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Abstract
In this paper, we investigate set optimization problems with three types of set order relations.
Various kinds of well-posedness for these problems and their relationship are concerned.
Then, sufficient conditions for set optimization problems to be well-posed are established.
Moreover, Kuratowski measure of noncompactness is applied to survey characterizations of
well-posedness for set optimization problems. Furthermore, approximating solution maps
and their stability are researched to propose the link between stability of the approximating
problem and well-posedness of the set optimization problem.

Keywords Set order relation · Set optimization problem · Well-posedness · Stability ·
Measure of noncompactness
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1 Introduction

Well-posedness plays an important role in both theory and numerical methods for opti-
mization theory. This fact has motivated and inspired many researchers to study the
well-posedness for problems related to optimization. In 1966, Tikhonov [29] introduced
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a definition of well-posedness for unconstrained optimization problems which is called
Tikhonov well-posedness. This concept requires two conditions. The first condition is the
existence and uniqueness of the solution, and the second one is the convergence of each
minimizing sequence to the unique solution. Later on, several extensions of Tikhonov well-
posedness have been introduced and investigated. The study of Tikhonov well-posedness
and its extensions is interesting and very important in optimization theory. One of the most
important extensions of Tikhonov well-posedness is relaxing the first condition. In general,
practical problems, for example, vector optimization problems, have more than one solu-
tion, and hence, the extension in this way of Tikhonov well-posedness is meaningful and
valuable. The main idea of this approach is based on the convergence of a subsequence of
a minimizing sequence to a point in the solution set, and thus, it can be considered as an
extension of Tikhonov well-posedness. Another generalization of Tikhonov well-posedness,
called metrically well-setness, has also been studied in [3]. This concept requires minimiz-
ing sequences to metrically approach the solution set of the problem and is a relaxed form of
the generalized well-posedness. For further reading and references, we refer to publications
[7, 24].

As far as we know, there are two approaches to formulate optimality notions for set-
valued optimization problems, namely the vector approach and the set approach. These
criteria depend on the way that the notion of minimality is defined. In the first approach,
optimal solutions are defined as the efficient points of the union of all images of the set-
valued objective map [9]. In the second one, using set order relations defined on the power
set of the objective space, we compare all images of the set-valued objective map [20].
Recently, optimization problems based on set approach, called set optimization problems
[21], have attracted a great deal of attention of researchers because of their important roles
and useful applications in the practical situations. An important socio-economic application
of set order relations was presented by Neukel [28] in the project investigating relationship
between noise disturbance and quality of life in the region surrounding the Frankfurt Airport
in Germany. Another application of set order relations in the field of finance about mea-
sures of risk was found by Hamel and Heyde [11]. Many important and interesting results
have been obtained in different topics in this area such as the existence conditions and opti-
mality conditions [1, 13], nonlinear scalarization [14, 18], Lagrangian duality and saddle
points [15], the Ekeland variational principle [10], and stability [12]. We would like to give a
brief review of set order relations. The first introduction of set order relations was presented
by Kuroiwa et al. [22] in 1997. Moreover, these relations were also independently studied
by Young [30] and Nishnianidze [26]. Kuroiwa [20] showed six relations among sets and
obtained duality theorems of set optimization problems. Relations ≤l and ≤u were stud-
ied in some publications [6, 23]. Many important and significant applications of set order
relations were studied and discussed [4, 27].

In 2009, Zhang et al. [31] firstly introduced three kinds of well-posedness including one
pointwise well-posedness and two global ones. The authors obtained some sufficient and
necessary conditions for set optimization problems involving the relation ≤l to be well-
posed. Moreover, criteria and characterizations of well-posedness for this problem were
established by using the scalarization method. Well-posedness properties for such problems
with a class of generalized convex set-valued maps were obtained by Crespi et al. [5]. Using
assumptions on cone properness, Gutiérrez et al. [8] investigated pointwise well-posedness
for set optimization problems involving the relation ≤l . Recently, Dhingra and Lalitha [6]
introduced a concept of well-setness and proved that it is an extension of generalized well-
posedness which was considered in [31]. Furthermore, they gave sufficient conditions of
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well-setness for set optimization problems involving the relation ≤l and obtained character-
izations of well-setness for them by the scalarization method. As mentioned in [11, 16, 17,
28], the relation ≤s plays an important role in real-life situations. To the best of our knowl-
edge, there is no work devoted to well-posedness for set optimization problems involving
the relation ≤s . Hence, studying on well-posedness for problems involving these relations
is significant.

Motivated and inspired by these works, in this paper, we aim to investigate various
types of well-posedness for set optimization problems involving different kinds of set order
relations. We introduce many kinds of well-posedness for such problems and study the
relationship between them as well as their sufficient conditions. Moreover, Kuratowski
measure of noncompactness is applied to survey characterization of well-posedness for
set optimization problems. Finally, approximating solution maps and their stability proper-
ties are researched to propose the link between stability of the approximating problem and
well-posedness of the set optimization problem.

This paper is organized as follows. In Section 2, we recall some necessary concepts and
their properties used in what follows. Section 3 introduces various types of well-posedness
for set optimization problems and analyzes their relationships. Moreover, in this section,
sufficient conditions of these generalized well-posedness for set optimization problems are
also studied. In the last section, characterization of well-posedness for set optimization prob-
lems is surveyed by using Kuratowski measure of noncompactness. Finally, approximating
solution maps and their stability properties are studied to propose the connection between
stability of the approximating problem and well-posedness of the set optimization problem.

2 Preliminaries

Let X be a metric space and Y be a Hausdorff topological vector space. Let K be a closed
convex pointed cone in Y with int K �= ∅, where int K denotes the interior of K . The space
Y is endowed with an order relation induced by cone K in the following way:

x ≤K y ⇔ y − x ∈ K,

x <K y ⇔ y − x ∈ int K .

The cone K induces various set orderings in Y . These orderings, given below, were
introduced in [16, 20, 22]. Let P(Y ) be the family of all nonempty subsets of Y . For
A, B ∈ P(Y ), lower set less relation ≤l , upper set less relation ≤u, and set less relation ≤s ,
respectively, are defined by

A ≤l B if and only if B ⊂ A + K,

A ≤u B if and only if A ⊂ B − K,

A ≤s B if and only if A ⊂ B − K and B ⊂ A + K .

Definition 1 [16] We say that the binary relation ≤ is

(a) Compatible with the addition if and only if A ≤ B and D ≤ E imply A + D ≤ B + E

for all A, B,D, E ∈ P(Y ).
(b) Compatible with the multiplication with a nonnegative real number if and only if A≤B

implies λA ≤ λB for all scalars λ ≥ 0 and all A,B ∈ P(Y ).
(c) Compatible with the collinear structure of P(Y ) if and only if it is compatible with both
the addition and the multiplication with a nonnegative real number.
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Proposition 1 [16]

(i) The order relations ≤l , ≤u, and ≤s are pre-order (i.e., the relations are reflexive and
transitive).
(ii) The order relations ≤l , ≤u, and ≤s are compatible with the collinear structure of P(Y ).
(iii) In general, the order relations ≤l , ≤u, and ≤s are not antisymmetric; more precisely,
for arbitrary sets A,B ∈ P(Y ), we have

(A ≤l B and B ≤l A) ⇔ A + K = B + K,

(A ≤u B and B ≤u A) ⇔ A − K = B − K,

(A ≤s B and B ≤s A) ⇔ (A + K = B + K and A − K = B − K).

For α ∈ {u, l, s}, we say that

A ∼α B if and only if A ≤α B and B ≤α A.

Let F : X ⇒ Y be a set-valued map with nonempty values on X. For each α ∈ {u, l, s}, we
consider the following set optimization problem:

(Pα) α − Min F(x)

subject to x ∈ M,

where M is a nonempty closed subset of X. A point x̄ ∈ M is called an α−minimal solution
of (Pα) if for any x ∈ M such that F(x) ≤α F (x̄), then F(x̄) ≤α F (x). The set of all
α−minimal solutions of (Pα) is denoted by α − Min F .

Remark 1 It can be seen that if x̄ ∈ α − Min F and F(x̄) ∼α F (x̂) for some x̂ ∈ M , then
x̂ ∈ α − Min F .

We recall the following definitions of semicontinuity for a set-valued map and their
properties used in the sequel.

Definition 2 [2, pp. 38, 39] A set-valued map F : X ⇒ Y is said to be

(a) Upper semicontinuous at x0 ∈ X if and only if for any open subset U of Y with F(x0) ⊂
U there is a neighborhood N of x0 such that F(x) ⊂ U for every x ∈ N .
(b) Lower semicontinuous at x0 ∈ X if and only if for any open subset U of Y with F(x0)∩
U �= ∅ there is a neighborhood N of x0 such that F(x) ∩ U �= ∅ for all x ∈ N .
(c) Lower (upper) semicontinuous on a subset S of X if and only if it is lower (upper)
semicontinuous at every x ∈ S

Lemma 1 [2] Let F : X ⇒ Y be a set-valued map.

(i) F is lower semicontinuous at x0 ∈ X if and only if for any net {xγ } ⊂ X converging to
x0 and for any y ∈ F(x0), there exist yγ ∈ F(xγ ) such that {yγ } converges to y.
(ii) If F(x0) is compact, then F is upper semicontinuous at x0 ∈ X if and only if for any net
{xγ } converging to x0 and for any yγ ∈ F(xγ ), there exist y0 ∈ F(x0) and a subnet of {yγ }
converging to y0.
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Next, we recall the concepts of Hausdorff distance and Hausdorff convergence of
sequence of sets. If S is a nonempty subset of X and x ∈ X, then the distance d between x

and S is defined as

d(x, S) := inf
u∈S

d(x, u).

If S1 and S2 are two nonempty subsets of X, then Hausdorff distance between S1 and S2,
denoted by H(S1, S2), is defined as

H(S1, S2) := max{H ∗(S1, S2),H
∗(S2, S1)},

where H ∗(S1, S2) := supx∈S1
d(x, S2).

Definition 3 [19, p. 359] Let {An} be a sequence of subsets of X. We say that {An} con-
verges to A in the sense of Hausdorff, denoted by An → A, if and only if H(An, A) → 0
as n → ∞.

Now, we recall the concept of the Kuratowski measure of noncompactness and its
properties used in the sequel.

Definition 4 [25, Definition 2.1] Let M be a nonempty subset of a metric space X. The
Kuratowski measure of noncompactness μ of the set M is defined by

μ(M) := inf

{
ε > 0 | ∃n ∈ N, ∃Mi, diam Mi < ε, i = 1, . . . , n, s.t. M ⊂

n⋃
i=1

Mi

}
,

where diam Mi is the diameter of Mi .

Lemma 2 [25, Proposition 2.3] The following assertions are true:

(i) μ(M) = 0 if M is compact.
(ii) μ(M) ≤ μ(N) whenever M ⊂ N .
(iii) If {Mn} is a sequence of closed subsets in X satisfying Mn+1 ⊂ Mn for every
n ∈ N and limn→∞ μ(Mn) = 0, then K := ⋂

n∈N Mn is a nonempty compact set and
limn→∞ H(Mn,K) = 0.

It is easy to check the following property. We omit the proof.

Lemma 3 Let Y be a Hausdorff topological vector space and A, B be subsets of Y . If A is
compact and B is closed, then A + B is closed.

3 Various Kinds of Well-Posedness for Set Optimization Problems

Motivated by the study in [31], we introduce concepts of generalized minimizing sequence
and employ them to study several types of well-posedness for (Pα). Let e be a fixed element
of int K .

Definition 5 A sequence {xn} ⊂ M is called a generalized minimizing sequence of (Pα)

if and only if there exist sequences {εn} ⊂ R
+ converging to 0 and {zn} ⊂ α − Min F

satisfying F(xn) ≤α F (zn) + εne for all n.
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Definition 6 Problem (Pα) is said to be generalized e-well-posed (shortly, generalized well-
posed) if and only if for every generalized minimizing sequence {xn} of (Pα) there exist a
subsequence {xnk

} of {xn} and x̄ ∈ α − Min F such that {xnk
} converges to x̄.

Remark 2 When α = l, Definitions 5 and 6 reduce to [31, Definition 2.2] and corresponding
concepts in [6].

Considering the problem (Pα), we define a set-valued map Lα
F : M × R

+ ⇒ M as, for
all (x, ε) ∈ M × R

+,

Lα
F (x, ε) := {x̂ ∈ M | F(x̂) ≤α F (x) + εe}.

We refer to the set Lα
F (x, ε) as level set at x with level ε and Lα

F as level set-valued map.
It is clear that {xn} is a generalized minimizing sequence of (Pα), if there exist {εn} ⊂ R

+
converging to 0 and zn ∈ α − Min F such that xn ∈ Lα

F (zn, εn).
The following proposition plays an important role in our analysis.

Proposition 2 Let Lα
F be a level set-valued map. Then the following statements hold:

(i) x ∈ Lα
F (x, ε) for all x ∈ M .

(ii) If ε1 < ε2, then Lα
F (x, ε1) ⊂ Lα

F (x, ε2).
(iii)

⋃
z∈α−Min F Lα

F (z, 0) = α − Min F .

Proof We only prove the assertions (i)–(iii) for the case α = s; the proofs of these assertions
for the cases α = l and α = u are similar.

(i) For any ε > 0 and x ∈ M , because εe ∈ int K ⊂ K , we have F(x) + εe ⊂ F(x) + K ,
i.e., F(x) ≤l F (x) + εe.

On the other hand, by the convexity of K , one gets −K ⊂ εe − K . Therefore,

F(x) ⊂ F(x) − K ⊂ F(x) + εe − K,

i.e., F(x) ≤u F (x) + εe. So, x ∈ Ls
F (x, ε).

(ii) For ε1 < ε2 and x̄ ∈ Ls
F (x, ε1), we have F(x̄) ≤s F (x) + ε1e, i.e.,

F(x) + ε1e ⊂ F(x̄) + K and F(x̄) ⊂ F(x) + ε1e − K .

Obviously,
F(x) + ε2e = F(x) + ε1e + (ε2 − ε1)e,

and
F(x) + ε2e − K = F(x) + ε1e − K + (ε2 − ε1)e.

Combining the convexity of cone K with Proposition 1 (ii), we get

F(x) + ε2e ⊂ F(x̄) + K, F(x̄) ⊂ F(x) + ε2e − K,

and hence F(x̄) ≤s F (x) + ε2e. So, Ls
F (x, ε1) ⊂ Ls

F (x, ε2).
(iii) Let x̄ ∈ s − Min F , we always get F(x̄) ≤s F (x̄) because ≤s is reflexive. By (i), we
have x̄ ∈ Ls

F (x̄, 0). So, x̄ ∈ ⋃
z∈s−Min F Ls

F (z, 0).

Conversely, let x̄ ∈ ⋃
z∈s−Min F Ls

F (z, 0) and suppose that there exists x ∈ M satisfying
F(x) ≤s F (x̄), we need to prove that F(x̄) ≤s F (x). Since x̄ ∈ ⋃

z∈s−Min F Ls
F (z, 0), there

exists z ∈ s − Min F such that x̄ ∈ Ls
F (z, 0). Equivalently, F(x̄) ≤s F (z). Since F(x) ≤s

F (x̄), by the transitivity property of ≤s , we get F(x) ≤s F (z). This implies F(z) ≤s F (x)

as z ∈ s − Min F . Using the transitivity property, we conclude that x̄ ∈ s − Min F .

334



Well-posedness for Set Optimization Problems Involving Set Order...

Remark 3 When α = l, Proposition 2 reduces to [6, Proposition 3.1 (without proof)], and
Proposition 2 is new for cases where α = u and α = s.

Inspired by [6], we next introduce notions of metrically α-well-posedness for (Pα) by
using the Hausdorff distance.

Definition 7 Problem (Pα) is said to be metrically α-well-posed if and only if α − Min F

is nonempty, and for every generalized minimizing sequence {xn} of (Pα),

H ∗(Lα
F (xn, εn), α − Min F) → 0,

where {εn} ⊂ R
+ is the sequence corresponding to {xn}.

Next, we propose a new kind of well-posedness for (Pα) which is a relaxed form of
metrically α-well-posedness and useful to improve some known results.

Definition 8 Problem (Pα) is said to be weak metrically α-well-posed if and only if α −
Min F is nonempty, and for every generalized minimizing sequence {xn} of (Pα),

d(xn, α − Min F) → 0.

By Proposition 2 (i), it is clear that if the problem (Pα) is metrically α-well-posed, then
it is weak metrically α-well-posed.

The existence conditions of the solutions for (Pα) have been studied intensively (see, e.g.,
[1, 13]). In this paper, we focus on necessary and sufficient conditions of well-posedness
for (Pα). Therefore, we here assume that α − Min F is nonempty.

Firstly, we study a necessary condition of the generalized well-posedness for (Pα).

Theorem 1 If (Pα) is generalized well-posed, then α − Min F is compact.

Proof For {xn} ⊂ α−Min F and {εn} ⊂ R
+ converging to 0, for each n, we have F(xn) ≤α

F (xn) + εne as e ∈ int K . So, {xn} is a generalized minimizing sequence of (Pα). By
the generalized well-posedness of (Pα), there exist a subsequence {xnk

} of {xn} and x̄ ∈
α − Min F such that {xnk

} converges to x̄. Hence, α − Min F is compact.

Combining Theorem 1 with [6, Theorem 3.1], we get relationships between generalized
well-posedness and (weak) metrically α-well-posedness for (Pα).

Corollary 1 If (Pα) is generalized well-posed, then (Pα) is metrically α-well-posed.

Remark 4 Corollary 1 improves [6, Theorem 3.1] by removing the closedness of α−Min F .

The below example illustrates that the converse of Corollary 1 is not true.

Example 1 Let X = Y = R, M = [−1, 1], K = R
+, e = 1 and F : X ⇒ Y be defined by

F(x) =
{

(0, 1) if x ∈ (0, 1),

(0, 2) otherwise.

Clearly, α − Min F = (0, 1) and (Pα) is metrically α-well-posed. However, (Pα) is not
generalized well-posed by Theorem 1.
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Note that Example 1 also shows that [6, Theorem 3.2] is not true. The following result is
a correction version of this theorem.

Theorem 2 If α − Min F is compact and (Pα) is weak metrically α-well-posed, then (Pα)

is generalized well-posed.

Proof Let {xn} be a generalized minimizing sequence of (Pα), we have d(xn, α−Min F) →
0 as (Pα) is weak metrically α-well-posed. By the compactness of α − Min F , there exists
a sequence {x̄n} ⊂ α − Min F such that

d(xn, x̄n) = d(xn, α − Min F) → 0.

Then, {x̄n} has a subsequence {x̄nk
} converging to some x̄ ∈ α − Min F as α − Min F is

compact. Due to
d(xnk

, x̄) ≤ d(xnk
, x̄nk

) + d(x̄nk
, x̄),

{xnk
} converges to x̄. We conclude that (Pα) is generalized well-posed.

Next, we now give sufficient conditions for (Pα) to be generalized well-posed.

Theorem 3 Suppose that the following conditions hold:

(i) M and α − Min F are compact.
(ii) F is continuous and compact-valued on M .

Then, (Pα) is generalized well-posed.

Proof We only demonstrate the proof of the statement for the case α = u since the tech-
nique to prove the statement for the cases α = l and α = s is similar. Suppose that (Pu)

is not generalized well-posed, it follows from Theorem 2 that (Pu) is not weak metrically
u-well-posed. Then, there exists a generalized minimizing sequence {xn} of (Pu) such that

d(xn, u − Min F) �→ 0. (1)

Since {xn} is a generalized minimizing sequence, there exists {zn} ⊂ u − Min F such that

F(xn) ≤u F (zn) + εne. (2)

Since M is compact, there exists a subsequence {xnk
} of {xn} converging to some x̄ ∈ M . It

follows from (2) that
F(xnk

) ⊂ F(znk
) + εnk

e − K . (3)

By the compactness of u − Min F , we can assume that {znk
} converges to some z̄ ∈ u −

Min F . Let v̄ ∈ F(x̄) be arbitrary, there exists {vnk
} with vnk

∈ F(xnk
) converging to v̄

because of the lower semicontinuity of F at x̄. By (3), we get vnk
∈ F(znk

) +εnk
e−K, and

hence there exist unk
∈ F(znk

) such that

vnk
∈ unk

+ εnk
e − K . (4)

Since F is upper semicontinuous and compact-valued at z̄, there exist ū ∈ F(z̄) and a
subsequence of {unk

}, denoted by the same indexes, such that {unk
} converges to ū. Taking

limit as n → ∞ in (4), we get v̄ ∈ ū − K . Thus, v̄ ∈ F(z̄) − K . By the arbitrariness of v̄,
we conclude that F(x̄) ⊂ F(z̄) − K , i.e., F(x̄) ≤u F (z̄). Since z̄ ∈ u − Min F , we have
F(x̄) ∼u F (z̄), and hence x̄ ∈ u − Min F which contradicts (1). So, (Pα) is generalized
well-posed.
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Theorem 3 gives sufficient conditions of the generalized well-posedness for (Pα) in the
case the constraint set is compact. The following result devotes to the noncompactness case
of this set.

Theorem 4 Suppose that the following conditions hold:

(i) X is locally compact and α − Min F is compact.
(ii) F is compact-valued on M.
(iii) There exists δ > 0 such that the level set Lα

F (x, ε) is connected for every x ∈ α−Min F

and for every ε ∈ (0, δ). Then,

(a) (Pu) is generalized well-posed if F is upper semicontinuous on u − Min F and F is
lower semicontinuous on M.

(b) (Pl ) is generalized well-posed if F is lower semicontinuous on l − Min F and F is
upper semicontinuous on M.

(c) (Ps) is generalized well-posed if F is continuous on M.

Proof By the similarity, we here only demonstrate the proof for the statement (a). Suppose
that (Pu) is not generalized well-posed. By the assumption (i) and Theorem 2, (Pu) is also
not metrically well-posed. Then, there exists a generalized minimizing sequence {xn} of
(Pu) such that

H ∗(Lu
F (xn, εn), u − Min F) �→ 0,

where {εn} ⊂ R
+ converging to 0 is the sequence corresponding to {xn}. Because {xn}

is a generalized minimizing sequence, for each n ∈ N there exists zn ∈ u − Min F such
that F(xn) ≤u F (zn) + εne. Since H ∗(Lu

F (xn, εn), u − Min F) �→ 0, we can assume that
there is β > 0 satisfying H ∗(Lu

F (xn, εn), u − Min F) ≥ β for all n (take a subsequence if
necessary). By (i), there exists an open neighborhood U of u − Min F such that its closure,
U , is compact and Lu

F (xn, εn) �⊂ U . Hence, for each n ∈ N, there exists x̂n ∈ Lu
F (xn, εn)

such that
x̂n �∈ U . (5)

Since {xn} is a generalized minimizing sequence and x̂n ∈ Lu
F (xn, εn), i.e., F(x̂n) ≤u

F (xn) + εne, we conclude that F(x̂n) ≤u F (zn) + 2εne. Hence, x̂n ∈ Lu
F (zn, 2εn).

Combining this with (5), we get

Lu
F (zn, 2εn) ∩ (U)c �= ∅, (6)

where (U)c denotes the complement of U in X. Also, we obtain

zn ∈ Lu
F (zn, 2εn) ∩ int U . (7)

We next claim that Lu
F (zn, 2εn) ∩ ∂(U) �= ∅ for every n ∈ N satisfying 2εn < δ. Suppose

on the contrary that there exists m̄n ∈ N such that Lu
F (zm̄n , 2εm̄n) ⊂ int U ∪ int(U)c. This

leads to

Lu
F (zm̄n , 2εm̄n) = (Lu

F (zm̄n , 2εm̄n) ∩ int U) ∪ (Lu
F (zm̄n , 2εm̄n) ∩ (int(U)c)). (8)

We note that Lu
F (zm̄n , 2εm̄n) ∩ int U and Lu

F (zm̄n , 2εm̄n) ∩ (int(U)c) are separated since

intU ∩ int(U)c = ∅ and int U ∩ int(U)c = ∅. Employing (6)–(8) and Lu
F (zm̄n , 2εm̄n) ∩

int U ∩ (U)c = ∅, we arrive at a contradiction of the fact that Lu
F (zm̄n , 2εm̄n) is a connected

set. Therefore, there exists a sequence {wn} such that

wn ∈ Lu
F (zn, 2εn) ∩ bd(U), (9)
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where bd(A) denotes the boundary of a given set A. By the compactness of U , there exists a
subsequence of {wn} which is still denoted by {wn} converging to some w̄ ∈ U . Since wn ∈
Lu

F (zn, 2εn), F(wn) ⊂ F(zn)+ 2εne −K . Due to the compactness of u− Min F , there is a
subsequence of {zn} which is still denoted by {zn} converging to some z̄ ∈ u−Min F . Now,
we show that F(w̄) ⊂ F(z̄) − K . Let v̄ ∈ F(w̄) be arbitrary, by the lower semicontinuity
of F at w̄, there exists a sequence {vn} converging to v̄ where vn ∈ F(wn) for all n. We get
vn ∈ F(zn) + 2εne − K . Thus, there exists un ∈ F(zn) such that

vn ∈ un + 2εne − K . (10)

Since F is upper semicontinuous and compact-valued at z̄, there exist ū ∈ F(z̄) and a
subsequence of {un}, denoted by the same indexes, converging to ū. Taking limit as n → ∞
in (10), we get v̄ ∈ ū − K . Therefore, v̄ ∈ F(z̄) − K . By the arbitrariness of v̄, we have
F(w̄) ⊂ F(z̄) − K , i.e., F(w̄) ≤u F (z̄). Since z̄ ∈ u − Min F , we have F(w̄) ∼u F (z̄),
and hence w̄ ∈ u − Min F which contradicts (9).

The following examples show that Theorems 3 and 4 are not comparable.

Example 2 Let X = Y = R, M = [0, 1], K = R
+, e = 1 and F : X ⇒ Y be defined

by F(x) = [−x2 + x,−2x2 + 2x]. Clearly, all conditions of Theorem 3 are satisfied but
the condition (iv) of Theorem 4 does not hold. Indeed, let δ = 1

4 , direct calculations give

us α − Min F = {0, 1} and the level set Lα
F (x, ε) = [0, 1−√

1−4ε
2 ] ∪ [ 1+√

1−4ε
2 , 1] is not

connected for every x ∈ α − Min F and every ε ∈ (0, δ).

Theorem 4 does not require the compactness of constraint set M , and hence, when M is
not compact, Theorem 3 does not work while Theorem 4 can apply. Furthermore, the below
example show that even in the case M is compact, they are also not comparable.

Example 3 Let X = Y = R, M = [−2, 2], K = R
+, e = 1 and F,G : X ⇒ Y be

defined by

F(x) =
{ [

x2, 2x2
]

if − 1 ≤ x ≤ 1,[
0, x2 + 4

]
otherwise.

G(x) =
⎧⎨
⎩

[
x2 − 1, x2 + 1

]
if x = 0,[

x2

4
,
x2

2

]
otherwise.

Then, u − Min F = l − Min G = {0}, and hence, they are compact. For δ = 1 and for each
ε ∈ (0, δ), we have Lu

F (0, ε) = [−√
ε
2 ,

√
ε
2 ], Ll

F (0, ε) = [−√
ε,

√
ε], and thus, they are

connected. Therefore, all conditions of Theorem 4 are satisfied. Employing this theorem,
we conclude that the problems (Pu) and (Pl ) with respect to F and G, respectively, are
generalized well-posed. However, Theorem 3 does not work as F and G are not continuous
on M .

The next example illustrates that the assumption (i) of Theorem 4 cannot be dropped.

Example 4 Let X = l∞ be the space of all bounded sequences of real numbers with the sup
norm, ‖x‖∞ = sup |xn| for all x = (x1, x2, . . . , xn, . . .). Let Y = R, M = X, K = R

+,
e = 1 and F : X ⇒ Y be defined by

F(x) = [|‖x‖ − 1|, |‖x‖ − 1| + 1].
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Then, X is a metric space with the metric d∞(x, y) = ‖x− y‖. Since X is an infinite dimen-
sional space, we conclude that (X, d∞) is not locally compact, and hence, the assumption
(i) of Theorem 4 is not satisfied. It is obvious that α − Min F = {x ∈ X | ‖x‖ = 1},
and F is continuous and compact-valued on M . Moreover, for δ = 1, the level set
Lα

F (x, ε) = {x ∈ X | 1 − ε ≤ ‖x‖ ≤ 1 + ε} is connected for every x ∈ α − Min F and for
every ε ∈ (0, δ). Let {xi} ⊂ M , xi here is the sequence which is zero everywhere except for
a 1 at the ith position. Then, {xi} is a minimizing sequence, but it has no convergent sub-
sequence. So, the problem (Pα) is not generalized well-posedness and the assumption (i) is
crucial.

4 Links BetweenWell-Posedness and Stability

In this section, we study some characterizations and criteria of well-posedness for (Pα). The
generalized well-posedness can be characterized by the behavior of Sα−Min F (ε) as ε → 0,
which is given by

Sα−Min F (ε) := {x ∈ M | ∃z ∈ α − Min F,F (x) ≤α F (z) + εe}.
The set-valued map Sα−Min F : R

+ ⇒ M is considered as approximating solution map
of (Pα), and it has a closed relationship with the level set, more precisely, Sα−Min F (ε) =⋂

x∈α−Min F Lα
F (x, ε).

The following proposition gives some properties of the map Sα−Min F which are useful
in the sequel.

Proposition 3 The following statements hold:

(i) Sα−Min F (0) = α − Min F .
(ii) If ε1 ≤ ε2, then Sα−Min F (ε1) ⊂ Sα−Min F (ε2).
(iii)

⋂
ε>0 Sα−Min F (ε) = α − Min F if F is compact-valued on M .

Proof We only prove the assertions (i)–(iii) for the case α = s; proofs of these assertions
for cases α = l and α = u are given by similar arguments.

(i) Obviously, α − Min F ⊂ Sα−Min F (0). Conversely, let x ∈ Ss−Min F (0), there exists
z ∈ s − Min F such that F(x) ≤s F (z). Taking y ∈ M satisfying F(y) ≤s F (x), we show
that F(x) ≤s F (y). By the transitivity property of ≤s , we have F(y) ≤s F (z), and hence,
F(z) ≤s F (y) as z ∈ s−Min F . Again by the transitivity property, one gets F(x) ≤s F (y).
So, x ∈ s − Min F .
(ii) Assume ε1 ≤ ε2. Let x ∈ Ss−Min F (ε1), there exists z ∈ s − Min F such that F(x) ≤s

F (z) + ε1e, i.e.,

F(z) + ε1e ⊂ F(x) + K, and F(x) ⊂ F(z) + ε1e − K .

We have

F(z) + ε2e = F(z) + ε1e + (ε2 − ε1)e,

and

F(z) + ε2e − K = F(z) + ε1e − K + (ε2 − ε1)e.

Combining the convexity of K with Proposition 1, we obtain that

F(z) + ε2e ⊂ F(x) + K, and F(x) ⊂ F(z) + ε2e − K,
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i.e., F(x) ≤s F (z) + ε2e. Consequently, x ∈ Ss−Min F (ε2) as z ∈ s − Min F . Hence,
Ss−Min F (ε1) ⊂ Ss−Min F (ε2).
(iii) Let x ∈ s − Min F and ε > 0 be arbitrary. We have x ∈ Ss−Min F (ε) for any ε > 0, and
so x ∈ ⋂

ε>0 Ss−Min F (ε). Conversely, let x ∈ ⋂
ε>0 Ss−Min F (ε), we get x ∈ Ss−Min F (ε)

for any ε > 0. By the definition of Ss−Min F (ε), there exists z ∈ s − Min F such that
F(x) ≤s F (z) + εe, i.e.,

F(z) + εe ⊂ F(x) + K, and F(x) ⊂ F(z) + εe − K . (11)

Since F is compact-valued, F(x) − K and F(z) − K are closed by Lemma 3. From (11),
let ε → 0, we have

F(z) ⊂ F(x) + K and F(x) ⊂ F(z) − K .

Equivalently, F(x) ≤s F (z). This together with z ∈ s − Min F implies that x ∈ s −
Min F . Indeed, suppose that F(y) ≤s F (x) for some y ∈ M . Then, F(y) ≤s F (z) because
F(x) ≤s F (z). Moreover, as z ∈ α − Min F , we get F(z) ≤s F (y). It yields that F(x) ≤s

F (y), and hence, x ∈ s − Min F . So,
⋂

ε>0 Ss−Min F (ε) ⊂ s − Min F .

Using the Kuratowski measure of noncompactness of approximate solution sets, we now
establish a metric characterization of the generalized well-posedness for (Pα).

Theorem 5 (i) If the problem (Pα) is generalized well-posed, then μ(Sα−Min F (ε)) → 0 as
ε → 0.
(ii) If the following conditions hold:

(a) F is compact-valued on M .
(b) Sα−Min F (ε) is closed for all ε > 0.
(c) μ(Sα−Min F (ε)) → 0 as ε → 0.

Then, the problem (Pα) is generalized well-posed.

Proof (i) Suppose that (Pα) is generalized well-posed. Notice that α − Min F is compact
by Theorem 1. Hence, for any ε > 0, there are Mi (i = 1, . . . , n) with diam Mi ≤ ε and
α − Min F ⊂ ⋃n

i=1 Mi . For each i ∈ {1, . . . , n}, we denote

Ni := {x ∈ X | d(x,Mi) ≤ H(Sα−Min F (ε), α − Min F)}.
Firstly, we show that Sα−Min F (ε) ⊂ ⋃n

i=1 Ni . Letting x ∈ Sα−Min F (ε), we have

d(x, α − Min F) ≤ H(Sα−Min F (ε), α − Min F).

Since α − Min F ⊂ ⋃n
i=1 Mi , we conclude that

d(x,∪n
i=1Mi) ≤ d(x, α − Min F) ≤ H(Sα−Min F (ε), α − Min F).

So, there is k0 ∈ {1, . . . , n} such that

d(x,Mk0) ≤ H(Sα−Min F (ε), α − Min F),

i.e., x ∈ Nk0 . Hence, Sα−Min F (ε) ⊂ ⋃n
i=1 Ni . Notice further that

diam Ni = diam Mi + 2H(Sα−Min F (ε), α − Min F)

≤ ε + 2H(Sα−Min F (ε), α − Min F).

Therefore,

μ(Sα−Min F (ε)) ≤ μ(α − Min F) + 2H(Sα−Min F (ε), α − Min F).
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Since α − Min F is compact, μ(α − Min F) = 0. Hence,

μ(Sα−Min F (ε)) ≤ 2H(Sα−Min F (ε), α − Min F).

Finally, we show that H(Sα−Min F (ε), α−Min F) → 0 as ε → 0. Because α − Min F ⊂
Sα−Min F (ε), H ∗(α − Min F, Sα−Min F (ε)) = 0, and hence, we only need to prove that
H ∗(Sα−Min F (ε), α − Min F) → 0 as ε → 0. Assume, by contradiction, that there exist a
real number r > 0 and a sequence {εn} ⊂ R

+ converging 0 such that for each n, there exists
xn ∈ Sα−Min F (εn) satisfying

d(xn, α − Min F) ≥ r . (12)

Because xn ∈ Sα−Min F (εn), for each n, there exists zn ∈ α − Min F such that F(xn) ≤α

F (zn) + εne. This means that {xn} is a generalized minimizing sequence of (Pα). So, there
is a subsequence {xnk

} of {xn} converging to some x ∈ α − Min F . Therefore, for nk

sufficiently large, we have d(xnk
, x) < r which contradicts (12). Hence, μ(Sα−Min F (ε)) →

0 as ε → 0.
(ii) Let {xn} be a generalized minimizing sequence of (Pα), then there exist {εn} ⊂
R

+ converging to 0 and zn ∈ α − Min F satisfying F(xn) ≤α F (zn) +εne. Thus,
xn ∈ Sα−Min F (εn). Using Proposition 3, we have that α − Min F is compact and
H(Sα−Min F (εn), α − Min F) → 0. We get d(xn, α − Min F) → 0 as d(xn, α − Min F) ≤
H(Sα−Min F (εn), α − Min F). Therefore, there exists a sequence {x̄n} ⊂ α − Min F such
that d(xn, x̄n) → 0 as n → ∞. By the compactness of α − Min F , there is a subsequence
{x̄nk

} of {x̄n} converging to some x̄ ∈ α − Min F . Then, the corresponding subsequence
{xnk

} converges to x̄. So, (Pα) is generalized well-posed.

Remark 5 For the necessary conditions of generalized well-posedness, our result in The-
orem 5 (i) improves [31, Proposition 4.1]. More precisely, the generalized well-posedness
of (Pα) is obtained without using compactness of solution set, closedness of approximating
solution set, and compact values of F imposed in [31, Proposition 4.1].

In Theorem 5 (ii), we use assumption about the closedness of approximating solution
sets. In the next result, we give sufficient conditions for this assumption.

Proposition 4 Assume that the following conditions are satisfied:

(i) F is continuous and compact-valued on M .
(ii) α − Min F is compact.

Then, Sα−Min F (ε) is closed for each ε ≥ 0.

Proof By the similarity, we only prove the assertion for the case α = u. For each ε ≥ 0,
let {xn} ⊂ Su−Min F (ε) be a sequence converging to some x ∈ M , we need to prove that
x ∈ Su−Min F (ε). Since {xn} ⊂ Su−Min F (ε), there exist zn ∈ u − Min F such that

F(xn) ≤u F (zn) + εe. (13)

By the compactness of u−Min F , there exist a subsequence of {zn} which is still denoted by
{zn} and z ∈ u−Min F such that {zn} converges to z. Next, we show that F(x) ≤u F (z)+εe.
Indeed, from (13), we get

F(xn) ⊂ F(zn) + εe − K . (14)
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Let y ∈ F(x), by the lower semicontinuity of F , there exists {yn} converging to y where
yn ∈ F(xn). Combining this with (14), for each n, there exists wn ∈ F(zn) such that

yn ∈ wn + εe − K . (15)

Since F is upper semicontinuous and compact-valued at z, there exist w ∈ F(z) and a
subsequence of {wn} which is still denoted by {wn} such that {wn} converges to w. From
(15), there exist kn ∈ K satisfying yn = wn + εe − kn, i.e., kn = wn + εe − yn. Then,
kn converge to w + εe − y ∈ K as K is closed. Therefore, there exists k ∈ K such that
y = w + εe − k ∈ w + εe − K ⊂ F(z) + εe − K as w ∈ F(z). We arrive at the fact
that F(x) ⊂ F(z) + εe − K . It means that F(x) ≤u F (z) + εe. So, x ∈ Su−Min F (ε) as
z ∈ u − Min F .

The next result gives sufficient and necessary conditions for generalized well-posedness
of (Pα) via upper semicontinuity of approximating solution map of (Pα). When α = l, this
result coincides with [31, Proposition 4.3 (i)].

Theorem 6 Sα−Min F is upper semicontinuous and compact-valued at 0 if and only if the
problem (Pα) is generalized well-posed.

Proof Suppose that (Pα) is generalized well-posed. By Theorem 1, α − Min F is com-
pact. By contradiction, suppose that Sα−Min F is not upper semicontinuous at 0. Then,
there exists a neighborhood N of Sα−Min F (0) such that for any neighborhood U of 0,
Sα−Min F (U) �⊂ N . It means that there exists a sequence {εn} ⊂ R

+ converging to 0 such
that for each n, Sα−Min F (εn) �⊂ N . Then, there exist xn ∈ Sα−Min F (εn) \ N for all n, and
hence, there exist zn ∈ α−Min F such that F(xn) ≤α F (zn)+εne. This implies that {xn} is
a generalized minimizing sequence of (Pα). Because (Pα) is generalized well-posed, there
exist a subsequence {xnk

} of {xn} and z ∈ α − Min F such that {xnk
} converges to z which

is impossible since xnk
�∈ N for all nk .

Conversely, let {xn} ⊂ M be a generalized minimizing sequence of (Pα), there are {εn} ⊂
R

+ converging to 0 and zn ∈ α − Min F satisfying F(xn) ≤α F (zn)+ εne. This means that
xn ∈ Sα−Min F (εn). Since Sα−Min F (·) is upper semicontinuous at 0 and N is a neighborhood
of Sα−Min F (0), xn ∈ N for n sufficiently large. Equivalently, for every neighborhood W of
0, there exists n0 ∈ N such that xn ∈ α − Min F + W for any n ≥ n0. By the compactness
of α − Min F , there exist a subsequence {xnk

} of {xn} and x̄ ∈ α − Min F such that {xnk
}

converges to x̄. So, (Pα) is generalized well-posed.

To end up this section, we give the sufficient conditions for the upper semicontinuity of
approximating solution map of (Pα) used in the previous result.

Proposition 5 If M is compact and the conditions of Proposition 4 are satisfied, then
Sα−Min F is upper semicontinuous at 0.

Proof We only give the proof of the assertion for the case α = u. Suppose to the contrary
that Su−Min F is not upper semicontinuous at 0. Then, there exist an open neighborhood W0
of Su−Min F (0) and a sequence {εn} ⊂ R

+ converging to 0 such that Su−Min F (εn) �⊂ W0 for
all n ∈ N. Hence, for each n ∈ N, there exists

xn ∈ Su−Min F (εn) \ W0. (16)
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Since M is compact, we can assume that {xn} converges to an element x0 ∈ M . Moreover,
by (16), for each n ∈ N, there exists zn ∈ u − Min F such that F(xn) ≤u F (zn) + εne.
Hence,

F(xn) ⊂ F(zn) + εne − K . (17)

By the compactness of u − Min F , we can assume that {zn} converges to some z0 ∈ u −
Min F . Next, we prove that F(x0) ⊂ F(z0) − K . Indeed, for any u0 ∈ F(x0), by the lower
semicontinuity of F on M and Lemma 3, there exists a sequence {un}, un ∈ F(xn), such
that {un} converges to u0. It follows from (17) that, for each n ∈ N, there exists vn ∈ F(zn)

such that
un − vn − εne ∈ −K . (18)

Since F is upper semicontinuous and compact-valued at z0, we can assume that {vn} con-
verges to v0 ∈ F(z0). By (18) and the closedness of K , u0 − v0 ∈ −K . Therefore,
u0 ∈ F(z0) − K . Since u0 ∈ F(x0) is arbitrary, F(x0) ⊂ F(z0) − K , and hence
x0 ∈ Su−Min F (0) ⊂ W0 which is impossible as xn is not in W0 for all n. So, Su−Min F is
upper semicontinuous at 0.
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