

Regularity and h-polynomials of Binomial Edge Ideals

Takayuki Hibi¹ · Kazunori Matsuda²

Received: 26 August 2020 / Revised: 17 January 2021 / Accepted: 19 January 2021 / Published online: 2 March 2021 © Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2021

Abstract

Let *G* be a finite simple graph on the vertex set $[n] = \{1, ..., n\}$ and $K[\mathbf{x}, \mathbf{y}] = K[x_1, ..., x_n, y_1, ..., y_n]$ the polynomial ring in 2*n* variables over a field *K* with each deg $x_i = \deg y_j = 1$. The binomial edge ideal of *G* is the binomial ideal $J_G \subset K[\mathbf{x}, \mathbf{y}]$ which is generated by those binomials $x_i y_j - x_j y_i$ for which $\{i, j\}$ is an edge of *G*. The Hilbert series $H_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda)$ of $K[\mathbf{x},\mathbf{y}]/J_G$ is of the form $H_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda)/(1-\lambda)^d$, where $d = \dim K[\mathbf{x},\mathbf{y}]/J_G$ and where $h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = h_0 + h_1\lambda + h_2\lambda^2 + \cdots + h_s\lambda^s$ with each $h_i \in \mathbb{Z}$ and with $h_s \neq 0$ is the *h*-polynomial of $K[\mathbf{x},\mathbf{y}]/J_G$. It is known that, when $K[\mathbf{x},\mathbf{y}]/J_G$ is Cohen–Macaulay, one has $\operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G) = \deg h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda)$, where $\operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G)$ is the (Castelnuovo–Mumford) regularity of $K[\mathbf{x},\mathbf{y}]/J_G$. In the present paper, given arbitrary integers *r* and *s* with $2 \leq r \leq s$, a finite simple graph *G* for which $\operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G) = r$ and $\deg h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = s$ will be constructed.

Keywords Binomial edge ideal · Castelnuovo–Mumford regularity · h-polynomial

Mathematics Subject Classification (2010) $05E40 \cdot 13H10$

1 Introduction

The binomial edge ideal of a finite simple graph was introduced in [2] and in [10] independently. (Recall that a finite graph *G* is *simple* if *G* possesses no loop and no multiple edge.) Let *G* be a finite simple graph on the vertex set $[n] = \{1, 2, ..., n\}$ and $K[\mathbf{x}, \mathbf{y}] = K[x_1, ..., x_n, y_1, ..., y_n]$ the polynomial ring in 2*n* variables over a field *K* with each deg $x_i = \deg y_j = 1$. The *binomial edge ideal* J_G of *G* is the binomial ideal of $K[\mathbf{x}, \mathbf{y}]$ which is generated by those binomials $x_i y_j - x_j y_i$ for which $\{i, j\}$ is an edge of *G*.

Takayuki Hibi hibi@math.sci.osaka-u.ac.jp

Kazunori Matsuda kaz-matsuda@mail.kitami-it.ac.jp

¹ Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Suita, Osaka 565-0871, Japan

² Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan

Let, in general, $S = K[x_1, ..., x_n]$ denote the polynomial ring in *n* variables over a field *K* with each deg $x_i = 1$ and $I \subset S$ a homogeneous ideal of *S* with dim S/I = d. The Hilbert series $H_{S/I}(\lambda)$ of S/I is of the form $H_{S/I}(\lambda) = (h_0 + h_1\lambda + h_2\lambda^2 + \cdots + h_s\lambda^s)/(1-\lambda)^d$, where each $h_i \in \mathbb{Z}$ [1, Proposition 4.4.1]. We say that $h_{S/I}(\lambda) = h_0 + h_1\lambda + h_2\lambda^2 + \cdots + h_s\lambda^s$ with $h_s \neq 0$ is the *h*-polynomial of S/I. Let reg(S/I) denote the (*Castelnuovo–Mumford*) regularity [1, p. 168] of S/I. It is known (e.g., [14, Corollary B.4.1]) that, when S/I is Cohen–Macaulay, one has reg $(S/I) = \deg h_{S/I}(\lambda)$. Furthermore, in [3] and [4], for given integers *r* and *s* with $r, s \geq 1$, a monomial ideal *I* of $S = K[x_1, \ldots, x_n]$ with $n \gg 0$ for which reg(S/I) = r and deg $h_{S/I}(\lambda) = s$ was constructed.

Let, as before, *G* be a finite simple graph on the vertex set [*n*] with $d = \dim K[\mathbf{x}, \mathbf{y}]/J_G$ and $h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda) = h_0 + h_1\lambda + h_2\lambda^2 + \dots + h_s\lambda^s$ the *h*-polynomial of $K[\mathbf{x}, \mathbf{y}]/J_G$.

Now, in the present paper, given arbitrary integers *r* and *s* with $2 \le r \le s$, a finite simple graph *G* on [*n*] with $n \gg 0$ for which $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) = r$ and $\deg h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda) = s$ will be constructed.

Theorem 1.1 Given arbitrary integers r and s with $2 \le r \le s$, there exists a finite simple graph G on [n] with $n \gg 0$ for which $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) = r$ and $\deg h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda) = s$.

2 Proof of Theorem 1.1

Our discussion starts in the computation of the regularity and the h-polynomial of the binomial edge ideal of a path graph.

Example 2.1 Let P_n be the path on the vertex set [n] with $\{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}$ its edges. Since $K[\mathbf{x}, \mathbf{y}]/J_{P_n}$ is a complete intersection, it follows that the Hilbert series of $K[\mathbf{x}, \mathbf{y}]/J_{P_n}$ is $H_{K[\mathbf{x}, \mathbf{y}]/J_{P_n}}(\lambda) = (1 + \lambda)^{n-1}/(1 - \lambda)^{n+1}$ and that $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_{P_n}) = \operatorname{deg} h_{K[\mathbf{x}, \mathbf{y}]/J_{P_n}}(\lambda) = n - 1$.

Let *G* be a finite simple graph on the vertex set [n] and E(G) its edge set. The *suspension* of *G* is the finite simple graph \widehat{G} on the vertex set [n + 1] whose edge set is $E(\widehat{G}) = E(G) \cup \{\{i, n + 1\} : i \in [n]\}$. Given a positive integer $m \ge 2$, the *m*-th suspension of *G* is the finite simple graph \widehat{G}^m on [n + m] which is defined inductively by $\widehat{G}^m = \widehat{\widehat{G}^{m-1}}$, where $\widehat{G}^1 = \widehat{G}$.

Lemma 2.2 Let *G* be a finite connected simple graph on [n] which is not complete. Suppose that dim $K[\mathbf{x}, \mathbf{y}]/J_G = n + 1$ and deg $h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda) \ge 2$. Then

$$\operatorname{reg}\left(K[\mathbf{x}, \mathbf{y}, x_{n+1}, y_{n+1}]/J_{\widehat{G}}\right) = \operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G),$$
$$\operatorname{deg}h_{K[\mathbf{x}, \mathbf{y}, x_{n+1}, y_{n+1}]/J_{\widehat{G}}}(\lambda) = \operatorname{deg}h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda) + 1.$$

In particular, if reg $(K[\mathbf{x}, \mathbf{y}]/J_G) \leq \deg h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda)$, then

 $\operatorname{reg}\left(K[\mathbf{x},\mathbf{y},x_{n+1},y_{n+1}]/J_{\widehat{G}}\right) < \operatorname{deg} h_{K[\mathbf{x},\mathbf{y}]/J_{\widehat{G}}}(\lambda).$

Proof The suspension \widehat{G} is the join product [12, p. 3] of G and $\{n + 1\}$, and \widehat{G} is not complete. Hence, by virtue of [11, Theorem 2.1] and [12, Theorem 2.1 (a)], one has

 $\operatorname{reg}\left(K[\mathbf{x},\mathbf{y},x_{n+1},y_{n+1}]/J_{\widehat{G}}\right) = \max\{\operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G),2\} = \operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G).$

Furthermore, [8, Theorem 4.6] says that

$$H_{K[\mathbf{x},\mathbf{y},x_{n+1},y_{n+1}]/J_{\widehat{G}}}(\lambda) = H_{K[\mathbf{x},\mathbf{y}]/J_{G}}(\lambda) + \frac{2\lambda + (n-1)\lambda^{2}}{(1-\lambda)^{n+2}}$$
$$= \frac{h_{K[\mathbf{x},\mathbf{y}]/J_{G}}(\lambda)}{(1-\lambda)^{n+1}} + \frac{2\lambda + (n-1)\lambda^{2}}{(1-\lambda)^{n+2}}$$
$$= \frac{h_{K[\mathbf{x},\mathbf{y}]/J_{G}}(\lambda) \cdot (1-\lambda) + 2\lambda + (n-1)\lambda^{2}}{(1-\lambda)^{n+2}}.$$

Thus, deg $h_{K[\mathbf{x},\mathbf{y},x_{n+1},y_{n+1}]/J_{\widehat{G}}}(\lambda) = \deg h_{K[\mathbf{x},\mathbf{y}]/J_{\widehat{G}}}(\lambda) + 1$, as desired.

We are now in the position to give a proof of Theorem 1.1.

Proof of Theorem 1.1 Each of the following three cases is discussed.

Case 1 Let $2 \le r = s$. Let $G = P_{r+1}$. As was shown in Example 2.1, one has

$$\operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G) = \operatorname{deg} h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = r$$

Case 2 Let r = 2 and $3 \le s$. Let $G = K_{s-1,s-1}$ denote the complete bipartite graph on the vertex set [2s - 2]. By using [13, Theorem 1.1 (c) together with Theorem 5.4 (a)], one has $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) = 2$ and

$$H_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = \frac{1 + (2s - 3)\lambda}{(1 - \lambda)^{2s - 1}} + \frac{2}{(1 - \lambda)^{2s - 2}} - \frac{2\{1 + (s - 2)\lambda\}}{(1 - \lambda)^s}$$
$$= \frac{1 + (2s - 3)\lambda + 2(1 - \lambda) - 2\{1 + (s - 2)\lambda\}(1 - \lambda)^{s - 1}}{(1 - \lambda)^{2s - 1}}$$

Hence, deg $h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = s$, as required.

Case 3 Let $3 \le r < s$. Let $G = \widehat{P_{r+1}}^{s-r}$ be the (s-r)-th suspension of the path P_{r+1} . Applying Lemma 2.2 repeatedly shows $\operatorname{reg}(S/J_G) = r$ and

$$H_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda)$$

$$= \frac{(1+\lambda)^{r}(1-\lambda)^{s-r}+2\lambda\left\{\sum_{i=0}^{s-r-1}(1-\lambda)^{i}\right\}+\lambda^{2}\sum_{i=0}^{s-r-1}(s-1-i)(1-\lambda)^{i}}{(1-\lambda)^{s+2}}$$

$$= \frac{(1+\lambda)^{r}(1-\lambda)^{s-r}+2\lambda\cdot\frac{1-(1-\lambda)^{s-r}}{\lambda}+\lambda^{2}\cdot\frac{-1+(1-\lambda)^{s-r}+\lambda\{s-r(1-\lambda)^{s-r}\}}{\lambda^{2}}}{(1-\lambda)^{s+2}}$$

$$= \frac{(1+\lambda)^{r}(1-\lambda)^{s-r}+2\left\{1-(1-\lambda)^{s-r}\right\}-1+(1-\lambda)^{s-r}+\lambda\{s-r(1-\lambda)^{s-r}\}}{(1-\lambda)^{s+2}}$$

$$= \frac{(1+\lambda)^{r}(1-\lambda)^{s-r}+1-(1-\lambda)^{s-r}+\lambda\{s-r(1-\lambda)^{s-r}\}}{(1-\lambda)^{s+2}}$$

$$= \frac{1+s\lambda+(1-\lambda)^{s-r}\{(1+\lambda)^{r}-1-r\lambda\}}{(1-\lambda)^{s+2}}.$$

Hence, deg $h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = s$, as desired.

3 Examples

Proposition 3.1 *The cycle* C_n *of length* $n \ge 3$ *satisfies*

$$\operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_{C_n}) \leq \operatorname{deg} h_{K[\mathbf{x},\mathbf{y}]/J_{C_n}}(\lambda).$$

Proof Since the length of the longest induced path of C_n is n - 2, it follows from [9, Theorem 1.1] and [7, Theorem 3.2] that $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_{C_n}) = n - 2$. Furthermore, [15, Theorem 10 (b)] says that

$$\deg h_{K[\mathbf{x},\mathbf{y}]/J_{C_n}} = \begin{cases} 1 & (n=3), \\ n-1 & (n>3). \end{cases}$$

Hence, the desired inequality follows.

Let $k \ge 1$ be an integer and p_1, p_2, \ldots, p_k a sequence of positive integers with $p_1 \ge p_2 \ge \cdots \ge p_k \ge 1$ and $p_1 + p_2 + \cdots + p_k = n$. Let V_1, V_2, \ldots, V_k denote a partition of [n] with each $|V_i| = p_i$. In other words, $[n] = V_1 \sqcup V_2 \sqcup \cdots \sqcup V_k$ and $V_i \cap V_j = \emptyset$ if $i \ne j$. Suppose that

$$V_i = \left\{ \sum_{j=1}^{i-1} p_j + 1, \sum_{j=1}^{i-1} p_j + 2, \dots, \sum_{j=1}^{i-1} p_j + p_i - 1, \sum_{j=1}^{i} p_j \right\}$$

for each $1 \le i \le k$. The *complete multipartite graph* $K_{p_1,...,p_k}$ is the finite simple graph on the vertex set [n] with the edge set

$$E(K_{p_1,\ldots,p_k}) = \{\{k,\ell\} : k \in V_i, \ \ell \in V_j, \ 1 \le i < j \le k\}.$$

Proposition 3.2 The complete multipartite graph $G = K_{p_1,...,p_k}$ satisfies

 $\operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G) \leq \operatorname{deg} h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda).$

Proof We claim $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) \leq \operatorname{deg} h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda)$ by induction on k. If k = 1, then $G = K_{p_1}$ is the complete graph and $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) = \operatorname{deg} h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda) = 1$.

Let k > 1. If $p_k = 1$, then $G = \widehat{G}'$, where $G' = K_{p_1,\dots,p_{k-1}}$. Lemma 2.2 as well as the induction hypothesis then guarantees that $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) \le \operatorname{deg} h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda)$. Hence, one can assume that $p_k > 1$. In particular, G is not complete. It then follows from [12, Theorem 2.1 (a)] that $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) = 2$. Furthermore, [8, Corollary 4.14] says that

$$\deg h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = \begin{cases} n - p_k + 1 & (2p_1 < n + 1), \\ 2p_1 - p_k & (2p_1 \ge n + 1). \end{cases}$$

Since k > 1 and $p_k > 1$, one has deg $h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) \ge n - p_k + 1 \ge p_1 + 1 \ge 3$. Thus, the desired inequality follows.

Let $t \ge 3$ be an integer and $K_{1,t}$ the complete bipartite graph on $\{1, v_1, \ldots, v_t\}$ with the edge set $E(K_{1,t}) = \{\{1, v_i\} : 1 \le i \le t\}$. Let p_1, p_2, \ldots, p_t be a sequence of positive integers and $P^{(i)}$ the path of length p_i on the vertex set $\{w_{i,1}, w_{i,2}, \ldots, w_{i,p_i+1}\}$ for each

 $1 \le i \le t$. Then the *t*-starlike graph T_{p_1, p_2, \dots, p_t} is defined as the finite simple graph obtained by identifying v_i with $w_{i,1}$ for each $1 \le i \le t$. Thus, the vertex set of T_{p_1, p_2, \dots, p_t} is

$$\{1\} \cup \bigcup_{i=1}^{t} \{w_{i,1}, w_{i,2}, \dots, w_{i,p_i+1}\}$$

and its edge set is

$$E(T_{p_1,p_2,\ldots,p_l}) = \bigcup_{i=1}^l \left\{ \{w_{i,j}, w_{i,j+1}\} \mid 0 \le j \le p_i \right\},\$$

where $w_{i,0} = 1$ for each $1 \le i \le t$.

Proposition 3.3 The *t*-starlike graph $G = T_{p_1, p_2, ..., p_t}$ satisfies

$$\operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G) < \operatorname{deg} h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda).$$

Proof It follows from [5, Corollary 3.4 (2)] that $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) = 2 + \sum_{i=1}^{t} p_i$. Furthermore, [13, Theorem 5.4 (a)] guarantees that

$$H_{K[\mathbf{x},\mathbf{y}]/J_{K_{1,t}}}(\lambda) = \frac{1}{(1-\lambda)^{2t}} - \frac{1+(t-1)\lambda}{(1-\lambda)^{t+1}} + \frac{1+t\lambda}{(1-\lambda)^{t+2}}$$
$$= \frac{1-\{1+(t-1)\lambda\}(1-\lambda)^{t-1}+(1+t\lambda)(1-\lambda)^{t-2}}{(1-\lambda)^{2t}}$$
$$= \frac{1+(1-\lambda)^{t-2}\left\{2\lambda+(t-1)\lambda^{2}\right\}}{(1-\lambda)^{2t}}.$$

Hence, by virtue of [8, Corollary 3.3], one has

$$h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = \left[1 + (1-\lambda)^{t-2} \left\{2\lambda + (t-1)\lambda^2\right\}\right] \cdot (1-\lambda)^{\sum_{i=1}^t p_i}.$$

Thus

$$\deg h_{K[\mathbf{x},\mathbf{y}]/J_G}(\lambda) = t + \sum_{i=1}^t p_i > 2 + \sum_{i=1}^t p_i = \operatorname{reg}(K[\mathbf{x},\mathbf{y}]/J_G),$$

as required.

Example 3.4 Let $m \ge 0$ be an integer and G_m the finite simple graph on the vertex set [m + 9] drawn below

Then $K[\mathbf{x}, \mathbf{y}]/J_{G_m}$ is not unmixed. In fact, for each subset $S \subset [m + 9]$, we define

$$P_S = \left(\bigcup_{i \in S} \{x_i, y_i\}, J_{\tilde{G}_1}, \dots, J_{\tilde{G}_{c(S)}} \right),$$

where $G_1, \ldots, G_{c(S)}$ are connected components of $G_{[m+9]\setminus S}$ and where $\tilde{G}_1, \ldots, \tilde{G}_{c(S)}$ is the complete graph on the vertex set $V(G_1), \ldots, V(G_{c(S)})$, respectively. It then follows from [2, Lemma 3.1 and Corollary 3.9] that P_{\emptyset} and $P_{\{3,8\}}$ are minimal primes of J_{G_m} and that height $P_{\emptyset} = m + 8 <$ height $P_{\{3,8\}} = m + 9$. Thus, $K[\mathbf{x}, \mathbf{y}]/J_{G_m}$ is not unmixed. In particular, $K[\mathbf{x}, \mathbf{y}]/J_{G_m}$ is not Cohen-Macaulay. However, one has $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_{G_m}) =$ $\deg h_{K[\mathbf{x}, \mathbf{y}]/J_{G_m}}(\lambda) = m + 6$.

A lot of computational experience encourages the authors to propose the conjecture that, for an arbitrary finite simple graph *G*, one has $\operatorname{reg}(K[\mathbf{x}, \mathbf{y}]/J_G) \leq \operatorname{deg} h_{K[\mathbf{x}, \mathbf{y}]/J_G}(\lambda)$. However, the conjecture turns out to be false. A counterexample is constructed in [6].

Funding The first author is partially supported by JSPS KAKENHI 19H00637. The second author is partially supported by JSPS KAKENHI 20K03550.

References

- Bruns, W., Herzog, J.: Cohen-Macaulay Rings, Revised ED.. Cambridge Stud. Adv Math., vol. 39. Cambridge University Press, Cambridge (1998)
- Herzog, J., Hibi, T., Hreindóttir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math. 45, 317–333 (2010)
- Hibi, T., Matsuda, K.: Regularity and *h*-polynomials of monomial ideals. Math. Nachr. 291, 2427–2434 (2018)
- Hibi, T., Matsuda, K.: Lexsegment ideals and their *h*-polynomials. Acta Math. Vietnam. 44, 83–86 (2019)
- Jayanthan, A.V., Narayanan, N., Raghavendra Rao, B.V.: Regularity of binomial edge ideals of certain block graphs. Proc. Indian Acad. Sci. Math. Sci. 36, 10 (2019)
- 6. Kahle, T., Krüsemann, J.: Binomial edge ideals of cographs. ArXiv:1906.05510
- Kiani, D., Saeedi Madani, S.: The Castelnuovo–Mumford regularity of binomial edge ideals. J. Combin. Theory Ser. A 139, 80–86 (2016)
- 8. Kumar, A., Sarkar, R.: Hilbert series of binomial edge ideals. Comm. Algebra 47, 3830-3841 (2019)
- Matsuda, K., Murai, S.: Regularity bounds for binomial edge ideals. J. Commut. Algebra 5, 141–149 (2013)
- 10. Ohtani, M.: Graphs and ideals generated by some 2-minors. Comm. Algebra 39, 905–917 (2011)
- Saeedi Madani, S., Kiani, D.: Binomial edge ideals of graphs. Electron. J. Combin. 19, 6 (2012). Paper 44
- 12. Saeedi Madani, S., Kiani, D.: Binomial edge ideals of regularity 3. J. Algebra 515, 157–172 (2018)
- Schenzel, P., Zafar, S.: Algebraic properties of the binomial edge ideal of a complete bipartite graph. An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 22, 217–237 (2014)
- Vasconcelos, W.V.: Computational Methods in Commutative Algebra and Algebraic Geometry. Springer (1998)
- Zafar, S., Zahid, Z.: On the Betti numbers of some classes of binomial edge ideals. Electron. J. Combin. 20, 14 (2013). Paper 37

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.