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Abstract
Suppose F is a field with valuation v and valuation domain Ov , E/F is a finite-dimensional
field extension, and R is an Ov-subalgebra of E such that F · R = E and R ∩ F = Ov . It is
known that R satisfies LO, INC, GD and SGB over Ov ; it is also known that under certain
conditions R satisfies GU over Ov . In this paper, we present a necessary and sufficient
condition for the existence of such R that does not satisfy GU over Ov . We also present an
explicit example of such R that does not satisfy GU over Ov .
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1 Introduction

Valuation theory has long been a key tool in commutative algebra, with applications in
number theory and algebraic geometry. Several generalizations of the notion of valuation
were made throughout the last few decades; the main purpose of these generalizations was
to utilize them in the study of noncommutative algebra, especially in division rings. See [6]
for a comprehensive survey.

In this paper we distinguish between a domain, which refers to an integral domain, and
a ring, which may contain zero divisors and might not be commutative. Throughout this
paper, for a valuation u on a field K we denote by Ou the valuation domain of K corre-
sponding to u, by Iu the maximal ideal of Ou, and by Γu the value group of u. The symbol
⊂ means proper inclusion and the symbol ⊆ means inclusion or equality. Any unexplained
terminology is as in [4].

Let S be a commutative ring and let R be an algebra over S. For subsets I ⊆ R and
J ⊆ S we say that I is lying over J if J = {s ∈ S | s · 1R ∈ I }. By abuse of notation, we
write J = I ∩ S (even when R is not faithful over S). We recall now from [5, Section 1.2]
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the definitions of the classical lifting conditions of ring extensions. We say that R satisfies
LO (lying over) over S if for all P ∈ Spec(S) there exists Q ∈ Spec(R) lying over P . We
say that R satisfies GD (going-down) over S if for any P1 ⊂ P2 in Spec(S) and for every
Q2 ∈ Spec(R) lying over P2, there existsQ1 ⊂ Q2 in Spec(R) lying over P1. We say thatR
satisfies GU (going-up) over S if for any P1 ⊂ P2 in Spec(S) and for every Q1 ∈ Spec(R)

lying over P1, there exists Q1 ⊂ Q2 in Spec(R) lying over P2. We say that R satisfies SGB
(strong going-between) over S if for any P1 ⊂ P2 ⊂ P3 in Spec(S) and for every Q1 ⊂ Q3
in Spec(R) such that Q1 is lying over P1 and Q3 is lying over P3, there exists Q2, with
Q1 ⊂ Q2 ⊂ Q3 in Spec(R), lying over P2. We say that R satisfies INC (incomparability)
over S if whenever Q1 ⊂ Q2 in Spec(R), we have Q1 ∩ S ⊂ Q2 ∩ S.

Let K be a field and let L be an algebraic field extension of K . Let T be a valuation
domain of K . It is well known (cf. [3, 13.2]) that there exists a valuation domain of L lying
over T . Recall (cf. [3, Corollary 13.5]) that T is called indecomposed in L if there exists
a unique valuation domain of L lying over T ; otherwise, T is called decomposed in L.
Moreover, by [3, Corollary 13.7]), whenever the separable degree of K over L is finite, the
number of valuation domains of L that are lying over T is less than or equal to the separable
degree of K over L.

Recall from [4] that a quasi-valuation on a ring A is a function w : A → M ∪ {∞},
where M is a totally ordered abelian monoid, to which we adjoin an element ∞ greater than
all elements of M , and w satisfies the following properties:

(B1) w(0) = ∞;
(B2) w(xy) ≥ w(x) + w(y) for all x, y ∈ A;
(B3) w(x + y) ≥ min{w(x),w(y)} for all x, y ∈ A.

In [4] we studied quasi-valuations that extend a given valuation on a finite-dimensional
field extension. We proved that the prime spectrum of the associated quasi-valuation domain
and the prime spectrum of the valuation domain are intimately connected. Along these lines,
let F be a field with a non-trivial valuation v and a corresponding valuation domain Ov , let
E/F be a finite field extension, and let R be an Ov-subalgebra of E such that FR = E and
R ∩ F = Ov; we call such R an Ov-nice subalgebra of E. By [4, Theorem 9.38, statements
(2) and (3)], there exists a quasi-valuation w on E extending v on F , such that R = Ow

(we call Ow = {x ∈ E | w(x) ≥ 0} the quasi-valuation domain), and thus R satisfies
LO, INC and GD over Ov . Note that if FR 
= E, then since FR is a finite-dimensional
field extension of F , one can apply the results of [4] replacing E by FR. Moreover, by
[4, Theorem 9.38, statement (6)], if there exists a quasi-valuation w′ on E extending v

with R = Ow′ such that w′(E \ {0}) is torsion over Γv , then R satisfies GU over Ov . In
[5] we generalized some of the results that had been proved in [4], and proved that every
algebra over a commutative valuation ring satisfies SGB over it (see [5, Theorem 3.8]). We
also generalized [4, Theorem 9.38, statement (6)] and gave weaker conditions for a quasi-
valuation ring to satisfy GU over a valuation domain. So, focusing on field extensions, one
can say that if E/F is a finite field extension, and R is an Ov-nice subalgebra of E, then
R satisfies LO, INC, GD, and SGB over Ov . In light of the above discussion, there exists a
quasi-valuation w on E extending v on F such that Ow = R; one may suspect that such R

also satisfies GU over Ov . We shall see that this is not the case.
In fact, in this paper we answer a question asked in [5, discussion after Corollary 4.26],

by characterizing the existence of Ov-nice subalgebras of E that do not satisfy GU over Ov ,
and presenting an explicit example in which an Ov-nice subalgebra of E does not satisfy
GU over Ov .
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2 Going-upMay Not Apply

Let F be a field with valuation v and corresponding valuation domain Ov ; let E/F be a
finite-dimensional field extension and let R be an Ov-nice subalgebra of E. In this section
we characterize the existence of Ov-nice subalgebras of E that do not satisfy GU over Ov

in terms of the decomposability in E of proper overrings of Ov (recall that an overring of
Ov is a subring of F , the field of fractions of Ov , that contains Ov). Then, we present an
example of an Ov-nice subalgebra R0 of E that does not satisfy GU over Ov; equivalently,
there exists a quasi-valuation w on E extending v on F with FOw = E and for which Ow

does not satisfy GU over Ov . At the end of this section, we discuss the filter quasi-valuation
induced by (R0, v).

Theorem 2.1 Let F be a field with valuation v and corresponding valuation domain Ov ,
and let E/F be a finite-dimensional field extension. There exists an Ov-nice subalgebra
of E that does not satisfy GU over Ov iff there exists a proper overring of Ov that is
decomposed in E.

Proof Assume that there exists a proper overring B of Ov that is decomposed in E; then
B = (Ov)P , for some non-maximal prime ideal P of Ov . Let D1 and D2 be two valuation
domains of E that are lying over B. It is clear that D1 and D2 are incomparable with respect
to containment; this fact can be easily deduced by [3, Theorem 6.6] and [3, Proposition
13.1]. By [3, Theorem 13.2] there exists a valuation domain C1 of E that is lying over Ov .
By [3, Theorem 6.6], the set of all overrings of C1 is totally ordered by inclusion; thus, C1
cannot be contained in both D1 and D2. Without loss of generality, we assume that C1 is
not contained in D2. Denote by I1 the maximal ideal of C1, and by I2 the maximal ideal of
D2. Let R = C1 ∩ D2; then, by [1, Ch. 6, § 7, no. 1, Proposition 2], R has two maximal
ideals: I1 ∩ R and I2 ∩ R. However, since D2 is lying over B = (Ov)P , its maximal ideal is
lying over P . So, R has a maximal ideal that does not lie over Iv , the maximal ideal of Ov .
In particular, R does not satisfy GU over Ov .

In the other direction, assume that there exists an Ov-nice subalgebra R of E that does
not satisfy GU over Ov . So, there exist P1 ⊂ P2 in Spec(Ov) and Q1 ∈ Spec(R) lying
over P1, such that there exists no Q1 ⊂ Q2 in Spec(R) lying over P2. By [4, Theorem
9.38, statement (3)], R satisfies LO over Ov; thus, there exists Q2

′ in Spec(R) lying over
P2. Again, by [4, Theorem 9.38, statement (3)], R satisfies GD over Ov; thus, there exists
Q1

′ ⊂ Q2
′ in Spec(R) lying over P1. It is clear that Q1 
= Q1

′. By [3, Corollary 9.7] there
exists a valuation domain Ou of E, containing R, and having a maximal ideal Iu such that
Q1 = Iu ∩ R; likewise, there exists a valuation domain Ow of E, containing R, and having
a maximal ideal Iw such that Q1

′ = Iw ∩ R. Since both Q1 and Q1
′ are lying over P1,

we deduce that Iu and Iw are lying over P1; thus, Ou and Ow are two different valuation
domains of E that are lying over (Ov)P1 ; i.e., (Ov)P1 is a proper overring of Ov that is
decomposed in E.

Remark 2.2 Note that, by [5, Corollary 4.24], an Ov-nice subalgebra R of E that does
not satisfy GU over Ov , is not finitely generated as an algebra over Ov . Moreover, by [4,
Theorem 9.38, statement (6)], for any quasi-valuation w on E extending v on F with Ow =
R, one has w(E \ {0}) is not torsion over Γv .
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We present now an explicit example demonstrating the situation discussed in the previous
theorem.

Example 2.3 Let C be a field with Char(C) 
= 2 and let F = C(x, y) denote the field of
rational functions with two indeterminates x and y. Let Γv denote the group Z×Z with the
left to right lexicographic order and let v denote the rank 2 valuation on F defined by

v(0) = ∞, v

⎛
⎝ ∑

0≤i,j≤k

αij y
ixj

⎞
⎠ = min{(i, j) | αij 
= 0}

for every nonzero
∑

0≤i,j≤k αij y
ixj ∈ C[x, y], and v(

f
g
) = v(f ) − v(g) for every f, g ∈

C[x, y], g 
= 0. Let {0} 
= P denote the non-maximal prime ideal ofOv , namely P = yOv;
and denote (Ov)P , the localization of Ov at P , by Oṽ . Note that Oṽ is a valuation domain
of F of rank 1. Let E = F [√1 − y] and let u be a valuation on E extending v; it is well
known that there exists such u (see [2, Corollary 14.1.2]). By the fundamental inequality of
valuation theory (see [2, Theorem 17.1.5]), there exist either one or two extensions of v to
E. Note that √

1 − y ∈ Ou, (1 + √
1 − y) + (1 − √

1 − y) = 2 /∈ Iv

and
u((1 + √

1 − y)(1 − √
1 − y)) = u(y) = (1, 0).

Hence, exactly one of the elements 1 + √
1 − y or 1 − √

1 − y has u-value (1, 0). Now,
since the map a+b

√
1 − y → a−b

√
1 − y, a, b ∈ F , is an automorphism of E, there exist

two extensions of v to E. We denote them by u1 and u2; where u1(1 + √
1 − y) = (1, 0),

u1(1 − √
1 − y) = (0, 0) and u2(1 − √

1 − y) = (1, 0), u2(1 + √
1 − y) = (0, 0). Since

(Z × Z)/({0} × Z) ∼= Z, we may view Z as the value group of ṽ. Using the same argument
as above, we deduce that ṽ has two extensions to E. We denote them by ũ1 and ũ2; where
ũ1(1+ √

1 − y) = 1, ũ1(1− √
1 − y) = 0 and ũ2(1− √

1 − y) = 1, ũ2(1+ √
1 − y) = 0.

It is easy to see that Ou1 � Oũ2 . Let R0 = Ou1 ∩ Oũ2 and note that R0 is an Ov-nice
subalgebra of E. Using the same reasoning as in the previous theorem, we get that R0 has
two maximal ideals: Iu1 ∩R0 and Iũ2 ∩R0. However, sinceOũ2 is lying overOṽ , its maximal
ideal, Iũ2 , is lying over P . So, R0 has a maximal ideal that does not lie over Iv .

In view of Remark 2.2 and the previous example, let wf denote the filter quasi-valuation
induced by (R0, v) (cf. [4, Section 9] for the construction of the filter quasi-valuation);
then there exists m ∈ wf (E \ {0}) such that for all n ∈ N, nm /∈ Z × Z. Recall that a
cut m = (mL, mR) of Γv is a partition of Γv into two subsets mL and mR , such that, for
every α ∈ mL and β ∈ mR , α < β. Also recall that wf (E \ {0}) is contained in M(Γv),
where M(Γv) is the set of all cuts of Γv; M(Γv) is called the cut monoid of Γv . Let
m0 ∈ M(Γv) be the cut defined by m0

L = {α ∈ Z × Z | α ≤ (0, z) for some z ∈ Z};
clearly, m0 + m0 = m0 and thus m0 is not torsion over Γv . Denote 1 + √

1 − y by r0;
we show now that wf (r0) = m0. Note that for all t ∈ Z, u1(r0x

t ) = (1, t) > (0, 0),
and ũ2(r0x

t ) = 0. Thus, for all t ∈ Z, r0x
t ∈ R0. Moreover, ũ2(r0y

−1) = −1; thus,
r0y

−1 /∈ R0. More generally, r0a−1 ∈ R0 for every a ∈ Ov \ P and r0a
−1 /∈ R0 for every

a ∈ P ; in particular, the support of r0, Sr0 = {a ∈ Ov | r0 ∈ aR0}, satisfies: for all a ∈ Sr0

there exists b ∈ Sr0 with v(b) > v(a). Therefore, by the definition of the filter quasi-
valuation, wf (r0) = m0. In addition, (Γv,∅) and (∅, Γv) are not in wf (E \ {0}); indeed, by
the definition of the filter quasi-valuation, (∅, Γv) /∈ wf (E\{0}), and it is easy to check that
in our case (Γv, ∅) /∈ wf (E \ {0}). Indeed, otherwise there exists r ∈ R0 such that for all
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a ∈ Ov we have ra−1 ∈ R0 ⊂ Ou1 , but then r would have an infinite value by u1; we note
that one can also use [4, Theorem 8.14] to deduce that (Γv,∅) /∈ wf (E \ {0}). Moreover,
by [4, Definition 1.5 and Lemma 1.6], for every t ∈ Z, wf (r0y

t ) = (t, 0) + m0; where, of
course,

((t, 0) + m0)
L = {α ∈ Z × Z | α ≤ (t, z) for some z ∈ Z}.

Thus, wf (E \ {0}) = M(Γv) \ {(Γv,∅), (∅, Γv)}.
Finally, we show that Example 2.3 easily provides us with an example, in a similar setting

as in Example 2.3, of a noncommutative algebra lying over a valuation domain and not
satisfying GU.

Example 2.4 Let the notation be as in Example 2.3 and let A = Mn(E). Then Mn(R0) is an
Ov-subalgebra of A such that FMn(R0) = A and Mn(R0)∩F = Ov; Mn(R0) has maximal
ideals Mn(Iu1 ∩ R0) and Mn(Iũ2 ∩ R0), while obviously Mn(Iũ2 ∩ R0) is not lying over Iv .
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