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Abstract
A concept of Cohen–Macaulay in codimension t is defined and characterized for arbitrary
finitely generated modules and coherent sheaves byMiller, Novik, and Swartz in 2011. Soon
after, Haghighi, Yassemi, and Zaare-Nahandi defined and studied CMt simplicial com-
plexes, which is the pure version of the abovementioned concept and naturally generalizes
both Cohen–Macaulay and Buchsbaum properties. The purpose of this paper is to survey
briefly recent results of CMt simplicial complexes.

Keywords Cohen–Macaulay ring · Buchsbaum ring · Simplicial complex ·
Cohen–Macaulay simplicial complex · Buchsbaum simplicial complex ·
CMt simplicial complex

� M.R. Pournaki
pournaki@ipm.ir

M. Poursoltani
mpoursoltaniz@gmail.com

N. Terai
terai@okayama-u.ac.jp

S. Yassemi
yassemi@ut.ac.ir

1 Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11155-9415,
Tehran, Iran

2 Department of Mathematics, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama
700-8530 Japan

3 School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran,
Tehran, Iran

Acta Mathematica Vietnamica (2022) 47:181–196

Published online: 21 2021 July 

http://crossmark.crossref.org/dialog/?doi=10.1007/s40306-021-00441-2&domain=pdf
http://orcid.org/0000-0001-8707-0500
mailto: pournaki@ipm.ir
mailto: mpoursoltaniz@gmail.com
mailto: terai@okayama-u.ac.jp
mailto: yassemi@ut.ac.ir


Mathematics Subject Classification 2010 Primary 13H10 · 13C14 · 13F55 ·
Secondary 05E40 · 05E45

1 Introduction

We start the paper by explaining the motivation behind the notion of pure Cohen–
Macaulayness in a fixed codimension. The study of Cohen–Macaulay rings, which histor-
ically goes back to about a century, plays a special role in commutative algebra. Indeed,
early works on Cohen–Macaulay rings, named after the mathematicians Francis Sowerby
Macaulay (1862–1937) and Irvin Sol Cohen (1917–1955), were inspired by polynomial
rings (see [19] and [4]). Polynomial rings and formal power series rings over fields are
examples of Cohen–Macaulay rings. Due to their special properties, the Cohen–Macaulay
rings have found many applications in algebraic geometry. In [18, p. 887], Hochster
wrote that “when a local ring is not Cohen–Macaulay, life is much harder.” We refer the
reader to the book by Bruns and Herzog [3] for a wealth of information on the theory of
Cohen–Macaulay rings.

In 1973, Jürgen Stückrad and Wolfgang Vogel, by giving a negative answer to a ques-
tion of David Buchsbaum (1929–2021), introduced the concept of Buchsbaum rings with
the desire of having a better understanding of the connection between the different inter-
section multiplicities corresponding to the concept length and multiplicity of commutative
algebra (see [32] and [33]). Fairly soon, it became apparent that Buchsbaum rings are the
correct generalization of the Cohen–Macaulay rings and the class of Cohen–Macaulay rings
is included in the larger class of Buchsbaum rings. In fact, every Cohen–Macaulay local
ring is a Buchsbaum ring. For exploring the theory of Buchsbaum rings in full detail starting
from elementary facts to more complex ones, we refer the readers to the book by Stückrad
and Vogel [34], who are the founders of these rings.

A connection can be made between commutative algebra and combinatorics via the
so-called Stanley–Reisner rings constructed from simplicial complexes. These rings are
convenient and elegant tools for the study of the combinatorics of simplicial complexes.
By definition, a simplicial complex is Cohen–Macaulay (resp. Buchsbaum) whenever its
Stanley–Reisner ring is a Cohen–Macaulay (resp. Buchsbaum) ring. In 1974, Gerald Allen
Reisner in his Ph.D. thesis [26] completely characterized Cohen–Macaulay simplicial
complexes. This was then followed up by more precise homological results about Stanley–
Reisner rings due to Melvin Hochster and then after a while Richard Stanley found a way to
prove the Upper Bound Conjecture for simplicial spheres, which was open at the time, using
the Stanley–Reisner ring construction and the Reisner’s criterion of Cohen–Macaulayness.
Stanley’s idea of translating difficult conjectures in combinatorics into statements from
commutative algebra and proving them by means of homological techniques was the ori-
gin of combinatorial commutative algebra, which is one of the fastest developing subfields
within algebraic combinatorics.

In 2011, a concept of Cohen–Macaulay in codimension t is defined and characterized
for arbitrary finitely generated modules and coherent sheaves by Miller, Novik, and Swartz
[21]. For the Stanley–Reisner ring of a simplicial complexΔ, it is equivalent to nonsingular-
ity of Δ in dimension dimΔ− t and for a coherent sheaf on projective space, this condition
is shown to be equivalent to the same condition on any single generic hyperplane section.
Soon after, in 2012, the concept of CMt simplicial complexes was introduced by Haghighi,
Yassemi, and Zaare-Nahandi [11]. This latter concept is the pure version of the previous

182 M.R. Pournaki et al.



one studied by Miller, Novik, and Swartz, that is, simplicial complexes which are pure and
Cohen–Macaulay in codimension t . In the hierarchy of families of simplicial complexes
with respect to Cohen–Macaulay property, Buchsbaum simplicial complexes appear right
after Cohen–Macaulay ones, and, indeed, CMt simplicial complexes are naturally placed
in the hierarchy. In fact, the CMt property unifies and naturally generalizes both Cohen–
Macaulay and Buchsbaum properties. The purpose of this paper is to survey briefly recent
results of CMt simplicial complexes.

2 Pure Cohen–Macaulayness in a Fixed Codimension

Let us start this section with some preliminaries. A simplicial complex Δ on the set of
vertices [n] := {1, . . . , n} is a collection of subsets of [n] which is closed under taking
subsets; that is, if F ∈ Δ and F ′ ⊆ F , then also F ′ ∈ Δ. Every element F ∈ Δ is called a
face of Δ, the size of a face F is defined to be |F |, and its dimension is defined to be |F |−1.
(As usual, for a given finite set X, the number of elements of X is denoted by |X|). The
dimension of Δ, which is denoted by dimΔ, is defined to be d − 1, where d = max{|F | |
F ∈ Δ}. A facet of Δ is a maximal face of Δ with respect to inclusion. We say that Δ is
pure if all facets of Δ have the same cardinality. The link of Δ with respect to a face F ∈ Δ,
denoted by lkΔ(F ), is the simplicial complex lkΔ(F ) = {G ⊆ [n] \ F | G ∪ F ∈ Δ}.

One of the connections between combinatorics and commutative algebra is via rings
constructed from the combinatorial objects. Let R = K[x1, . . . , xn] be the polynomial ring
in n variables over a fieldK, and let Δ be a simplicial complex on [n]. For every subset F ⊆
[n], we set xF = ∏

i∈F xi . The Stanley–Reisner ideal of Δ overK is the ideal IΔ of R which
is generated by squarefree monomials xF with F /∈ Δ. Note that any squarefree monomial
ideal is the Stanley–Reisner ideal of a suitable simplicial complex. The Stanley–Reisner
ring of Δ over K, denoted by K[Δ], is defined as K[Δ] = R/IΔ. A simplicial complex Δ

is called Cohen–Macaulay over K (resp. Buchsbaum over K), if its Stanley–Reisner ring
K[Δ] is a Cohen–Macaulay ring (resp. a Buchsbaum ring). In the abovementioned notions
and in other similar ones, one can simply omit “over K” if there is no ambiguity.

LetΔ be a (d−1)-dimensional simplicial complex and t be an integer. In 2011, a concept
of Cohen–Macaulayness in codimension t for Δ is defined by Miller, Novik, and Swartz
[21]. Indeed, by their definition, Δ is called Cohen–Macaulay of dimension i along a face
F ∈ Δ if lkΔ(F ) is Cohen–Macaulay of dimension i (see [21, Definition 6.1]). Also, Δ

is called Cohen–Macaulay in codimension t if Δ is either Cohen–Macaulay of dimension
t − 1 along every face F with |F | = d − t , or Cohen–Macaulay whenever t > d (see
[21, Definition 6.3]). They remarked that if Δ is pure, then it would suffice to require that
lkΔ(F ) be Cohen–Macaulay for every face F with |F | = d − t , but if Δ is not pure,
then it is possible for lkΔ(F ) to be Cohen–Macaulay without Δ being Cohen–Macaulay of
dimension d − 1 − |F | along F . Based on this observation, the pure version of the latter
notion is defined by Haghighi, Yassemi, and Zaare-Nahandi as follows.

Definition 2.1 ([11, Definition 2.1]) Let Δ be a (d − 1)-dimensional simplicial complex
and 0 ≤ t ≤ d − 1 be an integer. Then, Δ is called a CMt simplicial complex provided Δ is
pure and lkΔ(F ) is Cohen–Macaulay for every F ∈ Δ with |F | ≥ t .

We adopt the convention that CMt means CM0 for any negative t . It is worthwhile to
mention that for a (d − 1)-dimensional simplicial complex Δ, being CMt implies Cohen–
Macaulayness in codimension d − t in the sense of Miller, Novik, and Swartz and the two
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concepts coincide if Δ is pure. Also, from the results by Reisner [27] and Schenzel [30]
it follows that being CM0 is the same as being Cohen–Macaulay and the CM1 property is
identical with the Buchsbaum property. Clearly for any i ≤ j , being CMi implies being
CMj . These observations mean that the CMt property naturally generalizes both Cohen–
Macaulay and Buchsbaum properties. These two latter notions have been studied for many
years by mathematicians. Therefore, it is far from expected to obtain a result whose special
case gives us a result of new type in Cohen–Macaulay or Buchsbaum context. Nevertheless,
we believe that generalizing familiar results for the CMt case can be important. Indeed, it
opens a variety of interesting questions which are already considered for Cohen–Macaulay
and Buchsbaum ones.

We now include an example to illustrate the theory (see [11, Example 2.2]). Let Δ be the
union of two (d − 1)-simplices that intersect in a (t − 2)-dimensional face (1 ≤ t ≤ d − 1).
Then, Δ is a CMt simplicial complex which is not CMt−1. Indeed, if Γ is a finite union of
(d −1)-simplices where any two of them intersect in a face of dimension at most t −2, then
Γ is a CMt simplicial complex, and if at least two of the simplices have a (t−2)-dimensional
face in common, then Γ is not CMt−1. These include simplicial complexes corresponding
to the transversal monomial ideals which happen to have linear resolutions (see [42]). Note
that the condition t ≤ d − 1 is necessary because the union of two (d − 1)-simplices which
intersect in a (d − 2)-dimensional face is Cohen–Macaulay.

We continue the paper by mentioning three results, each of which gives a characterization
of CMt simplicial complexes. It is known that the links of Cohen–Macaulay simplicial
complexes are also Cohen–Macaulay (see [17]). A similar property holds true for CMt

simplicial complexes.

Proposition 2.2 ([11, Lemma 2.3]) Let Δ be a simplicial complex. Then, the following
conditions are equivalent.

(a) Δ is CMt .
(b) Δ is pure and lkΔ({x}) is CMt−1 for every {x} ∈ Δ.

In analogy with the Reisner’s characterization of Cohen–Macaulay simplicial com-
plexes [27, Theorem 1], the following proposition provides equivalent conditions for CMt

simplicial complexes.

Proposition 2.3 ([11, Theorem 2.6]) Let Δ be a (d − 1)-dimensional simplicial complex
and K be a field. Then, the following conditions are equivalent.

(a) Δ is CMt over K.
(b) Δ is pure and H̃i(lkΔ(F );K) = 0 for all F ∈ Δ with |F | ≥ t and for all i < d−1−|F |.

Before continuing the paper, let us write a few words about the key idea behind the proof
of the above proposition. Indeed, one can prove it by the following Hochster’s formula for
local cohomology modules:

F
(
Hi

m(K[Δ]), t
)

=
∑

F∈Δ

dimK H̃i−|F |−1 (lkΔ(F );K)

(
t−1

1 − t−1

)|F |
.

Note that the formula expresses the Hilbert function of the local cohomology group
Hi

m(K[Δ]) in terms of the reduced homology groups of subcomplexes of Δ ([31, Theorem
4.1]).
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It is shown in [22, Corollary 3.4] that Cohen–Macaulayness is a topological property.
Varbaro and Zaare-Nahandi [37, Theorem 2.4] have shown that the CMt property is also
topological. This is based on the following proposition together with the fact that the Krull
dimension of ExtiR(K[Δ], R) is a topological invariant for all i ∈ N by Yanagawa [40].

Proposition 2.4 ([21, Corollary 7.4]) Let R = K[x1, . . . , xn] be the polynomial ring over
a field K. Let Δ be a (d − 1)-dimensional simplicial complex on [n]. Then, Δ is CMt if and
only if Δ is pure and dimExtiR(K[Δ], R) ≤ t for all i > n − d, where dim refers to the
Krull dimension.

Related with topological property, the next proposition gives a different characterization
of CMt property.

Proposition 2.5 ([11, Theorem 2.8]) Let Δ be a pure (d − 1)-dimensional simplicial
complex and K be a field. Then, the following conditions are equivalent.

(a) Δ is CMt over K.
(b) Hi(|Δ|, |Δ| \ p;K) = 0 for all p ∈ |Δ| \ |Δt−2| and for all i < d − 1, where Δt−2 is
the (t − 2)-skeleton of Δ and |Δt−2| is induced from a fixed geometric realization of Δ.

We now gather together some useful results concerning the join of CMt simplicial com-
plexes. First, let us recall what the join is. For two simplicial complexes Δ and Δ′ with
disjoint vertex sets, the simplicial join Δ ∗ Δ′ of Δ and Δ′ is defined to be the simplicial
complex whose faces are in the form of F ∪ F ′, where F ∈ Δ and F ′ ∈ Δ′. The algebraic
and combinatorial properties of the simplicial join Δ ∗ Δ′ through the properties of Δ and
Δ′ have been studied by a number of authors (see, for example, [1, 2, 8, 25]). For instance,
Fröberg [8] has shown that the join is closed with respect to the Cohen–Macaulay and
Gorenstein properties (see also [29]). This means that the simplicial join of two simplicial
complexes is Cohen–Macaulay (resp. Gorenstein) if and only if both of them are Cohen–
Macaulay (resp. Gorenstein). But the story is different for Buchsbaumness: if Γ is the
triangulation of a cylinder and Γ ′ is a single vertex simplicial complex, then both Γ and
Γ ′ are Buchsbaum (the first one is Buchsbaum by [28, Corollary 2.9] and the second one
is Buchsbaum since, by [34, Example II.2.14 (ii)], it is Cohen–Macaulay), whereas Γ ∗ Γ ′
is not. Indeed, in [28, Theorem 2.6], it is shown that the simplicial join of two simplicial
complexes is Buchsbaum if and only if both of them are Cohen–Macaulay.

Based on the abovementioned observations, it is natural to ask what would happen to Δ

and Δ′ when Δ ∗ Δ′ is CMt . Below, we present two relevant results in this regard. In the
following proposition, we use the convention that CMs is just CM0 for any negative s.

Proposition 2.6 ([11, Proposition 2.10]) Let Δ be a (d − 1)-dimensional and Δ′ be a
(d ′ − 1)-dimensional simplicial complexes. Then, Δ ∗ Δ′ is CMt if and only if Δ is CMt−d ′
and Δ′ is CMt−d .

It is worth mentioning that the Künneth tensor formula, together with the third preceding
proposition, gives us a proof for the above one. We recall that Künneth tensor formula (see,
for example, [28, Lemma 2.1]) states that for all j , the isomorphism

Extj
R′′

(
K[Δ ∗ Δ′], R′′) ∼=

⊕

p+q=j

ExtpR
(
K[Δ], R) ⊗K Extq

R′
(
K[Δ′], R′)
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holds true. Here, R and R′ are polynomial rings over a field K corresponding to the vertex
sets of Δ and Δ′, respectively, and R′′ = R ⊗K R′.

In fact, in the above proposition, if Δ is a (d − 1)-dimensional CMr simplicial complex
and Δ′ is a (d ′ − 1)-dimensional CMr ′ simplicial complex, then Δ ∗ Δ′ is a CMt simplicial
complex with t = max{d + r ′, d ′ + r}. However, if one of the simplicial complexes is
Cohen–Macaulay, this result could be strengthened.

Proposition 2.7 ([12, Theorem 3.1]) Let Δ be a (d − 1)-dimensional and Δ′ be a (d ′ −
1)-dimensional simplicial complexes. Then, the following conditions hold true.

(a) If Δ is Cohen–Macaulay and Δ′ is CMr ′ for some r ′ ≥ 1, then Δ ∗ Δ′ is CMd+r ′ .
Moreover, if Δ′ is not CMr ′−1, then Δ ∗ Δ′ is not CMd+r ′−1. In particular, a cone on Δ′ is
CMr ′+1.
(b) If Δ is CMr and Δ′ is CMr ′ for some r, r ′ ≥ 1, then Δ ∗ Δ′ is CMt with t = max{d +
r ′, d ′ + r}. Conversely, if Δ ∗ Δ′ is CMt , then Δ is CMt−d ′ and Δ′ is CMt−d .

We are now going to deal with Alexander duality. We recall that for a given simplicial
complex Δ on [n], the Alexander dual Δ∨ of Δ is defined by Δ∨ = {[n] \ F | F /∈ Δ}.
Note that Δ∨ is a simplicial complex on [n].

The following result characterizes the vanishing of Betti numbers of the Stanley–Reisner
ideal of a simplicial complex Δ for which Δ∨ is CMt . This is a generalization of the Eagon–
Reiner’s theorem [6] as well as a generalization of a result of Yanagawa [39]. One can prove
this result by using Hochster’s formula on Betti numbers of IΔ [15, Corollary 8.1.4], namely,

βi,i+j (IΔ) =
∑

F∈Δ∨
|F |=n−(i+j)

dimK H̃i−1 (lkΔ∨(F );K) .

Proposition 2.8 ([9, Theorem 3.1]) Let Δ be a simplicial complex on [n], Δ∨ its Alexander
dual and let IΔ ⊆ K[x1, . . . , xn] be the Stanley–Reisner ideal of Δ over a field K. Then,
the following conditions are equivalent.

(a) Δ∨ is a (d − 1)-dimensional CMt simplicial complex.
(b) β0,j (IΔ) = 0 for all j �= n − d and βi,i+j (IΔ) = 0 for all i, j with i + j ≤ n − t and
j > n − d.

The previous proposition for t = 1 leads to the following well-known result (see [9,
Corollary 3.2]): Let Δ be a simplicial complex on [n] and suppose that dimΔ∨ = d − 1.
Then, Δ∨ is Buchsbaum if and only if β0,j (IΔ) = 0 for all j �= n − d and βi,j (IΔ) = 0 for
all i, j with i + j ≤ n − 1 and j > n − d.

Finally, we close this section by pointing out the connection between the Serre’s con-
dition (Sr ) and the CMt property. Assume that a (d − 1)-dimensional simplicial complex
satisfies the Serre’s condition (Sr ). Then, Δ is CMd−r . Indeed, for any face F ∈ Δ with
|F | = s ≥ d − r on {i1, . . . , is}, we have dim(K[lkΔ(F )]) = dim(K[Δ]P ) ≤ r , where
P = (xj | j /∈ {i1, . . . , is}). Therefore, by the definition of the Serre’s condition (Sr ),
K[Δ]P is Cohen–Macaulay. But Cohen–Macaulayness does not change under an exten-
sion of the base field. Therefore, K[lkΔ(F )] is Cohen–Macaulay if and only if K[Δ]P is
so. Hence, lkΔ(F ) is Cohen–Macaulay, i.e., Δ is CMd−r . Note that the converse is false.
Indeed, it is enough to think about a disconnected Buchsbaum simplicial complex Δ which
is CM1 and does not even satisfy the Serre’s condition (S2) (see [9, Remark 3.3] and
[37, Remark 2.1]).
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Yanagawa and Terai [39] have generalized the Eagon–Reiner’s theorem by showing that
Δ∨ satisfies the Serre’s condition (Sr ) if and only if the minimal free resolution of K[Δ] is
linear in the first r steps. Since the Serre’s condition (Sr ) implies CMd−r , the above propo-
sition is also a generalization of Yanagawa’s result (see [9, Corollary 3.7]). According to
Yanagawa’s result, if Δ∨ is of dimension d −1, for any integer 0 ≤ t ≤ d −1, Δ∨ is (Sd−t )

if and only if the minimal free resolution ofK[Δ] is linear in the first d − t steps. Therefore,
βi,j (IΔ) = 0 for all i, j with i < d − t and j > n − d. Thus, by the above proposition, Δ∨
is CMt . This is another proof of the fact that the Serre’s condition (Sr ) implies CMt prop-
erty. This proof is concerning the comparison of the shape of the Betti diagram of IΔ when
Δ∨ is (Sr ) with the case when Δ∨ is CMt (see also [9, Figures 2 and 3]).

According to [7] a simplicial complex Δ is said to satisfy Nd,p if IΔ is generated in
degree ≤ d and the first p steps of the minimal free resolution of (IΔ)≥d are linear, in
the sense that in the first p steps of the resolution, the boundary maps are represented by
matrices of linear forms. Here, (IΔ)≥d is the ideal generated by elements of IΔ of degree
≥ d. The following proposition is an important result about the relationship between CMt

property and the condition Nd,p.

Proposition 2.9 ([37, Theorem 3.3]) Let Δ be a (d − 1)-dimensional CMt simplicial
complex on n vertices. Then, Δ∨ satisfies the Nn−d,2d−n−t+2 condition.

As we mentioned, by a result of Yanagawa [39, Corollary 3.7], for r ≥ 2 and a simplicial
complexΔ of codimension c,K[Δ] satisfies the Serre’s condition (Sr ) if and only if IΔ∨ sat-
isfies the Nc,r condition. Therefore, one can find an interesting consequence of the previous
proposition which connects CMt property to the Serre’s condition (Sr ) from another aspect.

Proposition 2.10 ([37, Corollary 3.5]) Let Δ be a simplicial complex of dimension d − 1
on n vertices. Assume that Δ is CMt for some t ≥ 0. Then, Δ satisfies the Serre’s condition
(S2d−n−t+2). In particular, if Δ is Buchsbaum, then depth K[Δ] ≥ 2d − n + 1.

3 Graphs and the CMt Property

In this section, we deal with simplicial complexes that come from graph theory. Let us recall
a few things concerning graphs. Let G be a finite undirected graph without loops or multiple
edges and let V (G) = [n] be its vertex set. An independent set in G is a set I of vertices
such that for any two vertices in I , there is no edge connecting them. The independence
simplicial complex of G, denoted by ΔG, is the simplicial complex on the set [n] whose
faces are all the independent sets of G. A graph G is called Cohen–Macaulay (resp. CMt ,
etc.) if ΔG is Cohen–Macaulay (resp. CMt , etc.). In this context, the Stanley–Reisner ideal
of ΔG is called the edge ideal of G because of its structure related to the edges of G. Indeed,
one can show that IΔG

is the ideal generated by xixj ’s inK[x1, . . . , xn], where ij is an edge
of G.

The following proposition gives a basic tool for checking the CMt property of graphs.
We recall that for a graph G and a vertex v ∈ V (G), the set of neighbors of v is denoted by
NG(v). We also set NG[v] = {v} ∪ NG(v).

Proposition 3.1 ([12, Lemma 2.2]) Let G be a graph and t ≥ 1 be an integer. Then, the
following conditions are equivalent.
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(a) G is CMt .
(b) G is unmixed and G \ NG[v] is CMt−1 for every vertex v ∈ G.

Let G and G′ be two graphs and denote by G  G′ their disjoint union. By using the fact
that the equality ΔGG′ = ΔG ∗ ΔG′ holds true, one can obtain the following proposition.

Proposition 3.2 ([12, Theorem 3.2]) Let G and G′ be two (d − 1)-dimensional and
(d ′ − 1)-dimensional graphs, respectively, on disjoint sets of vertices. Then, the following
conditions hold true.

(a) The graphGG′ is Cohen–Macaulay if and only if bothG andG′ are Cohen–Macaulay.
(b) If G is Cohen–Macaulay and G′ is CMr ′ for some r ′ ≥ 1, then G  G′ is CMd+r ′ . If G′
is not CMr ′−1, then G  G′ is not CMd+r ′−1.
(c) If G is CMr and G′ is CMr ′ for some r, r ′ ≥ 1, then G  G′ is CMt , where t =
max{d + r ′, d ′ + r}. Conversely, if G  G′ is CMt , then G is CMt−d ′ and G′ is CMt−d .

There are many results about relation of bipartite graphs to Cohen–Macaulayness, Buchs-
baumness, etc. For instance, unmixed bipartite graphs have been already characterized by
Villarreal (see [38, Theorem 1.1]). There is a relevant theorem to this point in [12], due
to Haghighi, Yassemi, and Zaare-Nahandi, which states that every (d − 1)-dimensional
unmixed bipartite graph G having Kn,n with n ≥ 2 as a maximal complete bipartite sub-
graph of minimum dimension, is CMd−n+1, but it is not CMd−n (see [12, Theorem 4.1]).
There seems to be an ambiguity in the notation used there which leads to an error. For
example, suppose that G is a graph with the edge set E(G) = {12, 34, 56, 14, 16, 36}.
Note that G is Cohen–Macaulay bipartite, and so it is CM0. As K2,2 takes the edge set
E(K2,2) = {14, 16, 34, 36}, we have d = 3 and n = 2, and thus the latter-mentioned result
says that G is not CM1. But this is not true since G is CM0. Fortunately, they have provided
a new definition and have given a new statement for the theorem. We state the definition
and the theorem below, but before getting to this, let us first recall the notion of a pure
ordering of a graph. Indeed, when we say a graph G is bipartite on a partition of vertices
V1 = {x1, . . . , xd} and V2 = {y1, . . . , yd} with a pure order, it means that the vertices lie
in V1 and V2 are ordered in such a way that for all 1 ≤ i ≤ d, xiyi is an edge of G, and for
every distinct 1 ≤ i, j, k ≤ d, if xiyj and xjyk are edges of G, then xiyk is so.

Definition 3.3 [13, Definition 0.3] Let G be a (d − 1)-dimensional non-Cohen–Macaulay
unmixed bipartite graph on a partition of vertices V1 = {x1, . . . , xd} and V2 = {y1, . . . , yd}
with a pure order. Let {i1, . . . , in} ⊂ {1, . . . , d} with n ≥ 2. A complete bipartite subgraph
of G on ({xi1 , . . . , xin}, {yi1 , . . . , yin}) is called amulti-cross of G on the given subpartition.
It is denoted by Mi1,...,in or simply by Mn,n if no confusion occurs.

Note that an unmixed bipartite graph is Cohen–Macaulay if it does not have any multi-
cross (see, for example, [14, Theorem 3.4]).

Proposition 3.4 ([13, Theorem 0.4]) LetG be a (d−1)-dimensional non-Cohen–Macaulay
unmixed bipartite graph on a partition of vertices V1 = {x1, . . . , xd} and V2 = {y1, . . . , yd}
with a pure order. Let Mn,n with n ≥ 2 be a maximal multi-cross of G of minimum
dimension. Then, G is CMd−n+1, whereas it is not CMd−n.
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The example that was given before the above definition does not have a multi-cross and
thus the preceding proposition cannot be applied for it. Let us give another example in which
this proposition can be applied. To this end, let G be an unmixed bipartite graph with the
vertex set V (G) = {1, 2, 3, 4, 5, 6} and the edge set E(G) = {12, 34, 56, 25, 45, 36}. Then,
G contains the complete bipartite subgraph M with E(M) = {34, 56, 45, 36} as a maximal
multi-cross and G is CM2, whereas it is not CM1 by the above proposition.

It is worth mentioning that in the above proposition, if n = d is the case, then result
of Cook and Nagel regarding Buchsbaumness of an unmixed bipartite graph would be
recovered (see [5, Theorem 4.10] and [10, Theorem 1.3]).

There are also at least two different characterization of Cohen–Macaulay bipartite
graphs, one given by Herzog and Hibi in [14, Theorem 3.4] and the other given by Cook
and Nagel in [5, Proposition 4.8]. It has been shown that a simplicial complex is Buchs-
baum if and only if it is pure and the link of every vertex is Cohen–Macaulay (see [30]).
This means that a graph G is Buchsbaum if and only if G is unmixed and for every ver-
tex v ∈ G, G \ N [v] is Cohen–Macaulay. Moreover, there is a sharper result for bipartite
graphs by Cook and Nagel. In fact, complete bipartite graphs are well-known to be Buchs-
baum (see [42, Proposition 2.3]) and indeed, the converse is also true: Let G be a bipartite
graph. Then, G is Buchsbaum if and only if G is either Cohen–Macaulay or the complete
bipartite graph Kn,n for some n ≥ 2 (see [5, Theorem 4.10] and [10, Theorem 1.3]).

The following proposition generalizes the results of Cook and Nagel in light of the result
of Herzog and Hibi. Note that in its statement, by a Macaulay order, we mean the order
which appeared in the characterization given by Herzog and Hibi.

Proposition 3.5 ([12, Theorem 4.4] and [13, Remark 0.6]) Let G be a Cohen–Macaulay
bipartite graph with a Macaulay order on the vertex set V (G) = V ∪ W , where V =
{x1, . . . , xd} and W = {y1, . . . , yd}. Let n1, . . . , nd be any positive integers with ni ≥ 2 for
at least one i. Suppose that G′ = G(n1, . . . , nd) is the graph obtained by replacing each
edge xiyi with the multi-cross Mni,ni

for all i = 1, . . . , d. Let

ni0 = min{ni > 1 | i = 1, . . . , d}
and set n = ∑d

i=1 ni . Then, G′ is exclusively a CMn−ni0+1 graph. Furthermore, any bipar-
tite CMt graph is obtained by such a replacement of complete bipartite graphs in a unique
bipartite Cohen–Macaulay graph.

At this point it is useful to remark the following facts. Let H be a bipartite Cohen–
Macaulay graph and let G = H ′ be a bipartite CMt graph obtained from H by the replacing
process in the statement of the above proposition. Assume that G is not CMt−1 and t ≥
2. One can show the following observations. Using these observations, it may be easily
distinguished all bipartite CMt graphs for t = 2, 3, 4 (see [12, Examples 4.6, 4.7, and 4.8]).
(1) First of all, 1 ≤ dimH ≤ t −1. Because if dimH ≥ t and we replace just one edge with
Kn,n where n ≥ 2, then G is strictly CMr with r ≥ t + 1. On the other hand, if dimH = 0,
then G is CM1.
(2) If dimH = t − 1, then only one edge can be replaced with Kn,n where n ≥ 2. Because
if we replace at least two edges with Kn,n’s, n ≥ 2, then G will be strictly CMr where
r ≥ t + 1.
(3) If dimH = t − 1, for replacing just one edge with Kn,n, n ≥ 2 can be arbitrary and
hence G will be of dimension n + t − 2.
(4) If dimH ≤ t − 2, the number of replacements should be at least 2. Again, because if we
replace one edge with Kn,n, n ≥ 2, then G would be CMr for r ≤ t − 1.
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(5) When dimH ≤ t −2, the maximum number of replacements of edges with Kn,n, n ≥ 2,
is at most t − dimH which may occur replacing K2,2’s.
(6) For dimH ≤ t − 2, the maximum size of Kn,n to be used for replacements is also
n = t − dimH which may occur when we have two replacements.

A simplicial complex Δ is called bi-Cohen–Macaulay (resp. bi-CMt , etc.) if both Δ

and Δ∨ are Cohen–Macaulay (resp. CMt , etc.). As usual, a graph G is called bi-Cohen–
Macaulay (resp. bi-CMt , etc.) if ΔG is bi-Cohen–Macaulay (resp. bi-CMt , etc.). We are
now going to give two characterizations of bi-CMt bipartite graphs and bi-CMt chordal
graphs generalizing results of Herzog and Rahimi on bi-Cohen–Macaulay bipartite graphs
and bi-Cohen–Macaulay chordal graphs (see [16]). The first one is as follows.

Proposition 3.6 ([9, Theorem 4.3]) Let G be a bipartite graph and let t be a nonnegative
integer. Then, the following conditions hold true.

(a) If |V (G)| ≤ t + 3, then G is bi-CMt if and only if it is CMt .
(b) If |V (G)| ≥ t + 4, then G is bi-CMt if and only if G is CMt and the edge ideal I (G) of
G has a linear resolution.

The second characterization is also as follows.

Proposition 3.7 ([9, Theorem 4.5]) Let G be a bi-Cohen–Macaulay bipartite graph with
a Macaulay order on the vertex set V (G) = V ∪ W , where V = {x1, . . . , xd} and
W = {y1, . . . , yd}. Let n1, . . . , nd be any positive integers with ni ≥ 2 for at least one i.
Suppose that G′ = G(n1, . . . , nd) is the graph obtained by replacing each edge xiyi with
the complete bipartite graph Kni,ni

for all i = 1, . . . , d. Let

ni0 = min{ni > 1 | i = 1, . . . , d}
and set n = ∑d

i=1 ni . Then, G′ is exclusively a CMn−ni0+1 graph and the edge ideal I (G′)
of G′ has a linear resolution. In particular, G′ is bi-CMt with t = n−ni0 +1. Furthermore,
any bi-CMt bipartite graph is obtained by such a replacement of complete bipartite graphs
in a unique bi-CMt bipartite graph.

The next one is also a characterization for bi-CMt chordal graphs.

Proposition 3.8 ([9, Theorem 4.8]) Let G be a chordal graph and let t be a nonnegative
integer. Then, the following conditions hold true.

(a) If |V (G)| ≤ t + 3, then G is bi-CMt if and only if it is unmixed.
(b) If |V (G)| ≥ t + 4, then G is bi-CMt if and only if one of the following equivalent
conditions hold: (1) G is bi-Cohen–Macaulay. (2) If {F1, . . . , Fm} is the set of all facets of
the clique complex of G which contain at least a free vertex, then either m = 1 or m > 1
with V (G) = V (F1) ∪ · · · ∪ V (Fm), which is a disjoint union and each Fi has exactly one
free vertex ji and the restriction of G to [n] \ {j1, . . . , jm} is a clique.

The following result reflects the relation between the minimum length of chordless cycles
of graphs and the CMt property.

Proposition 3.9 ([37, Corollary 3.14]) Let G be a simple graph on [n] = {1, . . . , n}
with no isolated vertices. Let Δ = Δ(G) be the clique complex of G. Let r ≥ 3 be an
integer. Then, Δ∨ is CMn−r if and only if every cycle of G of length at most r has a
chord.
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Fröberg [8] has proved that IΔ = I (G) admits a linear resolution if and only if G is
chordal. Using this result together with the above proposition and [37, Theorem 3.11], one
may conclude the following proposition.

Proposition 3.10 ([37]) Under the assumptions of the previous proposition, assume that G
is r-chordal, that is, it has no chordless cycles of length greater than r . Then, Δ∨ is CMn−r

if and only if IΔ = I (G) has a linear resolution.

It is easy to see that if G is either a bipartite graph or a chordal graph, then G can only
have chordless four-cycles (see, for example, [9, Lemmas 4.2 and 4.7]). Combining this fact
with the previous proposition, one can obtain the following result.

Proposition 3.11 ([37]) Let G be a graph on n vertices which is either bipartite or
chordal. If the Alexander dual of Δ(G) = ΔG is CMn−4, then I (G) has a linear
resolution.

We close this section by mentioning that a variety of interesting questions and topics may
arise from CMt property of simplicial complexes and graphs which are already considered
for Cohen–Macaulay and Buchsbaum ones. As a further example, Pournaki, Seyed Fakhari,
and Yassemi [23] have studied the h-vector of CMt simplicial complexes extending a result
of Terai [35].

4 General Monomial Ideals and the CMt Property

Let us start this section by introducing the CMt property for an unmixed monomial ideal
I of a polynomial ring R. Note that if R/I is d-dimensional, then always there exists a
(d − 1)-dimensional simplicial complex Δ such that

√
I = IΔ. Based on this observation,

we give the following definition.

Definition 4.1 ([24, Definition 3.1]) Let R = K[x1, . . . , xn] be the polynomial ring over
a field K. Let I be an unmixed monomial ideal of R such that R/I is d-dimensional and
set Δ as a (d − 1)-dimensional simplicial complex such that

√
I = IΔ. If 0 ≤ t ≤ d − 1

is an integer, then R/I is called a CMt ring provided the localized ring (R/I)xF
is Cohen–

Macaulay for every face F ∈ Δ with |F | ≥ t . Moreover, the monomial ideal I is called
CMt if the ring R/I is CMt .

Let I be a squarefree unmixed monomial ideal of the polynomial ring R such that R/I is
d-dimensional and set Δ as a (d − 1)-dimensional simplicial complex such that

√
I = IΔ.

In this case, R/I is CMt in the sense of this section means that Δ is CMt . Also, for the
ring R/I , where I is not necessarily squarefree, the CM0 property is the same as Cohen–
Macaulayness of R/I , whereas the CM1 property is identical with the generalized Cohen–
Macaulay property. Note that the generalized Cohen–Macaulay property is weaker than the
Buchsbaum property for a general monomial ideal, while these two notions are equivalent
for a squarefree monomial ideal.

The following proposition shows that the radical preserves the CMt property.
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Proposition 4.2 ([24, Proposition 3.2]) Let R = K[x1, . . . , xn] be the polynomial ring over
a field K. Let I be an unmixed monomial ideal of R such that R/I is d-dimensional and
0 ≤ t ≤ d − 1 be an integer. If R/I is CMt , then R/

√
I is also CMt .

We now pose the following question.

Question 4.3 Let R = K[x1, . . . , xn] be the polynomial ring over a field K. Let Δ be a
(d −1)-dimensional simplicial complex. Let 0 ≤ t ≤ t ′ ≤ d −1 be integers. Suppose that Δ
is CMt but not CMt−1. Does there exist an unmixed monomial ideal I of R with

√
I = IΔ

such that I is CMt ′ but not CMt ′−1?

In the following definition, we introduce the notion of Cohen–Macaulayness in a fixed
codimension for finitely generated modules over Noetherian rings. We recall that for a
Noetherian ring R and an R-module M , suppR(M) denotes the support of M over R.

Definition 4.4 [21, Definition 6.8] Let R be a Noetherian ring and M be a d-dimensional
finitely generated R-module. If t is an integer and t ≤ d, then M is called Cohen–Macaulay
in codimension t provided for every p ∈ suppR(M) such that dimR/p = d−t , the localized
module Mp is Cohen–Macaulay of dimension t .

The following proposition provides a necessary and sufficient condition for the CMt

property based on the Krull dimension of Ext-modules (cf. [21, Corollary 7.3]). We recall
that for a Noetherian ring R and an R-module M , dimR M denotes the Krull dimension of
M over R.

Proposition 4.5 ([24, Proposition 3.4]) Let R = K[x1, . . . , xn] be the polynomial ring over
a field K. Let I be an unmixed monomial ideal of R and 0 ≤ t ≤ d − 1 be an integer. Then,
R/I is CMt if and only if dimR ExtiR(R/I, R) < t for every i > n − d.

The following proposition indicates when tensor products are Cohen–Macaulay in a
fixed codimension.

Proposition 4.6 ([24, Proposition 3.5]) Let R = K[x1, . . . , xn] and R′ = K[y1, . . . , yn′ ]
be the polynomial rings over a field K. Let M (resp. M ′) be a d-dimensional (resp. d ′-
dimensional) finitely generated R-module (resp. R′-module). Then, M ⊗K M ′ is Cohen–
Macaulay in codimension d + d ′ − t as an (R ⊗K R′)-module if and only if M and M ′ are
both Cohen–Macaulay in codimension d + d ′ − t .

The following statement is a corollary to the above proposition and generalizes [11,
Proposition 2.10].

Proposition 4.7 ([24, Corollary 3.6]) Let R = K[x1, . . . , xn] and R′ = K[y1, . . . , yn′ ] be
the polynomial rings over a field K. Let I (resp. I ′) be a monomial ideal of R (resp. R′)
with dimR/I = d (resp. dimR′/I ′ = d ′). Then, (R/I) ⊗K (R′/I ′) is CMt if and only if
R/I is CMt−d ′ and R′/I ′ is CMt−d .

In the following two definitions, ei denotes the ith basis vector of Z
n and 1 =

(1, . . . , 1) ∈ Z
n. We also denote by ai the ith coordinate of a vector a ∈ Z

n.
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Definition 4.8 ([20, Definition 2.1]) Let R = K[x1, . . . , xn] be the polynomial ring over a
field K, M be a finitely generated N

n-graded R-module and let a ∈ N
n. Then, M is called

positively a-determined if the multiplication map ·xi : Mb −→ Mb+ei is bijective for every
b ∈ N

n and for every i ∈ [n] with bi ≥ ai .

Definition 4.9 ([39, Definition 2.1]) Let R = K[x1, . . . , xn] be the polynomial ring over a
field K and M be a finitely generated N

n-graded R-module. Then, M is called squarefree
if it is positively 1-determined.

It is worthwhile to mention that in the case of monomial ideals, the above definition
agrees with the usual one given in the second section.

For a = (a1, . . . , an) ∈ N
n, set |a| = ∑n

i=1 ai and suppose that

R̃ = K[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ ai]
is the polynomial ring over a field K with |a| variables. Let I be a monomial ideal of
R = K[x1, . . . , xn] with the set of minimal monomial generators {u1, . . . , um}, where for
every 1 ≤ i ≤ m,

ui =
n∏

j=1

x
aij

j .

Then, for every 1 ≤ j ≤ n, we define a(I )j = max{aij | 1 ≤ i ≤ m}, we set a(I ) =
(a(I )1, . . . , a(I )n), and we denote the polarization of I by

I pol ⊂ Rpol := K[xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ a(I )i].
Yanagawa [41] has constructed the polarization functor pola from the category of positively
a-determined modules to the category of squarefree modules. It is well-known that (see
[41, Section 4]) if I is a monomial ideal of R, then

pola(I )(R/I) ∼= Rpol/I pol.

Proposition 4.10 ([24, Theorem 3.9]) Let R = K[x1, . . . , xn] be the polynomial ring over
a field K, a ∈ N

n and let M be a positively a-determined R-module with dimR M = d.
Then, M is Cohen–Macaulay in codimension d − t if and only if polaM is Cohen–Macaulay
in codimension d − t .

The following statement is a corollary to the above proposition.

Proposition 4.11 ([24, Corollary 3.10]) Let R = K[x1, . . . , xn] be the polynomial ring
over a fieldK and let I be a monomial ideal of R. Then, R/I is CMt if and only if Rpol/I pol

is CMt+|a(I )|−n.

Let us give an example illustrating the abovementioned points. Suppose that R =
K[x1, x2, x3, x4] is the polynomial ring over a field K and

I =
(
x2
1x2, x2x3, x1x4

)

is an ideal of R. It is easy to see that I is not unmixed, dimR/I = 2 and depth R/I = 1.
We have dimR Ext3R(R/I, R) = 1, and R/I is Cohen–Macaulay in codimension one. In
fact, the localized ring (R/I)x2 is not Cohen–Macaulay, whereas for every F ⊂ [4] with
|F | ≥ 2, (R/I)xF

is Cohen–Macaulay. However, dimRpol Ext3
Rpol(R

pol/I pol, R̃) = 2 and
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(Rpol/I pol)xF
is Cohen–Macaulay for every F with |F | ≥ 2, while both I and I pol are not

unmixed.
The following theorem generalizes [36, Theorem 4.3]. We recall that for a monomial

ideal I of a polynomial ring R and for a positive integer r , the ring R/I satisfies the Serre’s
condition (Sr ) if depth(R/I)p ≥ min{dim(R/I)p, r} holds true for every p ∈ Spec(R/I).

Proposition 4.12 ([24, Theorem 3.11]) Let R = K[x1, . . . , xn] be the polynomial ring
over a field K. Let Δ be a (d − 1)-dimensional simplicial complex with d ≥ 2. If R/IΔ

satisfies the Serre’s condition (S2), then the following conditions are equivalent.

(a) R/I�
Δ is Cohen–Macaulay for every � ≥ 1.

(b) R/I�
Δ is CMt for every � ≥ 1 and for every 0 ≤ t ≤ d − 2.

(c) R/I�
Δ is CMt for some � ≥ 3 and for some 0 ≤ t ≤ d − 2.

(d) K[Δ] is a complete intersection.

We now state a similar result to the above proposition which corresponds to the symbolic
powers and generalizes [36, Theorem 3.6]. Let us first recall the notion of a matroid. Let
Δ be a (d − 1)-dimensional simplicial complex on [n]. Then, Δ is called a matroid if the
induced simplicial complex ΔW = {F ∈ Δ | F ⊆ W } is pure for every W ⊆ [n].

Proposition 4.13 ([24, Theorem 3.13]) Let R = K[x1, . . . , xn] be the polynomial ring
over a field K. Let Δ be a (d − 1)-dimensional simplicial complex with d ≥ 2. If R/IΔ

satisfies the Serre’s condition (S2), then the following conditions are equivalent.

(a) R/I
(�)
Δ is Cohen–Macaulay for every � ≥ 1.

(b) R/I
(�)
Δ is CMt for every � ≥ 1 and for every 0 ≤ t ≤ d − 2.

(c) R/I
(�)
Δ is CMt for some � ≥ 3 and for some 0 ≤ t ≤ d − 2.

(d) Δ is a matroid.

We finally close this paper with the following two questions and by inviting interested
people to work on this topic.

Question 4.14 [24, Question 3.14] Let R = K[x1, . . . , xn] be the polynomial ring over
a field K. Let Δ be a (d − 1)-dimensional simplicial complex with d ≥ 2 and let
1 ≤ t ≤ d − 2 be an integer.

(a) Characterize the CMt property for R/I 2Δ and R/I
(2)
Δ .

(b) If R/IΔ satisfies the Serre’s condition (S2), then is it true that the Cohen–Macaulay and
CMt properties for R/I 2Δ and R/I

(2)
Δ are equivalent?
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