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Abstract
In this paper, we investigate the problem of solving strongly monotone variational inequal-
ity problems over the solution set of a split variational inequality and fixed point problem.
Strong convergence of the iterative process is proved. In particular, the problem of finding
a common solution to a variational inequality with pseudomonotone mapping and a fixed
point problem involving demicontractive mapping is also studied. Besides, we get a strongly
convergent algorithm for finding the minimum-norm solution to the split feasibility prob-
lem, which requires only two projections at each step. A simple numerical example is given
to illustrate the proposed algorithm.
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1 Introduction

Let H1 and H2 be two real Hilbert spaces and let A : H1 −→ H2 be a bounded linear
operator. Let C be a nonempty closed convex subset of H1. Given mappings G : H1 −→
H1 and S : H2 −→ H2, the split variational inequality and fixed point problem (in short,
SVIFPP) is to find a solution x∗ of the variational inequality problem in the space H1 so
that the image Ax∗, under a given bounded linear operator A, is a fixed point of another
mapping in the spaceH2. More specifically, the SVIFPP can be formulated as

Find x∗ ∈ C G(x∗), x − x∗ 0, ∀x ∈ C (1)

such that
S(Ax∗) = Ax∗.

When G = 0 and S = PQ, the SVIFPP reduces to the split feasibility problem, shortly
SFP,

Find x∗ ∈ C such that Ax∗ ∈ Q.
The SFP was first introduced by Censor and Elfving [4] in finite-dimensional Hilbert

spaces for modeling inverse problems which arise from phase retrievals and in medical
image reconstruction [1]. Recently, it has been found that the SFP can also be used to model
the intensity-modulated radiation therapy [3, 5, 6], and many other practical problems.

If we consider only the problem (1) then (1) is a classical variational inequality problem.
IfH1 = H2 and A is the identity mapping inH1, then the SVIFPP becomes the problem of
finding a common solution of a variational inequality problem and a fixed point problem,
which can be written as follows

Find x∗ ∈ := Sol(C, G) ∩ Fix(S), (2)

where the solution set of (1) is denoted by Sol(C,G) and the set of fixed points of S is
denoted by Fix(S).

Problem (2) has been studied widely in recent years. The inspiration for studying this
common solution problem is due to its possible applications to mathematical models whose
constraints can be expressed as variational inequalities and/or fixed point problems. This
happens, in particular, in the practical problems as network resource allocation, image
recovery, signal processing (see, for instance, [9, 12]).

Very recently, Kraikaew and Saejung [11] combined the subgradient extragradient
method and Halpern method to propose an algorithm which is called Halpern subgradient
extragradient method to find a common element of the solution set of a variational inequal-
ity problem and the fixed point set of a quasi-nonexpansive mapping. Their algorithm is of
the form ⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H,

yn = PC(xn − λG(xn)),

Tn = {ω ∈ H xn − λG(xn) − yn, ω − yn 0},
zn = αnx

0 + (1 − αn)PTn(x
n − λG(yn)),

xn+1 = βnx
n + (1 − βn)S(zn),

(3)

where λ ∈ (0, 1
L
), {αn} ⊂ (0, 1), limn−→∞ αn = 0, ∞

n=0 αn = ∞, {βn} ⊂ [a, b] ⊂ (0, 1),
G : H −→ H, and S : H −→ H is a quasi-nonexpansive mapping. They proved that the
sequence {xn} generated by (3) converges strongly to PSol(C,G)∩Fix(S)(x

0).
For finding a particular solution of (2), Mainge [12] considered the following variational

inequality problem:

Find x∗ ∈ such that F(x∗), x − x∗ 0, ∀x ∈ (4)
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where F : H −→ H is η-strongly monotone and κ-Lipschitz continuous on H, G :
H −→ H is monotone on C and L-Lipschitz continuous on H and S : H −→ H is
γ -demicontractive and demi-closed at zero. Also in [12], Mainge proposed the following
hybrid extragradient-viscosity method

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H,

yn = PC(xn − λnG(xn)),

zn = PC(xn − λnG(yn)),

tn = zn − αnF(zn),

xn+1 = (1 − ω)tn + ωS(tn),

(5)

where {λn} ⊂ [a, b] ⊂ (0, 1
L
), {αn} ⊂ [0, 1), limn−→∞ αn = 0, ∞

n=0 αn = ∞, and

ω ∈ (0, 1−γ
2 ]. The author proved that the sequence {xn} generated by (5) converges strongly

to the unique solution x∗ of (4).
In this paper, inspired by the abovementioned works, we suggest a method for solving

the bilevel variational inequalities with split variational inequality and fixed point problem
constraints. To be specified, we suppose that F : H1 −→ H1 is η-strongly monotone and
κ-Lipschitz continuous onH1; G is pseudomonotone on C, L-Lipschitz continuous onH1;
S is γ -demicontractive and demi-closed at zero. The problem to be considered in this paper
then can be formulated as

Find x∗ ∈ such that F(x∗), x − x∗ 0, ∀x ∈ (6)

where = {x∗ ∈ Sol(C,G) : Ax∗ ∈ Fix(S)}. Here, A is a bounded linear operator
betweenH1 andH2.

The remaining part of the paper is organized as follows. In Section 2, we recall some
basic definitions and preliminary results that are needed. The third section is devoted to
the description of our proposed algorithm and its strong convergence result. Finally, in
Section 4, we illustrate the proposed method by considering a simple numerical experiment.

2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. We write xn to
indicate that the sequence {xn} converges weakly to x while xn −→ x to indicate that the
sequence {xn} converges strongly to x.

A point x ∈ H is a fixed point of a mapping S : H −→ H provided S(x) = x. Denote
by Fix(S) the set of fixed points of S, i.e., Fix(S) = {x ∈ H : S(x) = x}. By PC , we denote
the projection onto C. Namely, for each x ∈ H, PC(x) is the unique element in C such that

x − PC(x) x − y , ∀y ∈ C.

Some important properties of the projection operator PC are gathered in the following
lemma.

Lemma 1 ([8])
(i) For given x ∈ H and y ∈ C, y = PC(x) if and only if

x − y, z − y 0, ∀z ∈ C.
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(ii) PC is nonexpansive, that is,

PC(x) − PC(y) x − y , ∀x, y ∈ H.

(iii) For all x ∈ H and y ∈ C, we have

PC(x) − y 2 x − y 2 PC(x) − x 2.

Let us also recall some well-known definitions which will be used in this paper.

Definition 1 ([7, 10]) A mapping F : H −→ H is said to be
(i) η-strongly monotone onH if there exists η > 0 such that

F(x) − F(y), x − y η x − y 2,∀x, y ∈ H;
(ii) κ-Lipschitz continuous onH if

F(x) − F(y) κ x − y , ∀x, y ∈ H;
(iii) Monotone on C if

F(x) − F(y), x − y 0, ∀x, y ∈ C;
(iv) Pseudomonotone on C if

F(y), x − y 0 F(x), x − y 0, ∀x, y ∈ C.

Definition 2 A mapping S : H −→ H is said to be
(i) γ -demicontractive if Fix(S) = ∅ and and there exists a constant γ ∈ [0, 1) such that

S(x) − x∗ 2 x − x∗ 2 + γ S(x) − x 2 for all x ∈ H, x∗ ∈ Fix(S);
(ii) Quasi-nonexpansive if S is 0-demicontractive, that is, Fix(S) = ∅ and

S(x) − x∗ x − x∗ for all x ∈ H, x∗ ∈ Fix(S);
(iii) Nonexpansive if

S(x) − S(y) x − y for all x, y ∈ H;
(iv) Demi-closed at zero if, for every sequence {xn} contained in H, the following
implication holds

xn and S(xn) − xn 0 =⇒ x ∈ Fix(S).

We observe that the class of demicontractive mappings contains quasi-nonexpansive
mappings as a special case. Besides, the set of quasi-nonexpansive mappings contains class
of nonexpansive mappings with fixed points and the nonexpansive mappings are well known
to be demi-closed at zero. The class of demicontractive mappings has been studied by some
authors because of its interesting properties and applications (see, for example, [2] and the
references therein).

Definition 3 Let H1 and H2 be two Hilbert spaces and let A : H1 −→ H2 be a bounded
linear operator. An operator A∗ : H2 −→ H1 with the property

A(x), y x, A∗(y)

for all x ∈ H1 and y ∈ H2 is called an adjoint operator.
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The adjoint operator of a bounded linear operator A between Hilbert spaces H1, H2
always exists and is uniquely determined. Furthermore, A∗ is a bounded linear operator and
A∗ A .
The next lemmas will be used for proving the convergence of the proposed algorithm

described below.

Lemma 2 ([12, Remark 4.4]) Let {an} be a sequence of nonnegative real numbers. Suppose
that for any integer m, there exists an integer p such that p ≥ m and ap ≤ ap+1. Let n0 be
an integer such that an0 ≤ an0+1 and define, for all integer n ≥ n0, by

τ(n) = max {n ∈ N : n0 ≤ k ≤ n, an ≤ an+1} .

Then, {τ(n)}n≥n0 is a nondecreasing sequence satisfying limn−→∞ τ(n) = ∞ and the
following inequalities hold true:

aτ(n) ≤ aτ(n)+1, an ≤ aτ(n)+1,∀n ≥ n0.

Lemma 3 ([15, 16]) Let {sn} be a sequence of nonnegative real numbers, {αn} be a
sequence in (0, 1) such that ∞

n=0 αn = ∞, and {tn} be a sequence of real numbers with
lim supn−→∞ tn ≤ 0. Suppose that

sn+1 ≤ (1 − αn)sn + αntn, ∀n ≥ 0.

Then, limn−→∞ sn = 0.

3 The Algorithm and Convergence Analysis

In this section, we propose a strong convergence algorithm for solving the problem (6).
We impose the following assumptions on the mappings F , G, and S associated with the
problem (6).

(AF): F : H1 −→ H1 is η-strongly monotone and κ-Lipschitz continuous onH1.
(AG1): G : H1 −→ H1 is pseudomonotone on C, L-Lipschitz continuous onH1.
(AG2): lim supn−→∞ G(xn), y − yn G(x), y − y for every sequence {xn}, {yn} inH1
converging weakly to x and y, respectively.
(AS): S : H2 −→ H2 is γ -demicontractive and demi-closed at zero.

Remark 1 (i) In finite-dimensional spaces, assumption (AG2) is automatically followed
from the Lipschitz continuity of G.
(ii) If G satisfies the assumptions (AG1) and (AG2), then the solution set Sol(C, G) of the
variational inequality problem V IP (C,G) is closed and convex (see, e.g., [14]). Moreover,
if S satisfies the assumption (AS), then the set of fixed points Fix(S) of S is closed and
convex (see, e.g., [13]). Therefore, the solution set = {x∗ ∈ Sol(C, G) : Ax∗ ∈ Fix(S)}
of the SVIFPP is also closed and convex.
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The algorithm can be expressed as follows.

We are now in position to prove our main strong convergence results.

Theorem 1 Suppose that the assumptions (AF), (AG1), (AG2), and (AS) hold. Then, the
sequence {xn} generated by Algorithm 1 converges strongly to the unique solution of the
problem (6), provided = {x∗ ∈ Sol(C,G) : Ax∗ ∈ Fix(S)} is nonempty.
Proof Since = ∅, the problem (6) has a unique solution, denoted by x∗. In particular,
x∗ ∈ , i.e., x∗ ∈ Sol(C,G) ⊂ C, Ax∗ ∈ Fix(S). The proof of the theorem is divided into
several steps.

Step 1 For all n ≥ 0, we have

tn − x∗ 2 yn − x∗ 2 − (1 − λnL) yn − zn 2 − (1 − λnL) zn − tn 2. (7)

By the definition of zn and Lemma 1, it follows that

yn − λnG(yn) − zn, z − zn 0, ∀z ∈ C.

Combining this inequality and the definition of Tn, we get C ⊂ Tn. Since x∗ ∈ Sol(C,G)

and zn ∈ C, we have, in particular, G(x∗), zn − x∗ 0. Using the pseudomonotonicity
on C of G, we get

G(zn), zn − x∗ 0. (8)

From tn = PTn(y
n − λnG(zn)), we have tn ∈ Tn. This together with the definition of Tn

implies

yn − λnG(yn) − zn, tn − zn 0. (9)
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Since x∗ ∈ C and C ⊂ Tn, we get x∗ ∈ Tn. Thus, using Lemma 1, (8), and (9), we obtain

tn − x∗ 2 PTn(y
n − λnG(zn)) − x∗ 2

yn − λnG(zn) − x∗ 2 yn − λnG(zn) − tn 2

yn − x∗ 2 yn − tn 2 + 2λn x∗ − tn, G(zn)

yn − x∗ 2 yn − tn 2 − 2λn G(zn), zn − x∗ 2λn zn − tn,G(zn)

yn − x∗ 2 yn − tn 2 + 2λn zn − tn,G(zn)

yn − x∗ 2 + 2λn zn − tn, G(zn)

yn − zn 2 zn − tn 2 − 2 zn − tn, yn − zn

yn − x∗ 2 yn − zn 2 zn − tn 2 + 2 zn − tn, λnG(zn) − yn + zn

yn − x∗ 2 yn − zn 2 zn − tn 2 + 2 yn − λnG(yn) − zn, tn − zn

+2λn G(yn) − G(zn), tn − zn

yn − x∗ 2 yn − zn 2 zn − tn 2 + 2λn G(yn) − G(zn), tn − zn .

(10)

Using the Cauchy-Schwarz inequality and arithmetic and geometric means inequality and
observing that G is L-Lipschitz continuous onH1, we obtain

2 G(yn) − G(zn), tn − zn 2 G(yn) − G(zn) tn − zn

≤ 2L yn − zn tn − zn L( yn − zn 2 tn − zn 2).

It follows from the above inequality and (10) that

tn − x∗ 2 yn − x∗ 2 yn − zn 2 zn − tn 2 + λnL( yn − zn 2 tn − zn 2)

yn − x∗ 2 − (1 − λnL) yn − zn 2 − (1 − λnL) zn − tn 2.

Step 2 For all n ≥ 0, we show that

yn − x∗ 2 xn − x∗ 2 − ωn(1 − γ − ωn A 2) S(un) − un 2. (11)

Using the equality

x, y
1

2
( x 2 y 2 x − y 2), ∀x, y ∈ H2

and the γ -demicontractivity of S, we have

A(xn − x∗), S(un) − un

A(xn − x∗) + S(un) − un − (S(un) − un), S(un) − un

S(un) − A(x∗), S(un) − un S(un) − un 2

= 1

2
S(un) − A(x∗) 2 S(un) − un 2 un − A(x∗) 2 S(un) − un 2

= 1

2
( S(un) − A(x∗) 2 un − A(x∗) 2) S(un) − un 2

≤ 1

2
γ S(un) − un 2 S(un) − un 2 .

This implies that

2ωn A(xn − x∗), S(un) − un ωn(1 − γ ) S(un) − un 2. (12)
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Using (12), we have

yn − x∗ 2 (xn − x∗) + ωnA
∗(S(un) − un) 2

xn − x∗ 2 ωnA
∗(S(un) − un) 2 + 2ωn xn − x∗, A∗(S(un) − un)

xn − x∗ 2 + ω2
n A∗ 2 S(un) − un 2 + 2ωn A(xn − x∗), S(un) − un

xn − x∗ 2 + ω2
n A 2 S(un) − un 2 − ωn(1 − γ ) S(un) − un 2

xn − x∗ 2 − ωn(1 − γ − ωn A 2) S(un) − un 2.

Step 3 The sequences {xn}, {yn}, {zn}, {tn}, and {F(tn)} are bounded. Since {λn} ⊂
[a, b] ⊂ (0, 1

L
), {ωn} ⊂ [ω,ω] ⊂ (0, 1−γ

A 2+1
), by (7) and (11), we have

tn − x∗ yn − x∗ xn − x∗ . (13)

Combining {λn} ⊂ [a, b] ⊂ (0, 1
L
), the nonexpansiveness of PC , the L-Lipschitz continuity

onH1 of G, and (13), we obtain

zn − x∗ PC(yn − λnG(yn)) − PC(x∗)
yn − x∗ − λnG(yn)

yn − x∗ − λn(G(yn) − G(x∗)) − λnG(x∗)
yn − x∗ λn G(yn) − G(x∗) λn G(x∗)
yn − x∗ λnL yn − x∗ λn G(x∗)

≤ (1 + bL) yn − x∗ b G(x∗)
≤ (1 + bL) xn − x∗ b G(x∗) . (14)

Since F is κ-Lipschitz continuous and η-strongly monotone onH1, we have

F(tn) F (tn) − F(x∗) F (x∗) κ tn − x∗ F(x∗) , (15)

and

tn − x∗ − μ(F(tn) − F(x∗)) 2

tn − x∗ 2 − 2μ tn − x∗, F (tn) − F(x∗) μ2 F(tn) − F(x∗) 2

tn − x∗ 2 − 2μη tn − x∗ 2 + μ2κ2 tn − x∗ 2

= [1 − μ(2η − μκ2) tn − x∗ 2. (16)

Since limn−→∞ αn = 0, there exists n0 ∈ N such that αn < μ for all n ≥ n0. So, from (16),
we get, for all n ≥ n0

tn − αnF(tn) − (x∗ − αnF(x∗))

= 1 − αn

μ
(tn − x∗) + αn

μ
[tn − x∗ − μ(F(tn) − F(x∗))]

≤ 1 − αn

μ
tn − x∗ αn

μ
tn − x∗ − μ(F(tn) − F(x∗))

≤ 1 − αn

μ
tn − x∗ αn

μ
1 − μ(2η − μκ2) tn − x∗

= 1 − αn

μ
1 − 1 − μ(2η − μκ2) tn − x∗

= 1 − αnτ

μ
tn − x∗ , (17)
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where

τ = 1 − 1 − μ(2η − μκ2) ∈ (0, 1].
Using (17) and (13), we obtain, for all n ≥ n0

xn+1 − x∗ tn − αnF(tn) − x∗

tn − αnF(tn) − (x∗ − αnF(x∗)) − αnF(x∗)
tn − αnF(tn) − (x∗ − αnF(x∗)) αn F (x∗)

≤ 1 − αnτ

μ
tn − x∗ αn F(x∗) (18)

≤ 1 − αnτ

μ
xn − x∗ αn F(x∗)

= 1 − αnτ

μ
xn − x∗ αnτ

μ

μ F(x∗)
τ

. (19)

We obtain from (19) that

xn+1 − x∗ max xn − x∗ ,
μ F(x∗)

τ
, ∀n ≥ n0.

So, by induction, we obtain, for every n ≥ n0, that

xn − x∗ max xn0 − x∗ ,
μ F(x∗)

τ
.

Hence, the sequence {xn} is bounded and so are the sequences {yn}, {zn}, {tn}, and {F(tn)}
thanks to (13), (14), and (15).

Step 4 We prove that {xn} converges strongly to x∗. Using the inequality

x − y 2 x 2 − 2 y, x − y , ∀x, y ∈ H1,

(17) and (13), we obtain, for all n ≥ n0

xn+1 − x∗ 2 tn − αnF(tn) − x∗ 2

tn − αnF(tn) − (x∗ − αnF(x∗)) − αnF(x∗) 2

tn − αnF(tn) − (x∗ − αnF(x∗)) 2 − 2αn F(x∗), xn+1 − x∗

≤ 1 − αnτ

μ
tn − x∗

2

− 2αn F(x∗), xn+1 − x∗

≤ 1 − αnτ

μ
tn − x∗ 2 − 2αn F(x∗), xn+1 − x∗ (20)

≤ 1 − αnτ

μ
xn − x∗ 2 + 2αn F(x∗), x∗ − xn+1 . (21)

Let us consider two cases.

Case 1 There exists n∗ ∈ N such that xn − x∗ is decreasing for n ≥ n∗. In that case,
the limit of xn − x∗ exists. So, it follows from (20) and (13), for all n ≥ n0, that

αnτ

μ
tn − x∗ 2 + 2αn F(x∗), xn+1 − x∗ ( xn+1 − x∗ 2 xn − x∗ 2)

tn − x∗ 2 xn − x∗ 2 tn − x∗ 2 yn − x∗ 2 ≤ 0.
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Since the limit of xn − x∗ exists, limn−→∞ αn = 0, and {xn} and {tn} are two bounded
sequences, it follows from the above inequality that

lim
n−→∞( tn − x∗ 2 xn − x∗ 2) = 0, lim

n−→∞( tn − x∗ 2 yn − x∗ 2) = 0. (22)

From (22), we get
lim

n−→∞( xn − x∗ 2 yn − x∗ 2) = 0. (23)

From (11) and {ωn} ⊂ [ω,ω] ⊂ (0, 1−γ

A 2+1
), we get

ω(1 − γ − ω A 2) S(un) − un 2 xn − x∗ 2 yn − x∗ 2. (24)

Then, from (23) and (24), we obtain

lim
n−→∞ S(un) − un 0. (25)

Note that, for all n,

yn − xn ωnA
∗(S(un) − un) ωn A∗ S(un) − un ω A S(un) − un .

It follows from the above inequality and (25) that

lim
n−→∞ yn − xn 0. (26)

From (7) and {λn} ⊂ [a, b] ⊂ (0, 1
L
), we have

(1 − bL) yn − zn 2 + (1 − bL) zn − tn 2 yn − x∗ 2 tn − x∗ 2.

It follows from the above inequality and (22) that

lim
n−→∞ yn − zn 0, lim

n−→∞ zn − tn 0. (27)

From the triangle inequality, we get

yn − tn yn − zn zn − tn ,

xn − tn xn − yn yn − zn zn − tn ,

from which, by (26) and (27), it follows that

lim
n−→∞ yn − tn 0, lim

n−→∞ xn − tn 0. (28)

Now, we prove that
lim sup
n−→∞

F(x∗), x∗ − tn 0. (29)

Take a subsequence {tnk } of {tn} such that
lim sup
n−→∞

F(x∗), x∗ − tn lim
k−→∞ F(x∗), x∗ − tnk .

Since {tnk } is bounded, we may assume that tnk converges weakly to some t ∈ H1.
Therefore,

lim sup
n−→∞

F(x∗), x∗ − tn lim
k−→∞ F(x∗), x∗ − tnk F (x∗), x∗ − t . (30)

From tnk t and (27) and (28), we imply znk t , ynk t , and xnk t .
We now prove t ∈ Sol(C,G). Indeed, let x ∈ C. It follows from the definition of znk and

Lemma 1 that
ynk − λnk

G(ynk ) − znk , x − znk 0, ∀k ∈ N.
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Since λnk
> 0 for every k ∈ N, it follows from the above inequality that

G(ynk ), x − znk
ynk − znk , x − znk

λnk

. (31)

Since limk−→∞ ynk − znk 0, {λnk
} ⊂ [a, b], and {znk } is bounded, we get

lim
k−→∞

ynk − znk , x − znk

λnk

= 0.

So, using (31), condition (AG2), and the weak convergence of two sequences {ynk }, {znk } to
t , we have

0 ≤ lim sup
k−→∞

G(ynk ), x − znk G(t), x − t ,

i.e., t ∈ Sol(C,G).
Next, we prove that A(t) ∈ Fix(S). From xnk t , we get unk = A(xnk t).

This together with (25) and the demiclosedness of S imply A(t) ∈ Fix(S). In view of
t ∈ Sol(C,G), it implies that t ∈ . Since x∗ is the solution of problem (6), we have
F(x∗), t − x∗ 0. Which together with (30) implies lim supn−→∞ F(x∗), x∗ − tn 0.
From the boundedness of {F(tn)}, limn−→∞ αn = 0, and (29), we have

lim sup
n−→∞

F(x∗), x∗ − xn+1 lim sup
n−→∞

F(x∗), x∗ − tn + αnF(tn)

= lim sup
n−→∞

F(x∗), x∗ − tn αn F (x∗), F (tn)

= lim sup
n−→∞

F(x∗), x∗ − tn

≤ 0. (32)

From (21), we get

xn+1 − x∗ 2 ≤ 1 − αnτ

μ
xn − x∗ 2 + αnτ

μ
tn, ∀n ≥ n0, (33)

where

tn = 2μ F(x∗), x∗ − xn+1

τ
.

Using (32), we get lim supn−→∞ tn ≤ 0. From 0 < αn < μ ∀n ≥ n0 and 0 < τ ≤ 1, we get
{αnτ

μ
}n≥n0 ⊂ (0, 1). So, from (33), ∞

n=0 αn = ∞, lim supn−→∞ tn ≤ 0, and Lemma 3, we

have limn−→∞ xn − x∗ 2 = 0, i.e., xn −→ x∗ as n −→ ∞.

Case 2 Suppose that for any integer m, there exists an integer n such that n ≥ m and
xn − x∗ xn+1 − x∗ . According to Lemma 2, there exists a nondecreasing sequence

{τ(n)}n≥n2 of N such that limn−→∞ τ(n) = ∞ and the following inequalities hold:

xτ(n) − x∗ xτ(n)+1 − x∗ , xn − x∗ xτ(n)+1 − x∗ , ∀n ≥ n2. (34)

Choose n3 ≥ n2 such that τ(n) ≥ n0 for all n ≥ n3. From (18), (34), and (13), we get, for
all n ≥ n3

ατ(n)τ

μ
tτ(n) − x∗ ατ(n) F (x∗) tτ(n) − x∗ xτ(n)+1 − x∗

tτ (n) − x∗ xτ(n) − x∗

tτ (n) − x∗ yτ(n) − x∗ 0.
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Thus, from the boundedness of {tn} and limn−→∞ αn = 0, we have

lim
n−→∞( tτ(n) − x∗ xτ(n) − x∗ ) = 0, lim

n−→∞( tτ(n) − x∗ yτ(n) − x∗ ) = 0. (35)

From (35) and the boundedness of {xn}, {yn}, and {tn}, we obtain
lim

n−→∞( tτ(n) − x∗ 2 xτ(n) − x∗ 2) = 0, lim
n−→∞( tτ(n) − x∗ 2 yτ(n) − x∗ 2) = 0.

Arguing similarly as in the first case, we can conclude that

lim sup
n−→∞

F(x∗), x∗ − tτ (n) 0.

Then, the boundedness of {F(tn)} and limn−→∞ αn = 0 yield

lim sup
n−→∞

F(x∗), x∗ − xτ(n)+1 lim sup
n−→∞

F(x∗), x∗ − tτ (n) + ατ(n)F (tτ(n))

= lim sup
n−→∞

F(x∗), x∗ − tτ (n) ατ(n) F (x∗), F (tτ(n))

= lim sup
n−→∞

F(x∗), x∗ − tτ (n)

≤ 0. (36)

From (21) and (34), we have, for all n ≥ n3

xτ(n)+1 − x∗ 2 ≤ 1 − ατ(n)τ

μ
xτ(n) − x∗ 2 + 2ατ(n) F (x∗), x∗ − xτ(n)+1

≤ 1 − ατ(n)τ

μ
xτ(n)+1 − x∗ 2 + 2ατ(n) F (x∗), x∗ − xτ(n)+1 .

In particular, since ατ(n) > 0

xτ(n)+1 − x∗ 2 ≤ 2μ

τ
F(x∗), x∗ − xτ(n)+1 ,∀n ≥ n3.

From (34) and the above inequality, we get

xn − x∗ 2 ≤ 2μ

τ
F(x∗), x∗ − xτ(n)+1 , ∀n ≥ n3. (37)

Taking the limit in (37) as n −→ ∞, and using (36), we obtain that

lim sup
n−→∞

xn − x∗ 2 ≤ 0,

which implies xn −→ x∗. This completes the proof of the theorem.

Applying Theorem 1 and Algorithm 1 when H1 = H2 = H and A is the identity
mapping inH, we obtain the following result for problem (4).

Corollary 1 Let F : H −→ H be strongly monotone and Lipschitz continuous on H; S :
H −→ H be γ -demicontractive, demi-closed at zero; and G : H −→ H be pseudomono-
tone on C, L-Lipschitz continuous on H, lim supn−→∞ G(xn), y − yn G(x), y − y
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for every sequence {xn}, {yn} inH converging weakly to x and y, respectively. Suppose that
Sol(C, G) ∩ Fix(S) = ∅. Let {xn} be the sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H,

yn = (1 − ωn)x
n + ωnS(xn),

zn = PC(yn − λnG(yn)),

Tn = {ω ∈ H yn − λnG(yn) − zn, ω − zn 0},
tn = PTn(y

n − λnG(zn)),

xn+1 = tn − αnF(tn),

where the sequences {ωn}, {λn}, and {αn} satisfy the following conditions:
(i) {ωn} ⊂ [ω, ω] ⊂ (0, 1−γ

2 );

(ii) {λn} ⊂ [a, b] ⊂ (0, 1
L
);

(iii) {αn} ⊂ (0, 1), limn−→∞ αn = 0 and ∞
n=0 αn = ∞.

Then, {xn} converges strongly to a solution x∗ ∈ Sol(C, G) ∩ Fix(S), where x∗ is the
unique solution of the following variational inequality problem

Find x∗ ∈ Sol(C,G) ∩ Fix(S) such that F(x∗), x − x∗ 0, ∀x ∈ Sol(C, G) ∩ Fix(S).

When G = 0, S = PQ, and F = IH1 , we have the following corollary from Theorem 1
and Algorithm 1.

Corollary 2 LetC andQ be two nonempty closed convex subsets of two real Hilbert spaces
H1 and H2, respectively. Suppose that positive sequences {αn}, {ωn} satisfy the following
conditions: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

{αn} ⊂ (0, 1), lim
n−→∞ αn = 0,

∞

n=0

αn = ∞,

{ωn} ⊂ [ω,ω] ⊂ 0,
1

A 2 + 1
.

Let {xn} be the sequence defined by x0 ∈ H1 and

xn+1 = (1 − αn)PC(xn + ωnA
∗(PQ(Axn) − Axn)),∀n ≥ 0.

Then, the sequence {xn} converges strongly to the minimum-norm solution of the split fea-
sibility problem, provided that the solution set = {x∗ ∈ C : Ax∗ ∈ Q} of the split
feasibility problem is nonempty.

4 Numerical Results

Example 1 Let H1 = R
4 with the norm x (x2

1 + x2
2 + x2

3 + x2
4 )

1
2 for x =

(x1, x2, x3, x4)
T ∈ R

4 andH2 = R
2 with the norm y (y2

1 + y2
2 )

1
2 for y = (y1, y2)

T ∈
R
2. Consider the mapping F : R4 −→ R

4 defined by F(x) = x for all x ∈ R
4. It is easy to

see that F is strongly monotone with η = 1 and Lipschitz continuous with κ = 1 on R
4. In

this case, the problem (6) becomes the problem of finding the minimum-norm solution of
the SVIFPP.

Let A(x) = (x1 + x3 + x4, x2 + x3 − x4)
T for all x = (x1, x2, x3, x4)

T ∈ R
4 then A is

a bounded linear operator from R
4 into R

2 with A
√
3. For y = (y1, y2)

T ∈ R
2, let

B(y) = (y1, y2, y1 + y2, y1 − y2)
T , then B is a bounded linear operator from R

2 into R
4
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with B
√
3. Moreover, for any x = (x1, x2, x3, x4)

T ∈ R
4 and y = (y1, y2)

T ∈ R
2,

A(x), y x, B(y) , so B = A∗ is an adjoint operator of A.
Let

C = {(x1, x2, x3, x4)T ∈ R
4 : 12x1 − 4x2 + 4x3 − 4x4 ≥ 9}

and define a mapping G : R4 −→ R
4 by G(x) = (sin x 2)a0 for all x ∈ R

4, where
a0 = (12,−4, 4, −4)T ∈ R

4. It is easy to verify that G is pseudomonotone on R
4.

Furthermore, for all x, y ∈ R
4, we have

G(x) − G(y) a0 sin x sin y 8
√
3| sin x sin y

≤ 8
√
3 x y 8

√
3 x − y .

So G is 8
√
3-Lipschitz continuous on R

4.
It is easy to see that the solution set Sol(C,G) of V IP (C,G) is given by

Sol(C, G) = {(x1, x2, x3, x4)T ∈ R
4 : 12x1 − 4x2 + 4x3 − 4x4 = 9}.

Assume that S : R2 −→ R
2 is defined by, for all y = (y1, y2)

T ∈ R
2

S(y) = (y1, y2)
T if y1 ≤ 0,

(−2y1, y2)T if y1 > 0.

Clearly, Fix(S) = (−∞, 0] × R. To see that S is 1
3 -demicontractive, observe that if y∗ =

(y∗
1 , y

∗
2 )

T ∈ Fix(S), then

S(y) − y∗ 2 y − y∗ 2 + 1

3
S(y) − y 2 for all y = (y1, y2)

T ∈ R
2. (38)

If y1 ≤ 0 then S(y) = y. Thus, (38) holds.
For y1 > 0, we have

y − y∗ 2 + 1

3
S(y) − y 2 (y1 − y∗

1 , y2 − y∗
2 )

T 2 + 1

3
(−2y1, y2)

T − (y1, y2)
T 2

= (y1 − y∗
1 )

2 + (y2 − y∗
2 )

2 + 1

3
(−2y1 − y1, 0)

T 2

= (y1 − y∗
1 )

2 + (y2 − y∗
2 )

2 + 3y2
1

= 4y2
1 − 2y1y

∗
1 + (y∗

1 )
2 + (y2 − y∗

2 )
2

≥ 4y2
1 + 4y1y

∗
1 + (y∗

1 )
2 + (y2 − y∗

2 )
2

= (−2y1 − y∗
1 )

2 + (y2 − y∗
2 )

2

(−2y1, y2)
T − (y∗

1 , y
∗
2 )

T 2 S(y) − y∗ 2.

Now we prove that S is demi-closed at zero. Suppose that {zn = (xn, yn)T } ⊂ R
2, zn −→

z = (x, y)T , and limn−→∞ S(zn) − zn 0. Thus, limn−→∞ xn = x and limn−→∞ yn =
y. It is clear that S(zn) = (g(xn), yn)T , where

g(y1) = y1 if y1 ≤ 0,

−2y1 if y1 > 0.

Therefore, limn−→∞ |g(xn) − xn| = 0. If x > 0, since limn−→∞ xn = x then there exists
n0 ≥ 0 such that xn > 0 for all n ≥ n0. Thus for all n ≥ n0, |g(xn)−xn| = |−2xn −xn| =
3xn. So limn−→∞ |g(xn) − xn| = 3 limn−→∞ xn = 3x. Combine with limn−→∞ |g(xn) −
xn| = 0, we get x = 0, which contradicts to x > 0. Thus, x ≤ 0, so z = (x, y)T ∈
(−∞, 0] × R = Fix(S). So S is demi-closed at zero.
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Table 1 Algorithm 1 for Example 1, with different starting points, ωn = n+1
8n+10 , λn = n+1

16n+18 , αn = 1
n+2 ,

and tolerance ε = 10−7

Starting point Iter (n) CPU time(s) xn

(0.6,−0.2, 0.1,−0.4)T 3235 1.2480 (0.49987,−0.24989, 0.00007,−0.49973)T

(−1, 3, 2, 1)T 5525 2.1372 (0.49990,−0.24954, 0.00028,−0.50006)T

(−3,−5,−6,−4)T 7093 2.6832 (0.49991,−0.25055,−0.00020,−0.49961)T

(12, 30,−25, 21)T 20,694 7.1916 (0.50095,−0.24879,−0.00133,−0.49959)T

(−94, 70, 142,−356)T 57,075 18.5485 (0.49838,−0.24788, 0.00429,−0.50266)T

The solution set of the SVIFPP is given by

= {(x1, x2, x3, x4)T ∈ Sol(C, G) : A(x1, x2, x3, x4) ∈ Fix(S)}
= {(x1, x2, x3, x4)T ∈ R

4 : 12x1 − 4x2 + 4x3 − 4x4 = 9, x1 + x3 + x4 ≤ 0}.
Suppose x = (x1, x2, x3, x4)

T ∈ then

x x2
1 + x2

2 + x2
3 + x2

4

= (2x1 − 1)2

4
+ (4x2 + 1)2

16
+ x2

3 + (2x4 + 1)2

4
+ 1

8
(12x1 − 4x2 + 4x3 − 4x4) − 1

2
(x1 + x3 + x4) − 9

16

= (2x1 − 1)2

4
+ (4x2 + 1)2

16
+ x2

3 + (2x4 + 1)2

4
+ 9

8
− 1

2
(x1 + x3 + x4) − 9

16

= (2x1 − 1)2

4
+ (4x2 + 1)2

16
+ x2

3 + (2x4 + 1)2

4
− 1

2
(x1 + x3 + x4) + 9

16
≥ 3

4
.

The above equality holds if and only if x1 = 1
2 , x2 = − 1

4 , x3 = 0, and x4 = − 1
2 .

Therefore, the minimum-norm solution x∗ of the SVIFPP is x∗ = ( 12 ,− 1
4 , 0, − 1

2 )
T . We

choose ωn = n+1
8n+10 , λn = n+1

16n+18 , and αn = 1
n+2 . An elementary computation shows

that {ωn} ⊂ [ 1
10 ,

1
8 ] ⊂ (0, 1

6 ) = (0, 1−γ

A 2+1
), {λn} ⊂ [ 1

18 ,
1
16 ] ⊂ (0, 1

8
√
3
) = (0, 1

L
),

{αn} ⊂ (0, 1), limn−→∞ αn = 0, and ∞
n=0 αn = ∞.

Tables 1 and 2 present the numerical results of Algorithm 1 with different starting points
and different tolerances.

From the preliminary numerical results reported in the tables, we observe that the running
time of Algorithm 1 depends very much on the initial point and the tolerance.

Table 2 Algorithm 1 for Example 1, with different tolerances, ωn = n+1
8n+10 , λn = n+1

16n+18 , αn = 1
n+2 , and

starting point x0 = (−2, 3, 5,−4)T

Tolerance Iter (n) CPU time(s) xn

ε = 10−6 2719 3.4164 (0.49915,−0.24874, 0.00204,−0.50095)T

ε = 10−7 8598 5.8032 (0.49973,−0.24960, 0.00065,−0.50030)T

ε = 10−8 27,189 9.8749 (0.49991,−0.24987, 0.00020,−0.50009)T

ε = 10−9 85,980 28.0178 (0.49997,−0.24996, 0.00006,−0.50003)T

ε = 10−10 271,891 122.4452 (0.49999,−0.24999, 0.00002,−0.50001)T
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We perform the iterative schemes in MATLAB R2018a running on a laptop with Intel(R)
Core(TM) i5-3230M CPU @ 2.60GHz, 4 GB RAM.

5 Conclusion

In this paper, we presented a method for solving strongly monotone variational inequality
problems with split variational inequality and fixed point problem constraints. As a con-
sequence, we have obtained an algorithm for finding a common solution to a variational
inequality with pseudomonotone mapping and a fixed point problem involving demicon-
tractive mapping. When applied to the split feasibility problem, our method is reduced to a
strongly convergent algorithm, which requires only two projections at each iteration step.
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