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Abstract
We study finite groups whose rational-valued irreducible characters are all of odd degrees.
We conjecture that in such groups, all rational elements must be 2-elements.
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1 Introduction

Let G be a finite group and let K be a field with Q ⊆ K ⊆ C. We denote by IrrK(G) the set
of complex irreducible characters χ ∈ Irr(G) with values inK, and refer to any character in
IrrR(G) as a real character, respectively to any character in IrrQ(G) as a rational character.

The Itô-Michler theorem for the prime p = 2 states that the degrees of all complex
irreducible characters of a finite group G are even if and only if G has a normal abelian
Sylow 2-subgroup. A version of this theorem for real characters was obtained in [5] and
another refinement to strongly real characters was proved in [15]. In both versions, it was
shown that if all real (or strongly real) irreducible characters of a finite group G have odd
degrees, then G has a normal Sylow 2-subgroup. Clearly, these groups have no non-trivial
real elements of odd order. Unfortunately, when restricted to rational characters, a similar
conclusion fails. The simple groups L2(32f +1), where f ≥ 1 is an integer, have exactly two
rational irreducible characters which are the trivial character and the Steinberg character of
degree 3f .
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However, Navarro and Sanus [16] managed to show that if all rational irreducible char-
acters of G are linear, then G has a normal Sylow 2-subgroup. In this case, clearly, G has
no non-trivial rational element of odd order. Note that all rational elements are real ele-
ments and since any power of rational elements remains rational, the two conditions G have
no non-trivial rational element of odd order and all rational elements of G are 2-elements
coincide. Navarro and Tiep show in [17] that if G has exactly two rational irreducible char-
acters, then G has exactly two rational classes and since |G| is even, all non-trivial rational
elements of G are involutions. These results seem to suggest the following.

Conjecture Let G be a finite group. If every rational irreducible character of G has odd
degree, then all rational elements of G are 2-elements.

In our first result, we will prove the following.

Theorem A Let G be a finite group. Suppose that the simple group L2(32f +1) is not
involved in G for any integer f ≥ 1 and that all rational irreducible characters of G have
odd degree. Then all rational elements of G are 2-elements.

In order to prove Theorem A, we need the following solvability result.

Theorem B Let G be a finite group. Suppose that no simple group L2(32f +1) with f ≥ 1
is involved in G and that all rational irreducible characters of G have odd degree. Then G

is solvable.

The proof of Theorem B will depend on the following result on simple groups.

Theorem C Let S be a normal non-abelian simple subgroup of a finite group G and
CG(S) = 1. If S is not isomorphic to L2(32f +1) then there exists χ ∈ IrrQ(G) of even
degree not containing S in its kernel.

Apparently, the non-existence of rational elements of certain orders might have stronger
impact on the group structures (see, e.g., [4, Theorem C] and Theorem 3.1).

As mentioned earlier, [17, Theorem A] states that a finite group G has exactly two ratio-
nal irreducible characters if and only if it has two rational classes. The non-trivial rational
class of such groups consists of involutions and hence our conjecture clearly holds in this
case. Extending this one step further, it turns out that there is no finite group having exactly
three rational irreducible characters whose degrees are all odd.

Theorem D Let G be a finite group. Suppose that G has exactly three rational irreducible
characters. Then G has a rational irreducible character of even degree.

In fact, it was conjectured by Navarro and Tiep that a finite group G has exactly three
rational irreducible characters if and only if it has three rational conjugacy classes. One
direction of this conjecture was proved by Rossi in [19]. For finite solvable groups G of
even order, we can show that the number of odd degree rational irreducible characters of G

is even (see Corollary 5.2). However, this is not true in general. The simple Janko group J4
has exactly 13 rational, irreducible characters of odd degree.

Finally, we mention that the converse of our conjecture does not hold. As a counterex-
ample, all rational elements of the dihedral group D8 are of order 1 and 2 but D8 has a
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rational irreducible character of degree 2. It would be an interesting problem to obtain a
group-theoretical characterization of finite groups whose all rational irreducible characters
have odd degree. Motivated by [16, Theorem A], where it is shown that if all rational irre-
ducible characters of G are linear, then all rational irreducible characters of some Sylow
2-subgroup of G are linear, one might ask whether a similar conclusion holds under the
hypothesis of our conjecture. Unfortunately, as pointed out to us by the reviewer, this is also
not true. For example, one can take G := SmallGroup(160, 234) ∼= C4

2 � (C5 � C2). Then
all rational irreducible characters of G have odd degree but a Sylow 2-subgroup of G has
rational irreducible characters of degree 2.

Our notation is standard. We follow [11] for the character theory of finite group and [2]
for the notation of non-abelian simple groups.

2 Preliminaries

We collect some useful results on rational characters and rational elements in this section.

Lemma 2.1 Let G be a finite group and let N be a normal subgroup of G. If χ is a real
irreducible character of G of odd degree and θ is an irreducible constituent of χN , the
restriction of χ to N , then θ is real of odd degree.

Proof Assume that χ ∈ Irr(G) is real with χ(1) odd. Let θ ∈ Irr(N) be a constituent of
χN . By Clifford’s theorem, χN = e(θ1 + θ2 + · · · + θt ), where all θ ′

i s are conjugate to
θ = θ1 and integers e, t ≥ 1. Since χ(1) = etθ(1) is odd, t is odd. As χ is real, we have
(χN) = (χ)N = χN , and so

e
(
θ1 + θ2 + · · · + θt

) = e (θ1 + θ2 + · · · + θt ) .

It follows that the G-orbit of all irreducible constituents of χN is closed under taking com-
plex conjugate. Since t is odd, θj = θj for some j with 1 ≤ j ≤ t . As θj is G-conjugate to
θ , θ is real.

Lemma 2.2 Let G be a finite group and let N � G. Let θ ∈ Irr(N) be rational. Then there
exists a rational character χ ∈ Irr(G|θ) if either |G/N | is odd or θ(1) is odd and o(θ) = 1.

Proof These follow from [17, Corollaries 2.2 and 2.4].

Lemma 2.3 Let S be a finite non-abelian simple group. Then all rational irreducible char-
acters of S have odd degree if and only if S ∼= L2(32f +1) for some integer f ≥ 1. Moreover,
the only non-trivial rational irreducible character of L2(32f +1) with f ≥ 1 is the Steinberg
character of degree 32f +1.

Proof The first statement is [5, Theorem 2.7] and the second follows from [17, Lemma
9.4].

Let G be a finite group. Recall that an element x ∈ G is rational (in G) if whenever
〈y〉 = 〈x〉, then y is G-conjugate to x. Also x ∈ G is real (in G) if xg = x−1 for some
g ∈ G. Clearly, every rational element is real. Moreover, if x ∈ G is an element of order 3,
then x is real if and only if x is rational. We call a class xG is rational if x is rational.

Lemma 2.4 Let G be a finite group and let N � G.
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(a) If x ∈ G is rational, then xN is rational in G/N .
(b) If g ∈ H ≤ G and g is rational in H , then g is rational in G.
(c) Assume that x ∈ G has prime order p. Then, x is rational in G if and only if there exists
a p′-element g ∈ G such that xg = xt , where t (mod p) is any generator of Z×

p .
(d) If x ∈ G is rational, then every power of x is also rational; moreover, xπ is rational for
every set of primes π .
(e) If x ∈ G, gcd(o(x), |N |) = 1 and xN is rational in G/N , then x is rational in G.
(f) If G/N has a rational element of prime order p, then G also has a rational element of
order p.

Proof These statements can be found in [17, Lemmas 5.1 and 5.2].

Lemma 2.5 Let S be a finite non-abelian simple group. Then, either S contains a rational
element of order 3, or S = 2B2(22f +1) and S contains a rational element of order 5, or
S ∼= L2(32f +1), where f ≥ 1 is an integer.

Proof This is [17, Theorem 11.1].

3 Finite Groups with No Even Rational Character Degrees

Let G be a finite group. If U �V are subgroups of G, then we call V/U a section of G. We
say that a finite group T is involved in G if T is isomorphic to some section of G and G is
said to be T -free if none of the section of G is isomorphic to T .

We first prove Theorem B, assuming Theorem C.

Proof of Theorem B Assume that every rational, irreducible character of G has odd degree
and that L2(32f +1) is not involved in G for any integer f ≥ 1. We prove by induction on
|G| that G is solvable. If 1 < N � G, then IrrQ(G/N) ⊆ IrrQ(G) and L2(32f +1) is not
involved in G/N , by induction, G/N is solvable. It follows that G has a unique minimal
normal subgroup, say M . If M is solvable, then since G/M is solvable by the claim above,
G is solvable. Thus, we assume that M is non-solvable.

Write M = S1 × S2 × · · · × Sn, where each Si is non-abelian simple. Let S = S1,
H = NG(S) and C = CG(S). Since L2(32f +1) is not involved in G, S 
∼= L2(32f +1) for
all integers f ≥ 1. Let H = H/C. Then, S � H and CH (S) = 1. By Theorem C, there
exists a rational, irreducible character δ ∈ IrrQ(H) of even degree such that [δS, 1S] = 0.
Inflate δ to H , we still have that [δS, 1S] = 0. Hence, δS has an irreducible constituent
1 
= θ ∈ Irr(S). Let φ = θ × 1S × · · · × 1S ∈ Irr(M). Let I be the inertia group of φ in
G. Observe that δ lies over φ and I ≤ H . Let ψ be the Clifford correspondence of δ over
φ. Then, ψH = δ and ψG ∈ Irr(G). Thus, δG = ψG ∈ Irr(G) and since δ is rational,
ψG ∈ IrrQ(G). Furthermore, δ(1) is even and hence δG is a rational irreducible character
of even degree of G, which is a contradiction.

Using Theorem B, we can now prove Theorem A. Recall that for a prime p and a finite
p-solvable group G, Bp(G) is a canonical subset of Irr(G) with values in Q|G|p .

Proof of Theorem A We proceed by induction on |G|. By Theorem B, we know that G is
solvable. If 1 < N � G, then IrrQ(G/N) ⊆ IrrQ(G), by induction G/N has no rational
element of odd order > 1.
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Assume first thatO2(G) > 1. Then, G/O2(G) has no non-trivial rational element of odd
order. Assume by contradiction that G has a non-trivial rational element x of odd order. By
Lemma 2.4 (a), xO2(G) is a non-trivial rational element of G/O2(G) of odd order, which
is a contradiction. Thus, we assume that O2(G) = 1. It follows that O2′(G) > 1 since G is
solvable.

Let N be a minimal normal subgroup of G. Then, N is an elementary abelian p-group
for some odd prime p. Note that G/N has no rational element of odd prime order. Again,
assume that G has a rational element x of odd prime order. Since G/N has no rational
element of odd order > 1, we deduce that x ∈ N and thus o(x) = p > 2.

We now use the argument as in the proof of [17, Theorem 7.2] to produce an irreducible
rational character of G which does not contain N in its kernel. By Lemma 2.4 (c), there
exists a p′-element g ∈ G such that xg = xt , where t (mod p) is a generator for the
multiplicative group Z×

p . Let σ ∈ Gal(Q|G|/Q) be an element of order p−1 fixing p′-roots
of unity and ξσ = ξ t , where ξ is a primitive p-root of unity. By [17, Corollary 6.4], there
exists 1N 
= ψ ∈ Bp(N) such that ψσ = ψg andQ(ψ) ⊆ Qp . By [17, Corollary 6.3], there
exists a rational irreducible character χ of G lying over ψ .

From the hypothesis of the theorem, we know that χ(1) is odd. By Lemma 2.1, the
constituent ψ of χN is real as χ is real. However, as |N | is odd, the only real irre-
ducible character of N is the trivial character 1N which implies that ψ = 1N , which is a
contradiction.

Observe that if G is a finite group and x ∈ G is an element of order 3, then x is a real
element of G if and only if x is a rational element of G as the only generators of the cyclic
group 〈x〉 are x and x2 = x−1.

Theorem 3.1 Let G be a finite group. Assume that L2(32f +1) is not involved in G for any
integers f ≥ 1. If G has no rational element of order 3 and 5, then G is solvable.

Proof We proceed by induction on the order of G. From the definition, we observe that
every subgroup and quotient of G are L2(32f +1)-free for all integers f ≥ 1. Let π = {3, 5}.

Assume first that G has a non-trivial proper normal subgroup N . By Lemma 2.4 (b), N
has no rational element of order p with p ∈ π . If G/N has a rational element of order p

for some p ∈ π , then by Lemma 2.4 (f), G has a rational element of order p, which is
impossible. Thus, G/N has no rational element of order p for any p ∈ π . Since |G/N | <

|G| and |N | < |G|, by induction, both N and G/N are solvable and hence G is solvable.
Therefore, we can assume that G is a finite simple group.

If G is abelian, then G is solvable. Thus, we can assume that G is a non-abelian simple
group. Since G is not isomorphic to L2(32f +1) for any integer f ≥ 1, by Lemma 2.5,
G always contains a rational element of order 3 or 5. This contradiction proves that G is
solvable.

We recall the following result which describes the structure of finite groups having no
rational element of order 3 (and which also implies Theorem 3.1).

Theorem 3.2 [4, Theorem C] Let G be a finite non-solvable group. Assume that G has no
rational element of order 3. Let L = O2′

(G) and M = O3′(L). Then, L/M = S1 × S2 ×
· · · × Sn, where n ≥ 1 is an integer and Si

∼= L2(32fi+1), fi ≥ 1 for all 1 ≤ i ≤ n.
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4 Proof of Theorem C

This section is devoted to proving Theorem C.

4.1 Alternating Groups and Sporadic Groups

Suppose S = An, where n ≥ 7. Then, S ≤ G ≤ Aut(S) ∼= Sn. Consider the irreducible
characters α = χ(n−2,2) and β = χ(n−2,12) of Sn, labeled by partitions (n − 2, 2) and
(n − 2, 12), and of degree n(n − 3)/2 and n(n − 3)/2 + 1. Since both partitions are non-
associate, α and β restrict to rational, irreducible characters of G, and one of them has even
degree, yielding the desired character χ .

If S = A5, A6, 2F4(2)′, or one of the 26 sporadic simple groups, then one can check
directly using [2] that G always contains a rational irreducible character of even degree.

4.2 Lie-type Groups in Characteristic 2

Suppose S is a Lie-type group in characteristic 2. By [8], the Steinberg character St of S

extends to a rational irreducible character of even degree of G.
From now on, we will assume that S is a simple group of Lie type, defined over a field

Fq of odd characteristic p, q = pf . Our proof is largely based on [18, Lemma 5.1], which
we reformulate for the case of rational characters.

Lemma 4.1 Suppose that G � A. Let ρ be a rational character of A, not necessarily irre-
ducible. Assume that ρ|G contains an A-invariant rational irreducible constituent α such
that [α, ρ|G] = 1. Then, there is a rational χ ∈ Irr(A) such that χ |G = α.

4.3 The Case S = Ln (q), n ≥ 2

In the subsequent treatment of Ln(q), it is convenient to adopt the labeling of irreducible
CGLn(q)-modules as given in [12], which uses Harish-Chandra induction ◦. Each such a
module is labeled as S(s1, λ1) ◦ . . . ◦ S(sm, λm), where si ∈ F

×
q has degree di (over Fq ), λi

is a partition of ki , and
∑m

i=1 kidi = n (cf. [12, 13]).

Lemma 4.2 [18, Lemma 5.4] Let B = GL2(q) and α ∈ Irr(B) be of form S(s, (1)) ◦
S(s−1, (1)) for some s of order 4 and degree 1, or S(t, (1)) for some t of degree 2 and order
4. Then, α is rational and invariant under any field automorphism of B.

We view S as L/Z(L), where L = SLn(q)�H = GLn(q). Consider the natural module
〈e1, . . . en〉Fq

for H , the subgroup

T = StabH (〈e1〉Fq
, 〈e2, . . . , en〉Fq

) ∼= GL1(q) × GLn−1(q),

and the induced character ρn = (1T )H . Then, ρn is a rational character of degree qn−1(qn−
1)/(q − 1). Since T > Z(H), ρn can be viewed as a character of H̄ = PGLn(q). Recall
that A = Aut(Ln(q)) is a semidirect product H̄ � F , where F is generated by a field
automorphism σ , and also the transpose-inverse τ if n > 2. We can define σ and τ such
that they stabilize T . It follows that ρn extends to the rational A-character (1T̄�F )A, where
T̄ = Z(G)T /Z(G).
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If λ � n, then let χλ denote the unipotent character of G labeled by λ (cf. [1]). As shown
in the proof of [18, Proposition 5.5], if n ≥ 2 then ρn has the following decomposition into
distinct irreducible constituents:

ρn = χ(n) + 2χ(n−1,1) + χ(n−2,12) + S(−1, (12)) ◦ S(1, (n − 2))

+
∑

a∈F×
q , a 
=±1

S(a, (1)) ◦ S(a−1, (1)) ◦ S(1, (n − 2)) (1)

+
∑

b∈F×
q2

, bq+1=1, b 
=±1

S(b, (1)) ◦ S(1, (n − 2)),

where in
∑

a , there is one summands for the pair {a, a−1}, and similarly for
∑

b; also, the

summand χ(n−2,12) occurs only for n ≥ 3.
First consider the case n = 2 and 2 � f , whence Aut(S) = K � C2 with K = S � Cf .

By assumption, p 
= 3. Hence, by Lemma 2.3, S admits a rational irreducible character θ

of even degree, and θ extends to a rational character of H by Lemma 2.2. In particular, we
are done if G ≤ K . Suppose G 
≤ K . Note that K̃ := SL2(q) � Cf ≤ Sp2nf (p), and
Sp2nf (p) admits irreducible Weil characters ξ1, ξ2 of degree (qn+1)/2 and η1, η2 of degree

(qn − 1)/2, all remaining irreducible upon restriction to H̃ and SL2(q). Moreover, ξ1 + ξ2
and η1 + η2 are rational-valued. Furthermore, the outer diagonal automorphisms of S, and
so any element of G � K , fuse (ξ1)|S with (ξ2)|S , and (η1)|S with (η2)|S . Choosing the
one, say η1, that is trivial at Z(K̃), we obtain an irreducible character ψ of G ∩ K . Setting
χ := ψG, we see that χ = 0 on G � K , and χ(g) = (η1 + η2)(g) for g ∈ G ∩ K . Thus, χ
is an even-degree rational irreducible character of G.

Assume now that n = 2 and 2|f . Then, 8|(q − 1), and we can find a ∈ F
×
q of order

4. By Lemma 4.2, α := S(a, (1)) ◦ S(a−1, (1)) is rational and σ -invariant, of even degree
q + 1. It is easy to check α, viewed as PGL2-character, is irreducible upon restriction to S.
By Lemma 4.1, α extends to a rational character ϕ of A, and now we can take χ := ϕ|G.

Next we consider the case n ≥ 3. If q ≡ 1 (mod 4), choose a ∈ F
×
q of order 4 and take

α := S(a, (1)) ◦ S(a−1, (1)) ◦ S(1, (n − 2)) of even degree

(q + 1)
(qn − 1)(qn−1 − 1)

(q2 − 1)(q − 1)
.

If q ≡ 3 (mod 4), choose b ∈ F
×
q2

of order 4 and take α := S(b, (1)) ◦ S(1, (n − 2)) of
even degree

(q − 1)
(qn − 1)(qn−1 − 1)

(q2 − 1)(q − 1)
.

Arguing as in the proof of [18, Proposition 5.5], using [12, (7.33)] and [13, Lemmas 3.2,
4.1], we see that α is A-invariant, rational-valued, and irreducible upon restriction to S. By
Lemma 4.1, α extends to a rational character ϕ of A, and now we can take χ := ϕ|G.

4.4 The Case S = U3(q), q ≥ 3

Wewill view S = L/Z(L) with L = SU3(q), and use the notation for irreducible characters
of L as given in [9]. Also, recall that Aut(S) = H � 〈σ 〉, with H = PGU3(q), and σ is an
outer automorphism of order 2f induced by the field automorphism x �→ xp . Note that S

has a unique (unipotent) character of even degree q(q − 1), so rational. Hence, we are done
by Lemma 2.2 if 2 � |G/S|. It remains to consider the case |G/S| is even.
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First assume that q ≡ 3 (mod 4); in particular, f is odd. Then, L has a pair of Weil
characters χ

(u)

q2−q+1
of degree q2 − q + 1, with u = (q + 1)/4 and 3(q + 1)/4, which

are dual to each other, and fused by σ 2f , and trivial at Z(L). In fact, it is straightforward
to check that the semisimple characters of GU3(q) labeled by the elements diag(b, b,−1)
with b ∈ F

×
q2

of order 4 are trivial at Z(GU3(q)), so can be viewed as H -characters θ and θ ,

restrict to the previous two Weil characters of S, dual to each other, with Q(
√−1) as field

of values, and fused by σ . It follows that ψ := θH�〈σf 〉 is a rational irreducible character
of H � 〈σf 〉, which is of odd index f in Aut(S). By Lemma 2.2, ψ extends to a rational
character ϕ of Aut(S). The construction of ϕ shows that

ϕ|S = χ
((q+1)/4)
q2−q+1

+ χ
(3(q+1)/4)
q2−q+1

;
hence, the inertia subgroup of χ

((q+1)/4)
q2−q+1

in Aut(S) is precisely H � 〈σf 〉. As |G/S| is even,
χ

((q+1)/4)
q2−q+1

is not G-invariant. Hence, we can take χ := ϕ|G.
Assume now that q ≡ 1 (mod 4). Then, L has a rational character χ

((q2−1)/4)
q3+1

of degree

q3 + 1, which is trivial at Z(L). This character extends to the rational character α :=
χ

(0,(q2−1)/4)
q3+1

of M := GU3(q), in the notation of [7]. Direct calculations using the character
table of GU2(q), also given in [7], show that [α|N, 1N ] = 1, where N := GU1(q)×GU2(q)

embedded naturally in M . It follows that α is a multiplicity-one constituent of (1N)M . Note
that σ can be defined to fix both N and M , so (1N)M extends to the permutation character
(1N�〈σ 〉)M�〈σ 〉, and moreover α is σ -invariant. By Lemma 4.1, α extends to a rational irre-
ducible character ψ of M � 〈σ 〉. Note that α is trivial at Z(M), so, after modding out by
Z(M), ψ yields a rational irreducible character ϕ of (M � 〈σ 〉)/Z(M) ∼= Aut(S), which is
irreducible over S. Now we can take χ := ϕ|G.

4.5 Other Classical Groups

For the remaining simple classical groups S 
∼= P�+
8 (q), we can follow the proof of [5,

Theorem 2.1], which produces two irreducible constituents α, β of a rank 3 permutation
character of S (see, e.g., [20]), one of even degree and another of odd degree, which extend
to rational-valued irreducible characters of Aut(S). One of this extensions, say ϕ, has even
degree, so we can take χ := ϕ|G.

Suppose S = P�+
8 (q). We consider the parabolic subgroups Si with i = 1, 2 in the

notation of [3, Lemma (6.4)], and let πi := (1Si
)S . By [3, Lemma (6.4)], π1 and π2 are both

multiplicity-free, [π1, π1] = 3, [π2, π2] = 6, and π2 contains π1. It is well-known (see, e.g.,
[20, Table 1]) that the rank 3 permutation character π1 = 1G+α+β, with α(1) = q(q2+1)2

and β(1) = q2(q4 + q2 + 1). It follows that α is a multiplicity-one constituent of π2, and it
is well-known that α is Aut(S)-invariant and rational (as the unique unipotent character of
this degree). Since S2 corresponds to the branching node of the Dynkin diagram D4 of S,
π2 extends to a permutation character of Aut(S). Hence, α extends to a rational character of
G ≤ Aut(S) by Lemma 4.1.

4.6 Exceptional Groups

Suppose that S = 2G2(q) with q = 3f ≥ 27. Here |Aut(S)/S| = f is odd. By Lemma
2.3, S has an even-degree rational character θ , which then extends to a rational character of
G by Lemma 2.2.
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Suppose that S = G2(q) with q ≥ 3, or 3D4(q). Let B denote the Borel subgroup of G.
By [3, Proposition (7.22) (iv)], (1B)G is the sum of 5 distinct irreducible characters, among
which one constituent, say α, is the unique character φ2,1 (in the notation of [1, Section
13.9]) of S of even degree (1/6)q(q + 1)2(q2 + q + 1), respectively (1/2)q3(q3 + 1)2,
hence rational and Aut(S)-invariant. As B can be chosen to be invariant under (suitable)
outer automorphisms of S, α extends to a rational character of G ≤ Aut(S) by Lemma 4.1.

Suppose that S = E6(q) or 2E6(q). The proof of [5, Theorem 2.1] shows that S has a
rank 5 permutation character, which is the sum of 5 distinct irreducible characters, among
which three are of even degree, and all extendible to rational characters of Aut(S).

Suppose that S = F4(q), respectively E8(q). As shown in [3, Proposition (4.2)], S has a
parabolic subgroup Si , with i = 1, respectively 8, such that the permutation character (1Si

)S

is the sum of 5 distinct irreducible characters, among which one constituent, say α, is the
so-called reflection character, of even degree

1

2
q(q3 + 1)2(q4 + 1), respectively q(q10 + 1)

q24 − 1

q6 − 1
.

Now, α is Aut(S)-invariant (as it is the unique unipotent character of this degree), and Si

can be chosen to be invariant under (suitable) outer automorphisms of S. Hence, α extends
to a rational character of G ≤ Aut(S) by Lemma 4.1.

Finally, suppose that S = E7(q). We consider the parabolic subgroups S1 and S7, in the
notation of [3, Propositions (4.3) and (5.2)]. By these propositions of [3], [π7, π7] = 4 and
[π1, π7] = 3, for πi := (1Si

)S , and

π1 = 1S + φ7,1 + χ1 + χ2 + χ3,

a sum of 5 distinct irreducible characters, with φ7,1 (in the notation of [1, Section 13.9])
being the reflection character, but now of odd degree. Next,

π7(1) = (q5 + 1)(q9 + 1)(q14 − 1)/(q − 1),

and π7 is the sum of 4 unipotent characters of the principal series. Checking the degrees of
the latter as given in [1, Section 13.9], we see that π7 = 1S + φ7,1 + φ27,2 + φ21,3. Again
using the unipotent degrees listed in [1, Section 13.9] and [π1, π7] = 3, we obtain

π1 = 1S + φ7,1 + φ27,2 + φ35,4 + φ56,3,

with α := φ56,3 rational, Aut(S)-invariant, and of even degree. Since S1 can be chosen to
be invariant under (suitable) outer automorphisms of S, α extends to a rational character of
G ≤ Aut(S) by Lemma 4.1, completing the proof of Theorem C.

We will need the following result for the proof of Theorem D.

Lemma 4.3 Let G be a finite group and let S � G with CG(S) = 1. Assume that S ∼=
L2(32f +1) for some integer f ≥ 1. If | IrrQ(G)| ≥ 3, then G has a rational irreducible
character of even degree.

Proof Assume that | IrrQ(G)| ≥ 3. Suppose by contradiction that all rational irreducible
characters of G have odd degree. We have that S � G ≤ Aut(S). Note that Out(S) is cyclic
of order 2(2f + 1). Assume that |G/S| is even. Then, G has a normal subgroup G1 such
that G1 ∼= PGL2(32f +1). In this case, G1 has a rational, irreducible character α of degree
q − 1 (lying over the characters labeled by η1, η2 as in [6, Theorem 38.1]). As |G/G1| is
odd, there exists χ ∈ IrrQ(G) lying over α and has even degree.

Assume that G/S is odd. Let χ ∈ IrrQ(G) be such that χ is non-trivial and is not the
extension of the Steinberg character StS of S to G. Clearly [χ, 1S] = 0 as G/S is of odd
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order. Let 1S 
= θ ∈ Irr(S) be an irreducible constituent of χS . By Lemma 2.1, θ ∈ IrrR(S).
Since θ 
∈ {1S, StS}, by [6, Theorem 38.1] θ(1) ∈ {32f +1 ± 1} and so θ(1) is even and
hence χ(1) is even. This completes the proof.

5 The Number of Rational Irreducible Characters of Odd Degrees

We first record the following result which should be well-known.

Lemma 5.1 Let G be a finite group of even order. Then, the number of irreducible real
characters of G of odd degree must be even.

Proof Let G be a finite group of even order. Clearly, if χ is not real, then χ 
= χ . Since
|G| = ∑

χ∈Irr(G) χ(1)2 is even, we deduce easily that the number of real characters in
Irr(G) of odd degree must be even.

The next result will be needed in the proof of Theorem D.

Corollary 5.2 Let G be a finite solvable group of even order. Then, the number of rational
irreducible characters of G of odd degree must be even.

Proof By the main result in [10], every real irreducible character of odd degree ofG is ratio-
nal. Hence, the number of rational irreducible characters of G of odd degree coincides with
the number of irreducible real characters of G of odd degree. Now, the corollary follows
from the previous lemma.

Proof of Theorem D Let G be a counterexample to the theorem with minimal order. Then,
| IrrQ(G)| = 3 and all rational irreducible characters of G have odd degree. Clearly
|G| is even and so by Corollary 5.2, G is non-solvable. It follows from Lemma 2.1 that
O2′(G) lies in the kernel of all rational irreducible characters of odd degrees of G. Thus,
| IrrQ(G/O2′(G))| = 3. By the minimality of |G|, we can assume that O2′(G) = 1.

Let N be a minimal normal subgroup of G. Since IrrQ(G/N) ⊆ IrrQ(G) and |G/N | <

|G|, by the minimality of G, | IrrQ(G/N)| ≤ 2. We consider the following cases.
(a) N is non-solvable. Write N = S1 × S2 × · · · × Sn, where each Si is conjugate in G

to S = S1, where S is a non-abelian simple group. By Theorem B and its proof, we deduce
that S ∼= L2(32f +1) for some integer f ≥ 1. Let θ be the Steinberg character of S. We know
that θ is rational and o(θ) = 1 since N is perfect.

Assume that n ≥ 3. Letψ1 = θ×1×· · ·×1, ψ2 = θ×θ×· · ·×1, andψ3 = θ×θ×· · ·×θ .
Then, ψi ∈ Irr(N) are all rational irreducible characters of odd degree and o(ψi) = 1 for all
i. By Lemma 2.2, for each i, there exists χi ∈ IrrQ(G) lying above ψi . Since ψi, 1 ≤ i ≤ 3,
lie in different G-orbits of irreducible characters of N , all χ ′

i s are pairwise distinct and thus| IrrQ(G)| ≥ 4, a contradiction.
Assume that n = 2. Then, ψ = θ × 1 ∈ IrrR(N) is rational, irreducible character of

odd degree > 1. Let χ ∈ IrrQ(G) be lying over ψ . Observe that the inertia group of ψ lies
inside NG(S1) and since |G : NG(S1)| = 2, from Clifford’s theory, χ(1) is even, which is a
contradiction.

Assume that n = 1. Then, N = S ∼= L2(32f +1). By a result in [8], θ extends to χ ∈
IrrQ(G). If | IrrQ(G/S)| = 2, then by Gallagher’s theorem, G would have at least 4 distinct
rational irreducible characters. Hence, G/S is of odd order. Let C = CG(S). Then, |C| is
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odd and so C ⊆ O2′(G) = 1. Thus, S�G and CG(S) = 1. By Lemma 4.3, G has a rational
irreducible character of even degree, which is a contradiction.

(b) Assume N is solvable. Since O2′(G) = 1, N is an elementary abelian subgroup of
order 2n for some integer n ≥ 1. Moreover G/N is non-solvable and | IrrQ(G/N)| = 2.
By [17, Theorem 10.2], there exist normal subgroups N ≤ K ≤ L such that K/N =
O2′(G/N), L/N = O2′

(G/N) is perfect and L/K ∼= S = L2(32f +1) for some integer
f ≥ 1. Write IrrQ(G/N) = {1, χ}, where χ is an extension of the Steinberg character
of L/K which is rational of degree 32f +1. Let ψ be the remaining rational irreducible
character of G. Note that [ψN, 1N ] = 1. Since O2(G/N) = O2(L/N) = 1, N = O2(G) is
a unique minimal normal subgroup of G.

Since N ∩ L′ � G and N is a unique minimal normal subgroup of G, N ≤ L′ which
implies that L = L′ is perfect. Since G/L is of odd order, by Lemma 2.2, each rational
irreducible character of L lies under some rational irreducible character of G and thus every
rational irreducible character of L has odd degree.

Assume first that G has a component V , that is, V = V ′ is perfect and V/Z(V )

is a non-abelian simple group and V is subnormal in G. Then, the layer E(G) of G,
which is the normal subgroup of G generated by all components of G, is non-trivial. We
know that E(G)/Z(E(G)) is a direct product of non-abelian simple groups. It follows that
E(G)/Z(E(G)) ∼= L2(32f +1). If Z(E(G)) > 1, then E(G) ∼= SL2(32f +1). In this case,
E(G) has a rational irreducible characterμ of degree q−1 (labelled by θj with j = (q+1)/4
as in [6, Theorem 38.1]) and o(μ) = 1 (since E(G) is perfect). By Lemma 2.2, G has a
rational irreducible character lying over μ and so this character has even degree, a contra-
diction. Thus, Z(E(G)) = 1 and so E(G) is a minimal normal subgroup of G, contradicting
the uniqueness of N . Hence, F∗(G) = F(G)E(G) = O2(G) = N , where F∗(G) is the
generalized Fitting subgroup of G. By Bender’s theorem, we have CG(N) = N .

Assume that K > N . Note that N is a normal Sylow 2-subgroup of K . It follows that
O2(K) = K since K is not a 2-group and N is the unique minimal normal subgroup of G.
Let 1 
= λ ∈ IrrQ(K). Then, λ(1) is odd and o(λ) = 1. By Lemma 2.2, ψ ∈ IrrQ(G) lies
over λ. Thus, all non-trivial rational irreducible characters of K are G-conjugate. Let V =
Irr(N) ∼= N . Then, G/N acts transitively on V − {1N } (note that CG(N) = CG(V ) = N ).
Thus, the semidirect product V � G/N is a doubly transitive permutation group. However,
this cannot occur by Hering’s theorem. (See [14, Appendix 1]).

Assume that K = N . As CG(N) = N , CL(N) = N . So V = Irr(N) is a non-trivial
GF(2)-module for S. By [17, Theorem 10.1], there exists 1 
= λ ∈ V such that T/N is of
odd order, where T is the inertia group of λ in L. Let ν ∈ Irr(T ) be the canonical extension
of λ. Then, νL is a rational irreducible character of L of even degree as |L : T | is even,
which is a contradiction.
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