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Abstract
Let G be a finite simple graph on the vertex set [n] = {1, . . . , n} and K[x, y] = K[x1, . . . ,
xn, y1, . . . , yn] the polynomial ring in 2n variables over a field K with each deg xi =
deg yj = 1. The binomial edge ideal of G is the binomial ideal JG ⊂ K[x, y] which is
generated by those binomials xiyj − xjyi for which {i, j} is an edge of G. The Hilbert
series HK[x,y]/JG

(λ) of K[x, y]/JG is of the form HK[x,y]/JG
(λ) = hK[x,y]/JG

(λ)/(1− λ)d ,
where d = dimK[x, y]/JG and where hK[x,y]/JG

(λ) = h0 + h1λ + h2λ
2 + · · · + hsλ

s with
each hi ∈ Z and with hs �= 0 is the h-polynomial of K[x, y]/JG. It is known that, when
K[x, y]/JG is Cohen–Macaulay, one has reg(K[x, y]/JG) = deghK[x,y]/JG

(λ), where
reg(K[x, y]/JG) is the (Castelnuovo–Mumford) regularity of K[x, y]/JG. In the present
paper, given arbitrary integers r and s with 2 ≤ r ≤ s, a finite simple graph G for which
reg(K[x, y]/JG) = r and deghK[x,y]/JG

(λ) = s will be constructed.

Keywords Binomial edge ideal · Castelnuovo–Mumford regularity · h-polynomial

Mathematics Subject Classification (2010) 05E40 · 13H10

1 Introduction

The binomial edge ideal of a finite simple graph was introduced in [2] and in [10] inde-
pendently. (Recall that a finite graph G is simple if G possesses no loop and no multiple
edge.) Let G be a finite simple graph on the vertex set [n] = {1, 2, . . . , n} and K[x, y] =
K[x1, . . . , xn, y1, . . . , yn] the polynomial ring in 2n variables over a field K with each
deg xi = deg yj = 1. The binomial edge ideal JG of G is the binomial ideal of K[x, y]
which is generated by those binomials xiyj − xjyi for which {i, j} is an edge of G.

� Kazunori Matsuda
kaz-matsuda@mail.kitami-it.ac.jp

Takayuki Hibi
hibi@math.sci.osaka-u.ac.jp

1 Department of Pure and Applied Mathematics, Graduate School of Information Science and
Technology, Osaka University, Suita, Osaka 565-0871, Japan

2 Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan

Acta Mathematica Vietnamica (2022) 47:369–374

Published online: 2 March 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s40306-021-00416-3&domain=pdf
mailto: kaz-matsuda@mail.kitami-it.ac.jp
mailto: hibi@math.sci.osaka-u.ac.jp


Let, in general, S = K[x1, . . . , xn] denote the polynomial ring in n variables over a field
K with each deg xi = 1 and I ⊂ S a homogeneous ideal of S with dim S/I = d. The Hilbert
series HS/I (λ) of S/I is of the form HS/I (λ) = (h0 + h1λ + h2λ

2 + · · · + hsλ
s)/(1− λ)d ,

where each hi ∈ Z [1, Proposition 4.4.1]. We say that hS/I (λ) = h0+h1λ+h2λ
2+· · ·+hsλ

s

with hs �= 0 is the h-polynomial of S/I . Let reg(S/I) denote the (Castelnuovo–Mumford )
regularity [1, p. 168] of S/I . It is known (e.g., [14, Corollary B.4.1]) that, when S/I is
Cohen–Macaulay, one has reg(S/I) = deghS/I (λ). Furthermore, in [3] and [4], for given
integers r and s with r, s ≥ 1, a monomial ideal I of S = K[x1, . . . , xn] with n � 0 for
which reg(S/I) = r and deghS/I (λ) = s was constructed.

Let, as before, G be a finite simple graph on the vertex set [n] with d = dimK[x, y]/JG

and hK[x,y]/JG
(λ) = h0 + h1λ + h2λ

2 + · · · + hsλ
s the h-polynomial of K[x, y]/JG.

Now, in the present paper, given arbitrary integers r and s with 2 ≤ r ≤ s, a finite simple
graph G on [n] with n � 0 for which reg(K[x, y]/JG) = r and deghK[x,y]/JG

(λ) = s will
be constructed.

Theorem 1.1 Given arbitrary integers r and s with 2 ≤ r ≤ s, there exists a finite simple
graph G on [n] with n � 0 for which reg(K[x, y]/JG) = r and deghK[x,y]/JG

(λ) = s.

2 Proof of Theorem 1.1

Our discussion starts in the computation of the regularity and the h-polynomial of the
binomial edge ideal of a path graph.

Example 2.1 Let Pn be the path on the vertex set [n] with {1, 2}, {2, 3}, . . . , {n − 1, n}
its edges. Since K[x, y]/JPn is a complete intersection, it follows that the Hilbert series
of K[x, y]/JPn is HK[x,y]/JPn

(λ) = (1 + λ)n−1/(1 − λ)n+1 and that reg(K[x, y]/JPn)

= deghK[x,y]/JPn
(λ) = n − 1.

LetG be a finite simple graph on the vertex set [n] andE(G) its edge set. The suspension
of G is the finite simple graph ̂G on the vertex set [n + 1] whose edge set is E(̂G) =
E(G) ∪ {{i, n + 1} : i ∈ [n]}. Given a positive integer m ≥ 2, the m-th suspension of G

is the finite simple graph ̂Gm on [n + m] which is defined inductively by ̂Gm = ̂̂Gm−1,
where ̂G 1 = ̂G.

Lemma 2.2 LetG be a finite connected simple graph on [n] which is not complete. Suppose
that dimK[x, y]/JG = n + 1 and deghK[x,y]/JG

(λ) ≥ 2. Then

reg
(

K[x, y, xn+1, yn+1]/ĴG

) = reg(K[x, y]/JG),

deghK[x,y,xn+1,yn+1]/ĴG
(λ) = deghK[x,y]/JG

(λ) + 1.

In particular, if reg(K[x, y]/JG) ≤ deghK[x,y]/JG
(λ), then

reg
(

K[x, y, xn+1, yn+1]/ĴG

)

< deghK[x,y]/J
̂G
(λ).

Proof The suspension ̂G is the join product [12, p. 3] of G and {n + 1}, and ̂G is not
complete. Hence, by virtue of [11, Theorem 2.1] and [12, Theorem 2.1 (a)], one has

reg
(

K[x, y, xn+1, yn+1]/ĴG

) = max{reg(K[x, y]/JG), 2} = reg(K[x, y]/JG).
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Furthermore, [8, Theorem 4.6] says that

HK[x,y,xn+1,yn+1]/ĴG
(λ) = HK[x,y]/JG

(λ) + 2λ + (n − 1)λ2

(1 − λ)n+2

= hK[x,y]/JG
(λ)

(1 − λ)n+1
+ 2λ + (n − 1)λ2

(1 − λ)n+2

= hK[x,y]/JG
(λ) · (1 − λ) + 2λ + (n − 1)λ2

(1 − λ)n+2
.

Thus, deghK[x,y,xn+1,yn+1]/ĴG
(λ) = deghK[x,y]/JG

(λ) + 1, as desired.

We are now in the position to give a proof of Theorem 1.1.

Proof of Theorem 1.1 Each of the following three cases is discussed.

Case 1 Let 2 ≤ r = s. Let G = Pr+1. As was shown in Example 2.1, one has

reg(K[x, y]/JG) = deghK[x,y]/JG
(λ) = r .

Case 2 Let r = 2 and 3 ≤ s. Let G = Ks−1,s−1 denote the complete bipartite graph on the
vertex set [2s − 2]. By using [13, Theorem 1.1 (c) together with Theorem 5.4 (a)], one has
reg(K[x, y]/JG) = 2 and

HK[x,y]/JG
(λ) = 1 + (2s − 3)λ

(1 − λ)2s−1
+ 2

(1 − λ)2s−2
− 2{1 + (s − 2)λ}

(1 − λ)s

= 1 + (2s − 3)λ + 2(1 − λ) − 2{1 + (s − 2)λ}(1 − λ)s−1

(1 − λ)2s−1
.

Hence, deghK[x,y]/JG
(λ) = s, as required.

Case 3 Let 3 ≤ r < s. Let G = P̂r+1
s−r

be the (s − r)-th suspension of the path Pr+1.
Applying Lemma 2.2 repeatedly shows reg(S/JG) = r and

HK[x,y]/JG
(λ)

=
(1 + λ)r (1 − λ)s−r + 2λ

{

∑s−r−1
i=0 (1 − λ)i

}

+ λ2
∑s−r−1

i=0 (s − 1 − i)(1 − λ)i

(1 − λ)s+2

= (1 + λ)r (1 − λ)s−r + 2λ · 1−(1−λ)s−r

λ
+ λ2 · −1+(1−λ)s−r+λ{s−r(1−λ)s−r }

λ2

(1 − λ)s+2

= (1 + λ)r (1 − λ)s−r + 2
{

1 − (1 − λ)s−r
} − 1 + (1 − λ)s−r + λ{s − r(1 − λ)s−r }

(1 − λ)s+2

= (1 + λ)r (1 − λ)s−r + 1 − (1 − λ)s−r + λ{s − r(1 − λ)s−r }
(1 − λ)s+2

= 1 + sλ + (1 − λ)s−r {(1 + λ)r − 1 − rλ}
(1 − λ)s+2

.

Hence, deghK[x,y]/JG
(λ) = s, as desired.

371Regularity and h-polynomials of Binomial Edge Ideals



3 Examples

Proposition 3.1 The cycle Cn of length n ≥ 3 satisfies

reg(K[x, y]/JCn) ≤ deghK[x,y]/JCn
(λ).

Proof Since the length of the longest induced path of Cn is n − 2, it follows from [9,
Theorem 1.1] and [7, Theorem 3.2] that reg(K[x, y]/JCn) = n − 2. Furthermore, [15,
Theorem 10 (b)] says that

deghK[x,y]/JCn
=

{

1 (n = 3),

n − 1 (n > 3).

Hence, the desired inequality follows.

Let k ≥ 1 be an integer and p1, p2, . . . , pk a sequence of positive integers with p1 ≥
p2 ≥ · · · ≥ pk ≥ 1 and p1 + p2 + · · · + pk = n. Let V1, V2, . . . , Vk denote a partition of
[n] with each |Vi | = pi . In other words, [n] = V1 	 V2 	 · · · 	 Vk and Vi ∩ Vj = ∅ if i �= j .
Suppose that

Vi =
⎧

⎨

⎩

i−1
∑

j=1

pj + 1,
i−1
∑

j=1

pj + 2, . . . ,

i−1
∑

j=1

pj + pi − 1,
i

∑

j=1

pj

⎫

⎬

⎭

for each 1 ≤ i ≤ k. The complete multipartite graph Kp1,...,pk
is the finite simple graph on

the vertex set [n] with the edge set

E
(

Kp1,...,pk

) = { {k, �} : k ∈ Vi, � ∈ Vj , 1 ≤ i < j ≤ k }.

Proposition 3.2 The complete multipartite graph G = Kp1,...,pk
satisfies

reg(K[x, y]/JG) ≤ deghK[x,y]/JG
(λ).

Proof We claim reg(K[x, y]/JG) ≤ deghK[x,y]/JG
(λ) by induction on k. If k = 1, then

G = Kp1 is the complete graph and reg(K[x, y]/JG) = deghK[x,y]/JG
(λ) = 1.

Let k > 1. If pk = 1, then G = ̂G′, where G′ = Kp1,...,pk−1 . Lemma 2.2 as well as the
induction hypothesis then guarantees that reg(K[x, y]/JG) ≤ deghK[x,y]/JG

(λ). Hence, one
can assume that pk > 1. In particular, G is not complete. It then follows from [12, Theorem
2.1 (a)] that reg(K[x, y]/JG) = 2. Furthermore, [8, Corollary 4.14] says that

deghK[x,y]/JG
(λ) =

{

n − pk + 1 (2p1 < n + 1),

2p1 − pk (2p1 ≥ n + 1).

Since k > 1 and pk > 1, one has deghK[x,y]/JG
(λ) ≥ n − pk + 1 ≥ p1 + 1 ≥ 3. Thus, the

desired inequality follows.

Let t ≥ 3 be an integer and K1,t the complete bipartite graph on {1, v1, . . . , vt } with the
edge set E(K1,t ) = { {1, vi} : 1 ≤ i ≤ t }. Let p1, p2, . . . , pt be a sequence of positive
integers and P (i) the path of length pi on the vertex set {wi,1, wi,2, . . . , wi,pi+1} for each
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1 ≤ i ≤ t . Then the t-starlike graph Tp1,p2,...,pt is defined as the finite simple graph
obtained by identifying vi with wi,1 for each 1 ≤ i ≤ t . Thus, the vertex set of Tp1,p2,...,pt is

{1} ∪
t

⋃

i=1

{wi,1, wi,2, . . . , wi,pi+1}

and its edge set is

E(Tp1,p2,...,pt ) =
t

⋃

i=1

{{wi,j , wi,j+1} | 0 ≤ j ≤ pi

}

,

where wi,0 = 1 for each 1 ≤ i ≤ t .

Proposition 3.3 The t-starlike graph G = Tp1,p2,...,pt satisfies

reg(K[x, y]/JG) < deghK[x,y]/JG
(λ).

Proof It follows from [5, Corollary 3.4 (2)] that reg(K[x, y]/JG) = 2 + ∑t
i=1 pi .

Furthermore, [13, Theorem 5.4 (a)] guarantees that

HK[x,y]/JK1,t
(λ) = 1

(1 − λ)2t
− 1 + (t − 1)λ

(1 − λ)t+1
+ 1 + tλ

(1 − λ)t+2

= 1 − {1 + (t − 1)λ}(1 − λ)t−1 + (1 + tλ)(1 − λ)t−2

(1 − λ)2t

= 1 + (1 − λ)t−2
{

2λ + (t − 1)λ2
}

(1 − λ)2t
.

Hence, by virtue of [8, Corollary 3.3], one has

hK[x,y]/JG
(λ) =

[

1 + (1 − λ)t−2
{

2λ + (t − 1)λ2
}]

· (1 − λ)
∑t

i=1 pi .

Thus

deghK[x,y]/JG
(λ) = t +

t
∑

i=1

pi > 2 +
t

∑

i=1

pi = reg(K[x, y]/JG),

as required.

Example 3.4 Let m ≥ 0 be an integer and Gm the finite simple graph on the vertex set
[m + 9] drawn below
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Then K[x, y]/JGm is not unmixed. In fact, for each subset S ⊂ [m + 9], we define

PS =
(

⋃

i∈S

{xi, yi}, JG̃1
, . . . , J

G̃c(S)

)

,

where G1, . . . , Gc(S) are connected components of G[m+9]\S and where G̃1, . . . , G̃c(S) is
the complete graph on the vertex set V (G1), . . . , V

(

Gc(S)

)

, respectively. It then follows
from [2, Lemma 3.1 and Corollary 3.9] that P∅ and P{3,8} are minimal primes of JGm and
that heightP∅ = m + 8 < heightP{3,8} = m + 9. Thus, K[x, y]/JGm is not unmixed.
In particular, K[x, y]/JGm is not Cohen-Macaulay. However, one has reg(K[x, y]/JGm) =
deghK[x,y]/JGm

(λ) = m + 6.

A lot of computational experience encourages the authors to propose the conjecture
that, for an arbitrary finite simple graph G, one has reg(K[x, y]/JG) ≤ deghK[x,y]/JG

(λ).
However, the conjecture turns out to be false. A counterexample is constructed in [6].

Funding The first author is partially supported by JSPS KAKENHI 19H00637. The second author is
partially supported by JSPS KAKENHI 20K03550.
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