD is different from classical DD methods applied to evolution problems
where the model equations are first discretized implicitly in time, then DD iterations are
performed at each time step as for the stationary case. Consequently, a uniform time step is
usually considered in the classical approach.

GT-DD methods can be classified into two groups: Schur-type and Schwarz-type meth-
ods. The former is based on physical transmission conditions and the latter is based on
more general transmission conditions such as Robin or Ventcel conditions. An important
class of global-in-time Schwarz methods is the Optimized Schwarz Waveform Relaxation
(OSWR) algorithm where additional coefficients involved in the transmission conditions are
optimized to improve convergence rates [5, 6, 22]. Both global-in-time Schur and Schwarz
methods have been extensively studied for linear flow and transport problems in porous
media with different types of spatial discretizations and with nonmatching time grids in
[12, 13, 22–25, 29, 30, 33–35, 41]. Instead, the literature for nonlinear problems using
the GT-DD approach is less rich. In this context we refer to [26] for the rigorous conver-
gence analysis of such problems. A nested iteration method based on OSWR and Newton
linearization was proposed in [28] for the nonlinear reactive transport equation. Using a sim-
ilar approach, though with physical transmission conditions, a global-in-time Schur method
was developed in [36] for the coupled nonlinear Stokes-Darcy system. We also mention
[16, 17, 27, 54, 55] where classical DD methods for nonlinear elliptic equations were
developed.

In this work, we aim to derive nonlinear GT-DD methods with nonoverlapping subdo-
mains for the Richards equation [4, 32, 49, 50] to model flow in partially saturated porous
media. The Richards equation is a degenerate elliptic-parabolic nonlinear equation whose
well-posedness and numerical solutions have been extensively analyzed in the literature
(see, e.g., [2, 18, 44, 47, 52]). Due to the low regularity of the solution, this equation is
often discretized in time by the backward Euler method (see, e.g., [45]) and in space by var-
ious schemes. In this sense, we refer to [3, 48, 51, 56, 57], where mixed finite elements are
employed, or [19, 20, 38] for finite volume schemes, and to [43] for the a posteriori error
analysis. To solve the nonlinear problem at each time step, different linearization strategies
have been proposed such as Newton’s method [7, 14], Picard’s method [15, 40], the Jäger-
Kačur method [37], the L-scheme [39, 46], or the scheme combining the L-scheme with
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Newton’s approach [42]. In addition, to reduce the size of the problem and perform paral-
lel simulations, some DD methods have been studied for the stationary or time-discretized
Richards equation. Nonlinear Dirichlet-Neumann and Robin algorithms were proposed and
analyzed in [8, 9] for quasilinear elliptic problems and in [10, 11] for the semi-discrete
Richards equation at each time step. In [53], a linear DD method was introduced by com-
bining the L-scheme idea with Robin transmission conditions. The convergence of the
scheme is proved under some mild restrictions on the time step size. These DD schemes
for the Richards equation use pressure formulations and assume the same time steps in the
subdomains.

Due to strong heterogeneity of the porous medium, it is desirable to use different time
steps in different regions of the domain.

We develop in this work global-in-time Schur and Schwarz methods with mixed formu-
lations as the conservation of mass is essential for flow in porous media. Based on either
physical and Robin transmission conditions and by using substructuring techniques, we
rewrite the original problem as a nonlinear space-time problem defined on the interfaces
between the subdomains. Such an interface problem is linearized using Newton’s method
and then solved iteratively by GMRES; each GMRES iteration involves parallel solution of
time-dependent problems in the subdomains. Thus nonconforming time grids can be used
to adapt to different time scales in the subdomains. To discretize the Richards equation in
the subdomains at each Newton/GMRES iteration, we use the Euler implicit-mixed finite
element (EI-MFE) scheme [3, 48, 51]. The proposed GT-DD methods are fully implicit, so
that different and large time step sizes can be used for long-term simulations as often needed
in some applications in geosciences. We shall validate numerically the convergence and
accuracy of the proposed GT-DD methods with local time stepping on two test cases with
continuous and discontinuous parameters and known exact solutions. The numerical effect
of Robin parameters on the convergence of nonlinear and linear iterative schemes will also
be discussed. Convergence analysis of the methods, theoretical optimized Robin parameters
as well as further numerical experiments on more realistic problems will be investigated
in a separate work. We remark that OSWR algorithms based on Robin or Ventcel trans-
mission conditions were considered in [1] for two-phase flow discretized in space by finite
volumes and in time by backward Euler. Such algorithms are a special case of the global-
in-time Schwarz methods where one uses Jacobi iteration (instead of GMRES) to solve the
linearized interface problem.

The rest of this paper is organized as follows. In Section 2, the model initial boundary
value problem of Richards equation is introduced along with its numerical solution using the
EI-MFE scheme and Newton linearization. An important part of the paper is Section 3 where
two GT-DD methods are derived using either physical or equivalent Robin transmission
conditions. For each method, a nonlinear space-time interface problem is formulated and is
solved via a nested iterative algorithm. The fully discrete interface and subdomain problems
are discussed in Section 4 with nonconforming time discretization. In Section 5, numerical
experiments are presented to study the accuracy and convergence behaviors of the proposed
algorithms. Finally, some concluding remarks are given in Section 6.

2 Model Problem and Its Numerical Solution

For a bounded domain Ω of R
d (d ≥ 1) with Lipschitz continuous boundary ∂Ω and

some fixed time T > 0, consider the Richards equation [32, 49, 50] to model flow in
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saturated-unsaturated porous media

∂tΘ(ψ) − ∇ · (K(Θ(ψ))∇(ψ + z)) = f in Ω × (0, T ). (2.1)

Here ψ is the pressure head, Θ the fluid saturation, K the hydraulic conductivity of the
porous medium, z the vertical height (against the gravitational direction) and f the source
term. The medium is assumed to be isotropic, i.e., K is a scalar function. We refer to [4] for
different formulas for K(Θ) and Θ(ψ) based on laboratory experiments. It should be noted
that Θ(ψ) is strictly increasing and bounded in unsaturated regions (where Θ is less than
a maximal saturation ΘS), while it is constant in saturated regions (where Θ = ΘS). Thus,
(2.1) is generally a degenerate elliptic-parabolic equation.

We rewrite (2.1) in an equivalent mixed form by introducing the vector field Q for the
fluid flux

∂tΘ(ψ) + ∇ · Q = f in Ω × (0, T ),

Q = −K(Θ(ψ))∇(ψ + z) in Ω × (0, T ). (2.2)

Our model problem consists of (2.2) together with the following boundary and initial
conditions

ψ = 0 on ∂Ω × (0, T ), ψ(t = 0) = ψ0 in Ω . (2.3)

For simplicity, we have imposed homogeneous Dirichlet conditions on the boundary (for
more general boundary conditions, see [10, 52]). Throughout the paper, the following
assumptions are imposed

(A1) The function Θ is monotonically increasing and Lipschitz continuous; there exist two
constants ΘR and ΘS such that 0 < ΘR ≤ Θ(x) ≤ ΘS ≤ 1 for all x ∈ R.
(A2) The function K is strictly monotonically increasing and Lipschitz continuous; there
exist two constants K0 and K1 such that 0 < K0 ≤ K(x) ≤ K1 < ∞ for all x ∈ R.
(A3) The source term f ∈ L2(0, T ; L2(Ω)); the initial pressure head ψ0 is bounded and
positive, and ψ0 ∈ L2(Ω).

To write the weak form of (2.2)–(2.3), we denote by (·, ·) the inner product on L2(Ω),
and for a measurable subset S ⊂ Ω , we write (·, ·)S (respectively, 〈·, ·〉∂S) to indicate the
inner product on S (respectively, ∂S). Let ez := ∇z be the constant gravitational vector. Due
to the lacking regularity of the solution [2, 44], we consider the following mixed variational
formulation of (2.2) as proposed in [3]:

Find (ψ,Q) ∈ L2
(
0, T ; L2(Ω)

) × L2
(
0, T ; (L2(Ω))d

)
such that, for all t ∈ (0, T ),∫ t

0 Q(τ ) dτ ∈ L2 (0, T ; H(div, Ω)) and

(Θ(ψ(t)), μ) +
(

∇ ·
∫ t

0
Q(τ ) dτ, μ

)
=

(∫ t

0
f (τ) dτ, μ

)
+ (Θ(ψ0), μ) ,

∀μ ∈ L2(Ω), (2.4a)
(
K−1 (Θ(ψ))Q, v

)
− (ψ,∇ · v) + (ez, v) = 0, ∀v ∈ H(div, Ω). (2.4b)

Problem (2.4) is well-posed, i.e., there exists a unique solution to (2.4), as analyzed in
detail in [2, 3, 44]. Our focus here is the numerical solutions of (2.4). We consider the
EI-MFE scheme [3, 48, 51] for the discretization of problem (2.4); specifically, (2.4) is
discretized in time by backward Euler and in space by mixed finite elements based on the
lowest order Raviart-Thomas space. For completeness, we present the EI-MFE method as
well as the linearization technique to find the numerical solution of the resulting nonlinear
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discrete problem iteratively. The algorithm will be used to solve the Richards equation in
the subdomains as derived in the next sections.

Let T be a partition of the time interval (0, T ) into sub-intervals 0 = t0 < t1 < · · · <

tN = T , with a time step size Δt = T /N for some integer N > 0. In space, assume that
Ω is a polygon and let Kh be a finite element partition of Ω into d-dimensional simplicial
elements, where h is the mesh size. The discrete spaces for the scalar and vector variables
are defined as

Mh :=
{
μ ∈ L2(Ω) : μ|K = constant, ∀K ∈ Kh

}
,

Σh := {v ∈ H(div,Ω) : v|K = a + bx, ∀K ∈ Kh} . (2.5)

The nonlinear fully discrete problem for (2.4) is given by (see [3]):
For each n = 1, . . . , N , find (ψn

h ,Qn
h) ∈ Mh×Σh, the approximation of (ψ(tn), Q(tn)),

such that
(

Θ(ψn
h ) − Θ(ψn−1

h )

Δt
, μ

)

+ (∇ · Qn
h, μ

) = (f (tn), μ), ∀μ ∈ Mh, (2.6a)

(
K−1 (

Θ(ψn
h )

)
Qn

h, v
)

− (
ψn

h ,∇ · v
) + (ez, v) = 0, ∀v ∈ Σh. (2.6b)

Different linearization techniques have been studied for solving (2.6), the reader is
referred to [39] and the references therein for further details. In this work, we use Newton’s
method, which reads as: For each n = 1, . . . , N ,

(1) Set ψ
n,0
h := ψn−1

h and Q
n,0
h := Qn−1

h .

(2) At each iteration l = 1, 2, . . . , find (ψ
n,l
h , Q

n,l
h ) ∈ Mh × Σh such that

(
Θ ′(ψn,l−1

h )(ψ
n,l
h − ψ

n,l−1
h )

Δt
, μ

)

+
(
∇ · Q

n,l
h , μ

)

= (
f (tn), μ

) −
(

Θ(ψ
n,l−1
h ) − Θ(ψn−1

h )

Δt
, μ

)

, ∀μ ∈ Mh, (2.7a)

(
K−1(Θ(ψ

n,l−1
h ))Q

n,l
h , v

)
−

(
ψ

n,l
h ,∇ · v

)
+ (ez, v)

+
(
(K−1)′(Θ(ψ

n,l−1
h ))Θ ′(ψn,l−1

h )(ψ
n,l
h − ψ

n,l−1
h )Q

n,l−1
h , v

)
= 0, ∀v ∈ Σh.

(2.7b)

The system (2.7) is solved with the same time step size on the whole spatial domain.
In the next section, we consider a different approach based on nonoverlapping domain
decomposition to reduce the size of the problem and to allow local time stepping, which is
computationally efficient for problems with discontinuous physical coefficients.

3 Global-in-Time Domain Decomposition and Nested Iterative
Methods

For the ease of presentation, we consider a decomposition of Ω into two nonoverlapping
subdomains Ω1 and Ω2 separated by an interface Γ

Ω1 ∩ Ω2 = ∅; Γ = ∂Ω1 ∩ ∂Ω2 ∩ Ω, Ω = Ω1 ∪ Ω2 ∪ Γ .
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The formulations given below can be generalized straightforwardly to the case of many
subdomains. For i = 1, 2, let ni denote the unit outward pointing normal vector field on
∂Ωi , and for any scalar or vector-valued function v defined on Ω , let vi be the restriction of
v to Ωi . Solving problem (2.2)–(2.3) is equivalent to solve the corresponding problems in
the subdomains

∂tΘi(ψi) + ∇ · Qi = fi in Ωi × (0, T ),

Qi = −Ki(Θi(ψi))∇(ψi + z) in Ωi × (0, T ),

ψi = 0 on (∂Ωi ∩ ∂Ω) × (0, T ),

ψi(0) = ψi,0 in Ωi,

for i = 1, 2, together with the following transmission conditions on the space-time
interface

ψ1 = ψ2
Q1 · n1 + Q2 · n2 = 0

on Γ × (0, T ). (3.1)

Equivalently, one can also impose the Robin transmission conditions

−Q1 · n1 + α1,2ψ1 = Q2 · n2 + α1,2ψ2
−Q2 · n2 + α2,1ψ2 = Q1 · n1 + α2,1ψ1

on Γ × (0, T ) , (3.2)

where α1,2 and α2,1 are some positive numbers. Based on either the physical or Robin trans-
mission conditions, we derive two methods, namely the global-in-time Schur (GT-Schur)
and global-in-time Schwarz (GT-Schwarz) methods, in the following. Each method relies
on a reformulation of the coupled subdomain problems as a space-time interface problem,
through the use of trace operators.

3.1 Global-in-Time Schur (GT-Schur) Method

We first introduce the interface space Λ := H
1/2
00 (Γ ) and its dual space Λ∗ := (H

1/2
00 (Γ ))′.

Denote by 〈·, ·〉Γ the duality pairing between Λ∗ and Λ. The space-time interface operators
associated with GT-Schur are time-dependent Dirichlet-to-Neumann or Steklov-Poincaré
operators defined as

SDtN
i : L2(0, T ; Λ) −→ L2(0, T ;Λ∗),SDtN

i (λ) = Qi (λ) · ni |Γ ×(0,T ),

for i = 1, 2, where
(
ψi(λ),Qi (λ)

)
is the solution to the following subdomain problem with

Dirichlet boundary conditions on the space-time interface Γ × (0, T )

∂tΘi(ψi) + ∇ · Qi = fi in Ωi × (0, T ),

Qi = −Ki(Θi(ψi))∇(ψi + z) in Ωi × (0, T ),

ψi = λ on Γ × (0, T ),

ψi = 0 on (∂Ωi ∩ ∂Ω) × (0, T ),

ψi(0) = ψi,0 in Ωi . (3.3)

The weak formulation of (3.3) is given by:
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Find
(
ψi,Qi

) ∈ L2
(
0, T ; L2(Ωi)

) × L2
(
0, T ; (L2(Ωi))

d
)

such that, for all t ∈ (0, T ),∫ t

0 Qi (τ ) dτ ∈ L2 (0, T ; H(div,Ωi)) and

(Θi(ψi(t)), μ) +
(

∇ ·
∫ t

0
Qi (τ ) dτ, μ

)

=
(∫ t

0
fi(τ ) dτ, μ

)
+ (

Θi(ψi,0), μ
)
, ∀μ ∈ L2(Ωi), (3.4)

(
K−1

i (Θi(ψi))Qi , v
)
−(ψi,∇ · v)+(ez, v) = −〈λ, v · ni〉Γ ,∀v∈H(div, Ωi). (3.5)

As the continuity of the pressure (3.1)1 is imposed via λ, there remains to enforce the
normal flux continuity (3.1)2, which leads to the interface problem:

Find λ ∈ L2(0, T ; Λ) such that

∫ T

0
〈Υ (λ), η〉Γ ds = 0, ∀η ∈ L2(0, T ;Λ), (3.6)

where Υ (λ) := SDtN
1 (λ) + SDtN

2 (λ) is the jump of the normal fluxes across the space-time
interface. Problem (3.6) is time-dependent and nonlinear, and will be solved by a nested
iterative method. Applying Newton’s algorithm to (3.6) yields the following linear system
at each iteration k

∫ T

0

〈
Υ ′(λk)(λk+1 − λk), η

〉

Γ
ds =

∫ T

0

〈
−Υ (λk), η

〉

Γ
ds, ∀η ∈ L2(0, T ; Λ), (3.7)

with

Υ ′(λ)(g) = SDtN,lin
1,λ (g) + SDtN,lin

2,λ (g), and SDtN,lin
i,λ (g) = wi (g) · ni |Γ ×(0,T ),

for i = 1, 2, where (ξi(g),wi (g)) ∈ L2
(
0, T ; L2(Ωi)

) × L2
(
0, T ; (L2(Ωi))

d
)
, with∫ t

0 wi (τ ) dτ ∈ L2 (0, T ; H(div,Ωi)) for all t ∈ (0, T ), is the solution to the linearized
subdomain problem:

(
Θ ′

i (ψi(t))ξi(t), μ
) +

(
∇ ·

∫ t

0
wi (τ ) dτ, μ

)
= 0, ∀μ ∈ L2(Ωi), (3.8)

(
K−1

i (Θi(ψi))wi , v
)

+ ((K−1
i )′(Θi(ψi))Θ

′
i (ψi)ξiQi , v) − (ξi ,∇ · v)

= −〈g, v · ni〉Γ − (ez, v) , ∀v ∈ H(div,Ωi). (3.9)

Note that (ψi,Qi ) = (
ψi(λ),Qi (λ)

)
is the solution of (3.4)–(3.5) for i = 1, 2. The nested

iteration algorithm for solving (3.6) is summarized in Algorithm 1.

Remark 1 To accelerate the convergence of GMRES when solving the linearized inter-
face problem (3.7), we use the time-dependent Neumann-Neumann preconditioner, P−1

NN ,
as proposed in [34] for the linear diffusion equation. Such a preconditioner involves solving
the linearized subdomain problems (similarly to (3.8)–(3.9) but with Neumann boundary
conditions on the space-time interface. Specifically, at each Newton iteration k and for
ϑ ∈ L2(0, T ;Λ∗), we have

P−1
NN,λk (ϑ) = SNtD,lin

1,λk (ϑ) + SNtD,lin
2,λk (ϑ),
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Algorithm 1 Nested iteration for GT-Schur method.

where

SNtD,lin
i,λk (ϑ) = ξi(ϑ)|Γ ×(0,T ), i = 1, 2,

is the time-dependent Neumann-to-Dirichlet operator, and (ξi(ϑ),wi (ϑ)) ∈ L2(0, T ; L2

(Ωi)) × L2(0, T ; (L2(Ωi))
d) satisfies

i)
∫ t

0 wi (τ ) dτ ∈ L2 (0, T ; H(div, Ωi)) for all t ∈ (0, T );
ii) wi · ni |Γ ×(0,T ) = ϑ and

(
Θ ′

i (ψi(t))ξi(t), μ
) +

(
∇ ·

∫ t

0
wi (τ ) dτ, μ

)
= 0, ∀μ ∈ L2(Ωi),

(
K−1

i (Θi(ψi)) wi , v
)

+
(
(K−1

i )′(Θi(ψi))Θ
′
i (ψi)ξiQi , v

)
− (ξi , ∇ · v)

= − (ez, v) , ∀v ∈ HΓ
0 (div,Ωi),

where HΓ
0 (div, Ωi) := {v ∈ H(div,Ωi) : v · ni |Γ = 0}.

3.2 Global-in-Time Schwarz (GT-Schwarz) Method

With Robin transmission conditions, the interface operators are of Robin-to-Robin type and
are defined as

SRtR
i : L2(0, T ; L2(Γ )) −→ L2(0, T ; L2(Γ )),

ξ �→
(

1 + αj,i

αi,j

)
Qi (ξ) · ni |Γ ×(0,T ) + αj,i

αi,j

ξ,
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for i = 1, 2, and j = 3 − i, where
(
ψi(ξ),Qi (ξ)

)
is the solution to the subdomain problem

with Robin boundary conditions on the space-time interface

∂tΘi(ψi) + ∇ · Qi = fi in Ωi × (0, T ),

Qi = −Ki(Θi(ψi))∇(ψi + z) in Ωi × (0, T ),

−Qi (ξ) · ni + αi,jψi = ξ on Γ × (0, T ),

ψi = 0 on (∂Ωi ∩ ∂Ω) × (0, T ),

ψi(0) = ψi,0 in Ωi . (3.10)

The weak formulation of (3.10) is given by:
Find

(
ψi,Qi

) ∈ L2
(
0, T ; L2(Ωi)

) × L2
(
0, T ; (L2(Ωi))

d
)

such that, for all t ∈ (0, T ),∫ t

0 Qi (τ ) dτ ∈ L2 (0, T ; H(div,Ωi)) and

(Θi(ψi(t)), μ) +
(

∇ ·
∫ t

0
Qi (τ ) dτ, μ

)

=
(∫ t

0
fi(τ ) dτ, μ

)
+ (

Θi(ψi,0), μ
)
, ∀μ ∈ L2(Ωi), (3.11)

(
K−1

i (Θi(ψi)) Qi , v
)

− (ψi,∇ · v) + (ez, v) +
〈

1

αi,j

Qi · ni , v · ni

〉

Γ

= −
〈

1

αi,j

ξ, v · ni

〉

Γ

, ∀v ∈ H(div, Ωi). (3.12)

The space-time interface problem is obtained by enforcing the Robin transmission
conditions (3.2):

Find ξ = (ξ1, ξ2) ∈ L2(0, T ; L2(Γ ))2 such that

∫ T

0
〈ΥR(ξ), ζ 〉Γ = 0, ∀ζ = (ζ1, ζ2) ∈ L2(0, T ; L2(Γ ))2, (3.13)

where ΥR(ξ) = (
ξ1 − SRtR

2 (ξ2), ξ2 − SRtR
1 (ξ1)

)
represents the jumps of the Robin terms

associated with each subdomain. To solve the nonlinear problem (3.13), we again apply
Newton’s method and obtain the linearized interface problem

∫ T

0

〈
JΥR

(ξ k)(ξ k+1 − ξ k), ζ
〉

Γ
ds =

∫ T

0

〈
−ΥR(ξ k), ζ

〉

Γ
ds,

∀ζ ∈ (L2(0, T ; L2(Γ )))2, (3.14)

with JΥR
(ξ)(r) = (r1 − SRtR,lin

2,ξ2
(r2), r2 − SRtR,lin

1,ξ1
(r1)), and

SRtR,lin
i,ξi

(r) =
(

1 + αj,i

αi,j

)
wi (r) · ni |Γ ×(0,T ) + αj,i

αi,j

r

for i = 1, 2, where (ξi(r),wi (r)) ∈ L2(0, T ; L2(Ωi)) × L2(0, T ; (L2(Ωi))
d), with∫ t

0 wi (τ ) dτ ∈ L2(0, T ; H(div, Ωi)) for all t ∈ (0, T ), is the solution to the linearized
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subdomain problem

(
Θ ′

i (ψi(t))ξi(t), μ
) +

(
∇ ·

∫ t

0
wi (τ ) dτ, μ

)
= 0, ∀μ ∈ L2(Ωi), (3.15)

(
K−1

i (Θi(ψi))wi , v
)

+
(
(K−1

i )′(Θi(ψi))Θ
′
i (ψi)ξiQi , v

)
− (ξi ,∇ · v)

+
〈

1

αi,j

wi · ni , v · ni

〉

Γ

=−
〈

1

αi,j

r, v · ni

〉

Γ

− (ez, v) , ∀v ∈ H(div,Ωi). (3.16)

Note that (ψi,Qi ) = (
ψi(ξi), Qi (ξi)

)
is the solution to (3.11)–(3.12) for i = 1, 2. The

nested iteration algorithm for solving (3.13) is summarized in Algorithm 2.

Algorithm 2 Nested iteration for GT-Schwarz method.

4 Nonconforming Time Discretization

The interface problems for the GT-Schur and GT-Schwarz methods are global in time, and
solving them iteratively via Newton linearization and GMRES involves numerical solutions
of nonlinear and linearized subdomain problems over the whole time interval (0, T ). Thus
independent time discretizations can be used in the subdomains. Let T1 and T2 be two
possibly different partitions of the time interval (0, T ) into sub-intervals (see Fig. 1). We
denote by Ji,n the time interval (ti,n, ti,n−1] and by Δti,n := (ti,n − ti,n−1) for n = 1, . . . , Ni

and i = 1, 2.
In space, we assume that the partitions Kh,1 of subdomain Ω1 and Kh,2 of subdomain

Ω2 are such that their union Kh = ∪2
i=1Kh,i forms a finite element partition of Ω . Denote

by Eh,Γ the set of edges of elements of Kh,1 or Kh,2 that lie on Γ . For simplicity, we
have considered conforming spatial discretization as our main focus in this work is the
use of local time stepping. As for the monodomain problem (cf. (2.5), denote by Mh,i ⊂
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Fig. 1 Nonconforming time
grids in the subdomains

L2(Ωi) and Σh,i ⊂ H(div,Ωi) the discrete spaces in each subdomain, where Mh,i consists
of piecewise constant functions and Σh,i is the lowest order Raviart-Thomas space. The
discrete interface space is given by

Λh :=
{
λ ∈ L2(Eh,Γ ) : λ|E = constant on E, ∀E ∈ Eh,Γ

}
.

Numerical solutions of the subdomain problems are obtained using the EI-MFE scheme as
presented in Section 2.

For i = 1, 2, we denote by P0(Ti , Λh) the space of piecewise constant functions in time
on grid Ti with values in Λh

P0(Ti , Λh) = {
φ : (0, T ) → Λh, φ is constant on Ji,n, ∀n = 1, . . . , Ni

}
.

In order to exchange data on the space-time interface between different time grids, we define
an L2 projection Πji from P0(Ti , Λh) onto P0(Tj ,Λh) (see [21, 30]): for φ ∈ P0(Ti , Λh),
Πjiφ |Jj,n

is the average value of φ on Jj,n, for n = 1, . . . , Nj , i = 1, 2, and j = (3 − i).

4.1 For GT-Schur Method

The discrete interface unknown, denoted by λh, is chosen to be piecewise constant in time on
one grid, either T1 or T2. For instance, let λh ∈ P0(T1,Λh) and let ψ1 = Π11(λh) = Id(λh).
The weak continuity of the pressure in time across the interface is fulfilled by letting

ψ2 = Π21(λh) ∈ P0(T2,Λh).

The fully discrete counterpart of the normal flux continuity, i.e., the interface problem (3.6),
is weakly enforced over the time intervals of T1 as follows

∫

J1,n

∫

Γ

[
SDtN

1 (λh) + Π12

(
SDtN

2 (Π21(λh))
)]

η dγ ds = 0, ∀η ∈ Λh

for n = 1, . . . , N1. Similarly for the linearized interface problem, we choose gk
h ∈

P0(T1,Λh) for k = 1, 2, . . . , and enforce weakly (3.7) over each time interval of T1

∫

J1,n

∫

Γ

[
SDtN,lin

1,λk
h

(gk
h) + Π12

(
SDtN,lin

2,Π21(λ
k
h)

(Π21(g
k
h))

)]
η dγ ds

=
∫

J1,n

∫

Γ

[
−SDtN

1 (λk
h) − Π12

(
SDtN

2 (Π21(λ
k
h))

)]
η dγ ds, ∀η ∈ Λh

for n = 1, . . . , N1.
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4.2 For GT-Schwarz Method

The two interface unknowns represent the Robin terms on each subdomain, thus we let
ξh,i ∈ P0(Ti , Λh) for i = 1, 2. The fully discrete counterpart of the nonlinear interface
problem (3.13) is given by

∫

J1,n

∫

Γ

[
ξh,1 − Π12

(
SRtR

2 (ξh,2)
)]

ζ dγ ds = 0, ∀ζ ∈ Λh,∀n = 1, . . . , N1,

∫

J2,n

∫

Γ

[
ξh,2 − Π21

(
SRtR

1 (ξh,1)
)]

ζ dγ ds = 0, ∀ζ ∈ Λh,∀n = 1, . . . , N2.

Similarly for the linearized interface problem (3.14), we let rk
h,i ∈ P0(Ti , Λh) and enforce

∫

Ji,n

∫

Γ

[
rk
h,i − Πij

(
SRtR,lin

j,ξk
h,j

(rk
h,j )

)]
ζ dγ ds

=
∫

Ji,n

∫

Γ

[
−ξh,i + Πij

(
SRtR

j (ξh,j )
)]

ζ dγ ds, ∀ζ ∈ Λh

for n = 1, . . . , Ni , i = 1, 2, and j = (3 − i).

5 Numerical Results

We study numerical performance of the proposed GT-Schur and GT-Schwarz methods on
two test cases: Test case 1 with continuous and constant conductivity coefficients, and Test
case 2 with nonlinear and heterogeneous conductivity functions. We consider the decom-
position into two nonoverlapping subdomains in the numerical experiments; the case of
multiple subdomains will be investigated in our future work. We shall verify the accuracy
in space and in time, the convergence of nonlinear and linear iterations for the proposed
methods as well as numerical optimized Robin parameters for GT-Schwarz. Note that we
disregard gravity in our numerical experiments and the code to generate the results below is
implemented in FreeFem++ [31] in a sequential setting.

Regarding the nonlinear iterative solvers for the interface problems associated with GT-
Schur and GT-Schwarz, we set ε = 5 × 10−4 and stop Newton iterations when

either

∥
∥∥∥
∥

2∑

i=1

Qi · ni |t=T

∥
∥∥∥
∥

L2(Λ)

< ε, or (error < ε) , (5.1)

where

error =
{ ‖gk|t=T ‖L2(Λ) for GT-Schur (cf. Algorithm 1),

‖rk|t=T ‖(L2(Λ))2 for GT-Schwarz (cf. Algorithm 2).

For the linear iterative solvers, the tolerance for GMRES is set for both methods to be
ε = 10−7. We shall compare the convergence of GMRES for different algorithms: GT-Schur
with no preconditioner, GT-Schur with the Neumann-Neumann (N-N) preconditioner, and
GT-Schwarz. Since one iteration of GT-Schur with the preconditioner costs twice as much
as one iteration of GT-Schur (without preconditioning) or GT-Schwarz (in terms of number
of subdomain solves), we report the number of subdomain solves (instead of number of
iterations) required by each algorithm to reach the same tolerance.
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5.1 Test Case 1 with Homogeneous Coefficients

The spatial domain is Ω = (0, 1)2 and the final time T = 1. We decompose Ω into
Ω1 = (0, 0.5) × (0, 1) and Ω2 = (0.5, 1) × (0, 1). The saturation functions are quadratic,
Θi(ψ) = ψ2 for i = 1, 2, and the conductivity parameters are constant, K1 = K2 = 1. The
model equation becomes

∂t (ψ
2) + ∇ · Q = f

Q = −∇ψ
in Ω × (0, T ). (5.2)

We impose Dirichlet boundary conditions and choose the initial condition as well as the
right-hand side f such that the exact solution to (5.2) is given by

ψexact = 4 − 2x − 4t5x(1 − x)y(1 − y).

For GT-Schwarz, the Robin parameters are α1,2 = α2,1 = 10.5. This value gives the fastest
convergence of GMRES for this test case as will be discussed in Section 5.3.

We first verify the convergence rates when both spatial mesh size h and time step size
Δt decrease. Let h = Δt ∈ {1/10, 1/20, 1/40, 1/80, 1/160}; for conforming time grids,
Δti = Δt , i = 1, 2, while for nonconforming time grids, Δt1 = Δt and Δt2 = 5/4Δt .
Figure 2 shows the errors of the pressure (in L2(Ωi)-norm) and velocity (in L2(Ωi)- and
H(div,Ωi)-norms) at T = 1 with conforming and nonconforming time grids. GT-Schur
and GT-Schwarz give the same errors when Δt1 = Δt2, however, when the time step sizes
are not the same, the results by the two methods are slightly different. We see that first-
order convergence is preserved with nonconforming time grids, and the errors are almost
the same as those with fine time steps on the whole domain - especially the L2 errors of
pressure and velocity. The velocity errors in H(div, Ω2)−norm with different time steps are
a little larger than those with conforming time steps, note that the time step in Ω2 is chosen
to be greater than that in Ω1. All the errors are obtained by performing 2 Newton iterations
for both GT-Schur and GT-Schwarz, which guarantees the stopping criterion (5.1). For the
convergence of GMRES, in Table 1 we show the average numbers of subdomain solves per
Newton iteration for GT-Schur without or with the Neumann-Neumann preconditioner and
GT-Schwarz. We observe that the preconditioner significantly accelerates the convergence
of GT-Schur when the mesh size and time step size are small, and the numbers of subdomain
solves are quite independent of h and Δt . For GT-Schwarz, the convergence is fast and the
numbers of subdomain solves slightly increase when h and Δt decrease. GT-Schwarz is less
sensitive to the use of nonconforming time grids, while for preconditioned GT-Schur, the
convergence is a little slower with different time steps than with uniform time steps.

Next, we fix the spatial mesh h = 1/200 and investigate the errors in time only. Table 2
shows the errors at T = 1 as well as the convergence rates of pressure and velocity by
the GT-Schur and GT-Schwarz methods with nonconforming time steps. We see that the
errors in Ω2 are similar for both methods, however, in Ω1, the L2 errors of pressure and
velocity by GT-Schwarz are slightly smaller than those by GT-Schur, while the velocity
errors in H(div,Ω1)−norm by GT-Schur is smaller than by GT-Schwarz. Nevertheless, all
the convergence rates are close to 1 for both methods as expected. Regarding the iterative
solvers, we again perform 2 Newton iterations for all algorithms, and report in Table 3
the average numbers of linearized subdomain solves per Newton iteration. Clearly, GT-
Schur with no preconditioner converges very slow, and thus preconditioning is essential.
The preconditioned GT-Schur and GT-Schwarz are comparable in terms of convergence
speed, and they are quite independent of the time step sizes.
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Fig. 2 [Test case 1] Errors of pressure and velocity in Ω1 (left) and in Ω2 (right) at T = 1 with decreasing
spatial mesh sizes and time step sizes. Each plot shows the results with conforming time grids (red) and
nonconforming time grids using GT-Schur (blue) or GT-Schwarz (cyan)

5.2 Test Case 2 with Heterogeneous Coefficients

This test case is taken from [53] where the domain of calculation Ω = (−1, 1) × (0, 1) is
decomposed into Ω1 = (−1, 0)×(0, 1) and Ω2 = (0, 1)×(0, 1). The conductivity functions
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Table 1 [Test case 1] Average numbers of linearized subdomain solves per Newton iteration with decreasing
spatial mesh sizes and time step sizes; the tolerance for GMRES is set to be 10−7

h = Δt1 1/10 1/20 1/40 1/80 1/160

Conforming time steps: Δt1 = Δt2

GT-Schur with no precond. 15 24 36 57 96

with N-N precond. 21 23 23 21 21

GT-Schwarz 11 15 22 23 27

Nonconforming time steps: 5Δt1 = 4Δt2

GT-Schur with no precond. 17 25 36 56 99

with N-N precond. 36 35 32 30 28

GT-Schwarz 11 15 19 24 29

are nonlinear and given by K1(Θ1) = Θ2
1 and K2(Θ2) = Θ3

2 . The saturation functions are

Θi(ψ) =
⎧
⎨

⎩

1

(1−ψ)
1

i+1
if ψ < 0,

1 if ψ ≥ 0,
i = 1, 2.

The right-hand side functions are

f1(x, y, t) = 4

(1 + x2 + y2)2
− t

√
(1 + t2)3(1 + x2 + y2)

, (x, y) ∈ Ω1, t > 0,

f2(x, y, t) = 2(1 − y2)

(1 + y2)2
− 2t

3 3
√

(1 + t2)4(1 + y2)
, (x, y) ∈ Ω2, t > 0,

Table 2 [Test case 1] Errors of pressure and velocity in each subdomain at T = 1 with fixed h = 1/200 and
varying time step sizes Δt1 �= Δt2. The corresponding convergence rates are shown in square brackets

Δt1 1/5 1/10 1/20 1/40

Δt2 1/4 1/8 1/16 1/32

GT-Schur method

p1 L2 errors 3.10E-02 1.62E-02 [0.94] 8.34E-03 [0.96] 4.49E-03 [0.89]

u1 L2 errors 1.40E-01 7.29E-02 [0.94] 3.72E-02 [0.97] 1.88E-02 [0.98]

H-div errors 4.44E-01 2.13E-01 [1.06] 1.02E-01 [1.06] 4.99E-02 [1.03]

p2 L2 errors 2.25E-02 1.20E-02 [0.91] 6.38E-03 [0.91] 3.48E-03 [0.87]

u2 L2 errors 1.03E-01 5.55E-02 [0.89] 2.92E-02 [0.93] 1.52E-02 [0.94]

H-div errors 6.59E-01 3.69E-01 [0.84] 2.02E-01 [0.87] 1.10E-01 [0.88]

GT-Schwarz method

p1 L2 errors 2.73E-02 1.47E-02 [0.89] 7.83E-03 [0.91] 4.32E-03 [0.86]

u1 L2 errors 1.22E-01 6.50E-02 [0.91] 3.39E-02 [0.94] 1.74E-02 [0.96]

H-div errors 6.31E-01 3.37E-01 [0.90] 1.77E-01 [0.93] 9.27E-02 [0.93]

p2 L2 errors 2.26E-02 1.23E-02 [0.88] 6.56E-03 [0.91] 3.56E-03 [0.88]

u2 L2 errors 1.04E-01 5.66E-02 [0.88] 2.97E-02 [0.93] 1.53E-02 [0.96]

H-div errors 6.80E-01 3.78E-01 [0.85] 2.01E-01 [0.91] 1.03E-01 [0.96]

The bold entries are for the velocities; they are vector functions
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Table 3 [Test case 1] Average numbers of linearized subdomain solves per Newton iteration with non-
conforming time steps; the mesh size is fixed, h = 1/200, and the tolerance for GMRES is set to be
10−7

Δt1 1/5 1/10 1/20 1/40 1/80

Δt2 1/4 1/8 1/16 1/32 1/64

GT-Schur with no precond. 92 89 92 96 104

with N-N precond. 33 31 28 27 27

GT-Schwarz 26 27 28 28 29

so that the exact solution is given by

ψ1(x, y, t) = 1 − (1 + t2)(1 + x2 + y2), (x, y) ∈ Ω1, t > 0,

ψ2(x, y, t) = 1 − (1 + t2)(1 + y2), (x, y) ∈ Ω2, t > 0.

Both Dirichlet and Neumann boundary conditions are imposed as follows

ψ1 = 1 − (1 + t2)(2 + y2) on x = −1, t > 0,

K1(Θ1(ψ1))∂yψ1 =
{

0 on y = 0, t > 0,
2

2+x2 on y = 1, t > 0,

ψ2 = 1 − (1 + t2)(1 + y2) on x = 1, t > 0,

K2(Θ2(ψ2))∂yψ2 =
{

0 on y = 0, t > 0,

1 on y = 1, t > 0.

We vary the mesh size h and the nonconforming time step sizes where h = Δt1 ∈
{1/10, 1/20, 1/40, 1/80} and Δt2 = 5/4Δt1. For this test case, the Robin parameters are
α1,2 = α2,1 = 2.5. The number of Newton iterations required to reach the tolerance (5.1)
and the average number of linearized subdomain solves (for GMRES) per Newton iteration
are shown in Table 4. As the problem is highly nonlinear, more Newton iterations are needed
for both GT-Schur and GT-Schwarz. For GMRES, for this heterogeneous problem, the
Neumann-Neumann preconditioner still works efficiently and the convergence of precondi-
tioned GT-Schur is almost independent of the mesh size and time step sizes. GT-Schwarz

Table 4 [Test case 2] Convergence results of GT-Schur and GT-Schwarz with decreasing spatial mesh sizes
and time step sizes where Δt1 < Δt2

h = Δt1 1/10 1/20 1/40 1/80

Δt2 1/8 1/16 1/32 1/64

Number of Newton iterations

GT-Schur 4 5 6 7

GT-Schwarz 5 5 6 6

Average number of linearized subdomain solves per Newton iteration

GT-Schur with no precond. 39 64 94 129

with N-N precond. 27 30 29 33

GT-Schwarz 16 23 27 32
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with the numerically optimized Robin parameter (cf. Section 5.3) gives fast convergence,
and the number of iterations only increases slightly when decreasing h and Δti . Figure 3
shows the errors of pressure and velocity in each subdomain for both conforming and non-
conforming time grids. We see that GT-Schur with Δt2 > Δt1 gives nearly the same errors
as with Δt2 = Δt1, while the errors by GT-Schwarz with nonconforming time steps are
slightly larger, especially the velocity errors.
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Fig. 3 [Test case 2] Errors of pressure and velocity in Ω1 (left) and in Ω2 (right) at T = 1 with decreasing
spatial mesh sizes and time step sizes. Each plot shows the results with conforming time grids (red) and
nonconforming time grids using GT-Schur (blue) or GT-Schwarz (cyan)
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Fig. 4 Newton and GMRES residuals of GT-Schwarz as functions of the Robin parameter α = α1,2 = α2,1
for Test case 1 (left) and Test case 2 (right)

5.3 The Choice of Robin Parameters

We now analyze numerically the effect of Robin parameters on the convergence of the
nonlinear and linear iterative solvers for GT-Schwarz. We choose the mesh size h = 1/10
and nonconforming time steps Δt1 = 1/10 and Δt2 = 1/8. Let α1,2 = α2,1 = α, and run
GT-Schwarz with values of α ∈ (0, 50). The tolerance for both nonlinear and linear iterative
solvers is 10−11, and we record the residuals with various α after fixed numbers of Newton
and GMRES iterations, namely NNewton and NGMRES. For Test case 1, NNewton = 2 and
NGMRES = 15, while for Test case 2, NNewton = 5 and NGMRES = 20. Figure 4 shows
Newton and GMRES residuals after the same numbers of nonlinear and linear iterations
with different values of α. We see that for Test case 1, α ≈ 10.5 gives the smallest GMRES
residual and for Test case 2, the value is α ≈ 2.5. These are the Robin parameters used in
the previous subsections. However, such values do not lead to the smallest Newton residuals
(cf. the red curves in Fig. 4). As the number of Newton iterations is often small, we have
chosen the Robin parameters that optimize the convergence of GMRES (i.e., the linear
solver). Further investigations as well as explicit formulas to compute the optimized Robin
parameters based on the framework of the OSWR algorithm [6, 22] shall be studied in future
work.

6 Conclusion

We developed two different nonlinear domain decomposition methods, namely GT-Schur
and GT-Schwarz, for partially saturated flow in a heterogeneous porous medium where
local time discretizations are allowed in different parts of the medium. Both methods rely
on a reformulation of the initial problem as a space-time interface problem, through the
use of trace operators. GT-Schur uses the time-dependent Dirichlet-to-Neumann operator
and GT-Schwarz uses the time-dependent Robin-to-Robin operator. For each method, the
nonlinear interface problem is solved by a nested iteration approach which involves, at
each Newton iteration, the solution of a linearized interface problem and, at each Krylov
iteration, parallel solution of the time-dependent linearized Richards equation in each sub-
domain. In addition, the Neumann-Neumann preconditioner is considered for GT-Schur to
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accelerate the convergence of the linearized iterative solver. The subdomain problems are
discretized in time by backward Euler with nonmatching time grids, and in space by the
lowest order Raviart-Thomas space on a conforming spatial mesh. The proposed methods
were numerically verified on both homogeneous and heterogeneous test cases with known
exact solutions. Numerical results show that GT-Schur with preconditioner and GT-Schwarz
with well-chosen Robin parameters converge fast, and all schemes preserve orders of accu-
racy in space and in time with different time step sizes. We notice that the preconditioned
GT-Schur method is almost independent of the spatial and temporal step sizes, and gives
smaller errors in velocity than GT-Schwarz when the subdomain time steps are different.
The effect of various Robin parameters on the convergence of Newton and GMRES iter-
ations was also investigated numerically. Our next steps include the study of theoretical
optimized Robin parameters, convergence analysis of GT-Schur and GT-Schwarz and their
numerical performance on more realistic test cases.
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