

Shai Sarussi¹

Received: 24 November 2020 / Revised: 20 May 2021 / Accepted: 13 August 2021 / Pulished online: 13 November 2021 © Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2021

Abstract

Suppose *F* is a field with valuation *v* and valuation domain O_v , E/F is a finite-dimensional field extension, and *R* is an O_v -subalgebra of *E* such that $F \cdot R = E$ and $R \cap F = O_v$. It is known that *R* satisfies LO, INC, GD and SGB over O_v ; it is also known that under certain conditions *R* satisfies GU over O_v . In this paper, we present a necessary and sufficient condition for the existence of such *R* that does not satisfy GU over O_v . We also present an explicit example of such *R* that does not satisfy GU over O_v .

Keywords Valuation domain \cdot Going-up \cdot Quasi-valuation

Mathematics Subject Classification (2010) Primary $13A18\cdot 13F30\cdot Secondary 13G05\cdot 13B99$

1 Introduction

Valuation theory has long been a key tool in commutative algebra, with applications in number theory and algebraic geometry. Several generalizations of the notion of valuation were made throughout the last few decades; the main purpose of these generalizations was to utilize them in the study of noncommutative algebra, especially in division rings. See [6] for a comprehensive survey.

In this paper we distinguish between a domain, which refers to an integral domain, and a ring, which may contain zero divisors and might not be commutative. Throughout this paper, for a valuation u on a field K we denote by O_u the valuation domain of K corresponding to u, by I_u the maximal ideal of O_u , and by Γ_u the value group of u. The symbol \subset means proper inclusion and the symbol \subseteq means inclusion or equality. Any unexplained terminology is as in [4].

Let *S* be a commutative ring and let *R* be an algebra over *S*. For subsets $I \subseteq R$ and $J \subseteq S$ we say that *I* is lying over *J* if $J = \{s \in S \mid s \cdot 1_R \in I\}$. By abuse of notation, we write $J = I \cap S$ (even when *R* is not faithful over *S*). We recall now from [5, Section 1.2]

Shai Sarussi sarusss1@gmail.com

¹ Department of Mathematics, SCE College, 84100, Be'er Sheva, Israel

the definitions of the classical lifting conditions of ring extensions. We say that *R* satisfies LO (lying over) over *S* if for all $P \in \text{Spec}(S)$ there exists $Q \in \text{Spec}(R)$ lying over *P*. We say that *R* satisfies GD (going-down) over *S* if for any $P_1 \subset P_2$ in Spec(*S*) and for every $Q_2 \in \text{Spec}(R)$ lying over P_2 , there exists $Q_1 \subset Q_2$ in Spec(*R*) lying over P_1 . We say that *R* satisfies GU (going-up) over *S* if for any $P_1 \subset P_2$ in Spec(*S*) and for every $Q_1 \in \text{Spec}(R)$ lying over P_1 , there exists $Q_1 \subset Q_2$ in Spec(*S*) and for every $Q_1 \in \text{Spec}(R)$ lying over P_1 , there exists $Q_1 \subset Q_2$ in Spec(*R*) lying over P_2 . We say that *R* satisfies SGB (strong going-between) over *S* if for any $P_1 \subset P_2 \subset P_3$ in Spec(*S*) and for every $Q_1 \subset Q_3$ in Spec(*R*) such that Q_1 is lying over P_1 and Q_3 is lying over P_3 , there exists Q_2 , with $Q_1 \subset Q_2 \subset Q_3$ in Spec(*R*), lying over P_2 . We say that *R* satisfies INC (incomparability) over *S* if whenever $Q_1 \subset Q_2$ in Spec(*R*), we have $Q_1 \cap S \subset Q_2 \cap S$.

Let *K* be a field and let *L* be an algebraic field extension of *K*. Let *T* be a valuation domain of *K*. It is well known (cf. [3, 13.2]) that there exists a valuation domain of *L* lying over *T*. Recall (cf. [3, Corollary 13.5]) that *T* is called indecomposed in *L* if there exists a unique valuation domain of *L* lying over *T*; otherwise, *T* is called decomposed in *L*. Moreover, by [3, Corollary 13.7]), whenever the separable degree of *K* over *L* is finite, the number of valuation domains of *L* that are lying over *T* is less than or equal to the separable degree of *K* over *L*.

Recall from [4] that a quasi-valuation on a ring A is a function $w : A \to M \cup \{\infty\}$, where M is a totally ordered abelian monoid, to which we adjoin an element ∞ greater than all elements of M, and w satisfies the following properties:

 $(B1) w(0) = \infty;$

(B2) $w(xy) \ge w(x) + w(y)$ for all $x, y \in A$;

(B3) $w(x + y) \ge \min\{w(x), w(y)\}$ for all $x, y \in A$.

In [4] we studied quasi-valuations that extend a given valuation on a finite-dimensional field extension. We proved that the prime spectrum of the associated quasi-valuation domain and the prime spectrum of the valuation domain are intimately connected. Along these lines, let F be a field with a non-trivial valuation v and a corresponding valuation domain O_v , let E/F be a finite field extension, and let R be an O_v -subalgebra of E such that FR = E and $R \cap F = O_v$; we call such R an O_v -nice subalgebra of E. By [4, Theorem 9.38, statements (2) and (3)], there exists a quasi-valuation w on E extending v on F, such that $R = O_w$ (we call $O_w = \{x \in E \mid w(x) \ge 0\}$ the quasi-valuation domain), and thus R satisfies LO, INC and GD over O_v . Note that if $FR \neq E$, then since FR is a finite-dimensional field extension of F, one can apply the results of [4] replacing E by FR. Moreover, by [4, Theorem 9.38, statement (6)], if there exists a quasi-valuation w' on E extending v with $R = O_{w'}$ such that $w'(E \setminus \{0\})$ is torsion over Γ_v , then R satisfies GU over O_v . In [5] we generalized some of the results that had been proved in [4], and proved that every algebra over a commutative valuation ring satisfies SGB over it (see [5, Theorem 3.8]). We also generalized [4, Theorem 9.38, statement (6)] and gave weaker conditions for a quasivaluation ring to satisfy GU over a valuation domain. So, focusing on field extensions, one can say that if E/F is a finite field extension, and R is an O_v -nice subalgebra of E, then R satisfies LO, INC, GD, and SGB over O_v . In light of the above discussion, there exists a quasi-valuation w on E extending v on F such that $O_w = R$; one may suspect that such R also satisfies GU over O_v . We shall see that this is not the case.

In fact, in this paper we answer a question asked in [5, discussion after Corollary 4.26], by characterizing the existence of O_v -nice subalgebras of E that do not satisfy GU over O_v , and presenting an explicit example in which an O_v -nice subalgebra of E does not satisfy GU over O_v .

2 Going-up May Not Apply

Let *F* be a field with valuation *v* and corresponding valuation domain O_v ; let E/F be a finite-dimensional field extension and let *R* be an O_v -nice subalgebra of *E*. In this section we characterize the existence of O_v -nice subalgebras of *E* that do not satisfy GU over O_v in terms of the decomposability in *E* of proper overrings of O_v (recall that an overring of O_v is a subring of *F*, the field of fractions of O_v , that contains O_v). Then, we present an example of an O_v -nice subalgebra R_0 of *E* that does not satisfy GU over O_v ; equivalently, there exists a quasi-valuation *w* on *E* extending *v* on *F* with $FO_w = E$ and for which O_w does not satisfy GU over O_v . At the end of this section, we discuss the filter quasi-valuation induced by (R_0, v) .

Theorem 2.1 Let F be a field with valuation v and corresponding valuation domain O_v , and let E/F be a finite-dimensional field extension. There exists an O_v -nice subalgebra of E that does not satisfy GU over O_v iff there exists a proper overring of O_v that is decomposed in E.

Proof Assume that there exists a proper overring *B* of O_v that is decomposed in *E*; then $B = (O_v)_P$, for some non-maximal prime ideal *P* of O_v . Let D_1 and D_2 be two valuation domains of *E* that are lying over *B*. It is clear that D_1 and D_2 are incomparable with respect to containment; this fact can be easily deduced by [3, Theorem 6.6] and [3, Proposition 13.1]. By [3, Theorem 13.2] there exists a valuation domain C_1 of *E* that is lying over O_v . By [3, Theorem 6.6], the set of all overrings of C_1 is totally ordered by inclusion; thus, C_1 cannot be contained in both D_1 and D_2 . Without loss of generality, we assume that C_1 is not contained in D_2 . Denote by I_1 the maximal ideal of C_1 , and by I_2 the maximal ideal of D_2 . Let $R = C_1 \cap D_2$; then, by [1, Ch. 6, § 7, no. 1, Proposition 2], *R* has two maximal ideals: $I_1 \cap R$ and $I_2 \cap R$. However, since D_2 is lying over $B = (O_v)_P$, its maximal ideal is lying over *P*. So, *R* has a maximal ideal that does not lie over I_v , the maximal ideal of O_v .

In the other direction, assume that there exists an O_v -nice subalgebra R of E that does not satisfy GU over O_v . So, there exist $P_1 \,\subset P_2$ in Spec (O_v) and $Q_1 \in$ Spec(R) lying over P_1 , such that there exists no $Q_1 \subset Q_2$ in Spec(R) lying over P_2 . By [4, Theorem 9.38, statement (3)], R satisfies LO over O_v ; thus, there exists Q_2' in Spec(R) lying over P_2 . Again, by [4, Theorem 9.38, statement (3)], R satisfies GD over O_v ; thus, there exists $Q_1' \subset Q_2'$ in Spec(R) lying over P_1 . It is clear that $Q_1 \neq Q_1'$. By [3, Corollary 9.7] there exists a valuation domain O_u of E, containing R, and having a maximal ideal I_u such that $Q_1 = I_u \cap R$; likewise, there exists a valuation domain O_w of E, containing R, and having a maximal ideal I_w such that $Q_1' = I_w \cap R$. Since both Q_1 and Q_1' are lying over P_1 , we deduce that I_u and I_w are lying over P_1 ; thus, O_u and O_w are two different valuation domains of E that are lying over $(O_v)_{P_1}$; i.e., $(O_v)_{P_1}$ is a proper overring of O_v that is decomposed in E.

Remark 2.2 Note that, by [5, Corollary 4.24], an O_v -nice subalgebra R of E that does not satisfy GU over O_v , is not finitely generated as an algebra over O_v . Moreover, by [4, Theorem 9.38, statement (6)], for any quasi-valuation w on E extending v on F with $O_w = R$, one has $w(E \setminus \{0\})$ is not torsion over Γ_v .

We present now an explicit example demonstrating the situation discussed in the previous theorem.

Example 2.3 Let *C* be a field with $Char(C) \neq 2$ and let F = C(x, y) denote the field of rational functions with two indeterminates *x* and *y*. Let Γ_v denote the group $\mathbb{Z} \times \mathbb{Z}$ with the left to right lexicographic order and let *v* denote the rank 2 valuation on *F* defined by

$$v(0) = \infty, \quad v\left(\sum_{0 \le i, j \le k} \alpha_{ij} y^i x^j\right) = \min\{(i, j) \mid \alpha_{ij} \ne 0\}$$

for every nonzero $\sum_{0 \le i, j \le k} \alpha_{ij} y^i x^j \in C[x, y]$, and $v(\frac{f}{g}) = v(f) - v(g)$ for every $f, g \in C[x, y]$, $g \ne 0$. Let $\{0\} \ne P$ denote the non-maximal prime ideal of O_v , namely $P = yO_v$; and denote $(O_v)_P$, the localization of O_v at P, by $O_{\widetilde{v}}$. Note that $O_{\widetilde{v}}$ is a valuation domain of F of rank 1. Let $E = F[\sqrt{1-y}]$ and let u be a valuation on E extending v; it is well known that there exists such u (see [2, Corollary 14.1.2]). By the fundamental inequality of valuation theory (see [2, Theorem 17.1.5]), there exist either one or two extensions of v to E. Note that

$$\sqrt{1-y} \in O_u, \ (1+\sqrt{1-y}) + (1-\sqrt{1-y}) = 2 \notin I_v$$

and

$$u((1+\sqrt{1-y})(1-\sqrt{1-y})) = u(y) = (1,0).$$

Hence, exactly one of the elements $1 + \sqrt{1-y}$ or $1 - \sqrt{1-y}$ has *u*-value (1, 0). Now, since the map $a+b\sqrt{1-y} \rightarrow a-b\sqrt{1-y}$, $a, b \in F$, is an automorphism of *E*, there exist two extensions of *v* to *E*. We denote them by u_1 and u_2 ; where $u_1(1 + \sqrt{1-y}) = (1, 0)$, $u_1(1 - \sqrt{1-y}) = (0, 0)$ and $u_2(1 - \sqrt{1-y}) = (1, 0)$, $u_2(1 + \sqrt{1-y}) = (0, 0)$. Since $(\mathbb{Z} \times \mathbb{Z})/(\{0\} \times \mathbb{Z}) \cong \mathbb{Z}$, we may view \mathbb{Z} as the value group of \tilde{v} . Using the same argument as above, we deduce that \tilde{v} has two extensions to *E*. We denote them by $\tilde{u_1}$ and $\tilde{u_2}$; where $\tilde{u_1}(1 + \sqrt{1-y}) = 1$, $\tilde{u_1}(1 - \sqrt{1-y}) = 0$ and $\tilde{u_2}(1 - \sqrt{1-y}) = 1$, $\tilde{u_2}(1 + \sqrt{1-y}) = 0$. It is easy to see that $O_{u_1} \not\subseteq O_{\tilde{u_2}}$. Let $R_0 = O_{u_1} \cap O_{\tilde{u_2}}$ and note that R_0 is an O_v -nice subalgebra of *E*. Using the same reasoning as in the previous theorem, we get that R_0 has two maximal ideals: $I_{u_1} \cap R_0$ and $I_{\tilde{u_2}} \cap R_0$. However, since $O_{\tilde{u_2}}$ is lying over $O_{\tilde{v}}$, its maximal ideal, $I_{\tilde{u_2}}$, is lying over *P*. So, R_0 has a maximal ideal that does not lie over I_v .

In view of Remark 2.2 and the previous example, let w_f denote the filter quasi-valuation induced by (R_0, v) (cf. [4, Section 9] for the construction of the filter quasi-valuation); then there exists $m \in w_f(E \setminus \{0\})$ such that for all $n \in \mathbb{N}$, $nm \notin \mathbb{Z} \times \mathbb{Z}$. Recall that a cut $m = (m^L, m^R)$ of Γ_v is a partition of Γ_v into two subsets m^L and m^R , such that, for every $\alpha \in m^L$ and $\beta \in m^R$, $\alpha < \beta$. Also recall that $w_f(E \setminus \{0\})$ is contained in $\mathcal{M}(\Gamma_v)$, where $\mathcal{M}(\Gamma_v)$ is the set of all cuts of Γ_v ; $\mathcal{M}(\Gamma_v)$ is called the cut monoid of Γ_v . Let $m_0 \in \mathcal{M}(\Gamma_v)$ be the cut defined by $m_0^L = \{ \alpha \in \mathbb{Z} \times \mathbb{Z} \mid \alpha \leq (0, z) \text{ for some } z \in \mathbb{Z} \};$ clearly, $m_0 + m_0 = m_0$ and thus m_0 is not torsion over Γ_v . Denote $1 + \sqrt{1-y}$ by r_0 ; we show now that $w_f(r_0) = m_0$. Note that for all $t \in \mathbb{Z}$, $u_1(r_0x^t) = (1, t) > (0, 0)$, and $\widetilde{u_2}(r_0x^t) = 0$. Thus, for all $t \in \mathbb{Z}$, $r_0x^t \in R_0$. Moreover, $\widetilde{u_2}(r_0y^{-1}) = -1$; thus, $r_0y^{-1} \notin R_0$. More generally, $r_0a^{-1} \in R_0$ for every $a \in O_v \setminus P$ and $r_0a^{-1} \notin R_0$ for every $a \in P$; in particular, the support of r_0 , $S_{r_0} = \{a \in O_v \mid r_0 \in aR_0\}$, satisfies: for all $a \in S_{r_0}$ there exists $b \in S_{r_0}$ with v(b) > v(a). Therefore, by the definition of the filter quasivaluation, $w_f(r_0) = m_0$. In addition, (Γ_v, \emptyset) and (\emptyset, Γ_v) are not in $w_f(E \setminus \{0\})$; indeed, by the definition of the filter quasi-valuation, $(\emptyset, \Gamma_v) \notin w_f(E \setminus \{0\})$, and it is easy to check that in our case $(\Gamma_v, \emptyset) \notin w_f(E \setminus \{0\})$. Indeed, otherwise there exists $r \in R_0$ such that for all

 $a \in O_v$ we have $ra^{-1} \in R_0 \subset O_{u_1}$, but then r would have an infinite value by u_1 ; we note that one can also use [4, Theorem 8.14] to deduce that $(\Gamma_v, \emptyset) \notin w_f(E \setminus \{0\})$. Moreover, by [4, Definition 1.5 and Lemma 1.6], for every $t \in \mathbb{Z}$, $w_f(r_0y^t) = (t, 0) + m_0$; where, of course,

$$((t, 0) + m_0)^L = \{ \alpha \in \mathbb{Z} \times \mathbb{Z} \mid \alpha \le (t, z) \text{ for some } z \in \mathbb{Z} \}$$

Thus, $w_f(E \setminus \{0\}) = \mathcal{M}(\Gamma_v) \setminus \{(\Gamma_v, \emptyset), (\emptyset, \Gamma_v)\}.$

Finally, we show that Example 2.3 easily provides us with an example, in a similar setting as in Example 2.3, of a noncommutative algebra lying over a valuation domain and not satisfying GU.

Example 2.4 Let the notation be as in Example 2.3 and let $A = M_n(E)$. Then $M_n(R_0)$ is an O_v -subalgebra of A such that $FM_n(R_0) = A$ and $M_n(R_0) \cap F = O_v$; $M_n(R_0)$ has maximal ideals $M_n(I_{u_1} \cap R_0)$ and $M_n(I_{u_2} \cap R_0)$, while obviously $M_n(I_{u_2} \cap R_0)$ is not lying over I_v .

Acknowledgements The author would like to thank the referee for his/her careful reading and helpful comments.

References

- 1. Bourbaki, N.: Commutative Algebra. Hermann, Paris (1961)
- Efrat, I.: Valuations, Orderings, and Milnor K-theory. Math Surveys Monogr. 124, Am. Math. Soc., Providence, RI (2006)
- 3. Endler, O.: Valuation Theory. Springer-Verlag, New York (1972)
- 4. Sarussi, S.: Quasi-valuations extending a valuation. J. Algebra 372, 318–364 (2012)
- Sarussi, S.: Quasi-valuations and algebras over valuation domains. Comm. Algebra 47(4), 1796–1817 (2019)
- Wadsworth, A.R.: Valuation theory on finite dimensional division algebras. In: Kuhlmann, F.-V. et al. (eds.) Valuation Theory and its Applications. Fields Inst. Commun. 32, vol. 1. American Mathematical Society, Providence, RI (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.