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Abstract
In this paper, we present some new necessary and sufficient optimality conditions in terms of
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the obtained results.
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1 Introduction

This paper mainly deals with constrained vector optimization problems formulated as
follows:

MinRm+ f (x) := (f1(x), . . . , fm(x))

s.t. x ∈ C := {x ∈ � | gt (x) � 0, t ∈ T }, (VP)

where fi , i ∈ I := {1, . . . , m}, and gt , t ∈ T , are local Lipschitz functions from a Banach
space X to R, � is a nonempty and closed subset of X, and T is an arbitrary (possibly infi-
nite) index set. Optimization problems of this type relate to semi-infinite vector optimization
problems, provided that the space X is finite-dimensional, and to infinite vector optimiza-
tion problems if X is infinite-dimensional (see [2, 16]). The modeling of problems as (VP)
naturally arises in a wide range of applications in various fields of mathematics, economics,
and engineering; we refer the readers to the books [16, 35] and to the papers [4, 5, 7–10, 13,
14, 18, 23] with the references therein.

Our main concern is to study the optimality conditions for approximate Pareto solutions
of problem (VP). It should be noted here that the study of approximate solutions is very
important because, from the computational point of view, numerical algorithms usually gen-
erate only approximate solutions if we stop them after a finite number of steps. Furthermore,
the solution set may be empty in the general noncompact case (see [20, 22, 26, 27, 33, 38])
whereas approximate solutions exist under very weak assumptions (see Propositions 2.1 and
2.2 in Section 2 below).

In the literature, there are many publications devoted to optimality conditions for
approximate solutions of semi-infinite/infinite scalar optimization problems (see, for exam-
ple, [13, 23, 24, 29–31, 34, 36]). However, in contrast to the scalar case, there are a
few works dealing with optimality conditions for approximate Pareto solutions of semi-
infinite/infinite vector optimization problems (see [25, 28, 37]). In [28, 37], the authors
obtained necessary and sufficient optimality conditions for approximate Pareto solu-
tions of a convex semi-infinite/infinite vector optimization problem under various kind
of Farkas–Minkowski constraint qualifications. By using the Chankong–Haimes scalar-
ization method, Kim and Son [25] established some necessary optimality conditions for
approximate quasi Pareto solutions of a local Lipschitz semi-infinite vector optimization
problem.

In this paper, we present some necessary conditions of the Karush–Kuhn–Tucker
type for approximate (quasi) Pareto solutions of the problem (VP) under a Slater-
type constraint qualification hypothesis. Sufficient optimality conditions for approximate
(quasi) Pareto solutions of the problem (VP) are also provided by means of introducing the
concepts of (strictly) generalized convex functions, defined in terms of the Clarke subdif-
ferential of local Lipschitz functions. The obtained results improve the corresponding ones
in [25, 28, 37]. As an application, we establish optimality conditions for cone-constrained
convex vector optimization problems and semidefinite vector optimization problems. In
addition, some examples are also given for illustrating the obtained results.

In Section 2, we recall some basic definitions and preliminaries from the theory of vector
optimization and variational analyses. Section 3 presents the main results. The application
of the obtained results in Section 3 to cone-constrained convex vector optimization problems
and semidefinite vector optimization problems is addressed in Section 4.
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2 Preliminaries

2.1 Approximate Pareto Solutions

Let Rm+ := {y := (y1, . . . , ym) | yi � 0, i ∈ I } be the nonnegative orthant in R
m. For

a, b ∈ R
m, by a � b, we mean b − a ∈ R

m+; by a ≤ b, we mean b − a ∈ R
m+ \ {0}; and by

a < b, we mean b − a ∈ intRm+.

Definition 2.1 (See [32]) Let ξ ∈ R
m+ and x̄ ∈ C. We say that

(i) x̄ is a weakly Pareto solution (resp. a Pareto solution) of (VP) if there is no x ∈ C such
that

f (x) < f (x̄) (resp. f (x) ≤ f (x̄)).

(ii) x̄ is a ξ -weakly Pareto solution (resp. a ξ -Pareto solution) of (VP) if there is no x ∈ C

such that
f (x) + ξ < f (x̄) (resp. f (x) + ξ ≤ f (x̄)).

(iii) x̄ is a ξ -quasi-weakly Pareto solution (resp. a ξ -quasi Pareto solution) of (VP) if there
is no x ∈ C such that

f (x) + ‖x − x̄‖ξ < f (x̄) (resp. f (x) + ‖x − x̄‖ξ ≤ f (x̄)).

Remark 2.1 If ξ = 0, then the concepts of a ξ -Pareto solution and a ξ -quasi-Pareto solution
(resp. a ξ -weakly Pareto solution and a ξ -quasi-weakly Pareto solution) coincide with the
concept of a Pareto solution (resp. a weakly Pareto solution). Hence, when dealing with
approximate Pareto solutions, we only consider the case that ξ ∈ R

m+ \ {0}.

Definition 2.2 Let A be a subset in R
m and ȳ ∈ R

m. The set A ∩ (ȳ − R
m+) is called a

section of A at ȳ and denoted by [A]ȳ . The section [A]ȳ is said to be bounded if and only if
there is a ∈ R

m such that
[A]ȳ ⊂ a + R

m+.

Remark 2.2 Let ȳ be an arbitrary element in f (C). It is easily seen that every ξ -Pareto
solution (resp. ξ -quasi Pareto solution) of (VP) on C ∩ f −1

([f (C)]ȳ
)
is also a ξ -Pareto

one (resp. ξ -quasi Pareto one) of (VP) on C.

The following results give some sufficient conditions for the existence of approximate
Pareto solutions of (VP).

Proposition 2.1 (Existence of approximate Pareto solutions) Assume that f (C) has a
nonempty bounded section. Then for each ξ ∈ R

m+ \ {0}, the problem (VP) admits at least
one ξ -Pareto solution.

Proof The assertion follows directly from Remark 2.2 and [17, Lemma 3.1], so is omitted.

Proposition 2.2 (Existence of approximate quasi Pareto solutions) If f (C) has a nonempty
bounded section, then for every ξ ∈ intRm+, the problem (VP) admits at least one ξ -quasi
Pareto solution.

437



T.Q. Son et al.

Proof Let x0 ∈ C be such that the section of f (C) at f (x0) is bounded. By Proposition 2.1,
there exists x̄ ∈ C such that f (x̄) � f (x0) and

f (C) ∩ [f (x̄) − ξ − R
m+ \ {0}] = ∅.

Consequently,
f (C) ∩ [f (x̄) − ξ − intRm+] = ∅.

By the continuity of f and the closedness of C, for each x ∈ C, the set

{u ∈ C | f (u) + ‖u − x‖ξ � f (x)}
is closed. By [1, Theorem 3.1], there exists x∗ ∈ C such that f (x∗) < f (x̄) and

f (x) + ‖x − x∗‖ξ − f (x∗) /∈ −R
m+ for all x ∈ C, x 	= x∗.

Consequently,

f (x) + ‖x − x∗‖ξ � f (x∗) for all x ∈ C, x 	= x∗.
Thus, x∗ is a ξ -quasi Pareto solution of (VP). The proof is complete.

2.2 Normals and Subdifferentials

For a Banach space X, the bracket 〈· , ·〉 stands for the canonical pairing between space X

and its dual X∗. The closed unit ball of X is denoted by BX . The closed ball with center
x and radius δ is denoted by B(x, δ). Let A be a nonempty subset of X. The topological
interior, the topological closure, and the convex hull of A are denoted, respectively, by intA,
clA, and coneA. The symbol A◦ stands for the polar cone of a given set A ⊂ X, i.e.,

A◦ = {x∗ ∈ X∗ | 〈x∗, x〉 � 0, ∀x ∈ A}.
Let ϕ : X → R be a local Lipschitz function. The Clarke generalized directional derivative
of ϕ at x̄ ∈ X in the direction d ∈ X, denoted by ϕ◦(x̄; d), is defined by

ϕ◦(x̄; d) := lim sup
x→x̄
t↓0

ϕ(x + td) − ϕ(x)

t
.

The Clarke subdifferential of ϕ at x̄ is defined by

∂ϕ(x̄) := {x∗ ∈ X∗ | 〈x∗, d〉 � ϕ◦(x̄; d), ∀d ∈ X}.
Let S be a nonempty closed subset of X. The Clarke tangent cone to S at x̄ ∈ S is defined
by

T (x̄; S) := {v ∈ X | d◦
S(x̄; v) = 0},

where dS denotes the distance function to S. The Clarke normal cone to S at x̄ ∈ S is
defined by

N(x̄; S) := [T (x̄; S)]◦.
The following lemmas will be used in the sequel.

Lemma 2.1 (See [12, p. 52]) Let ϕ be a local Lipschitz function from X to R and S be a
nonempty subset of X. If x̄ is a local minimizer of ϕ on S, then

0 ∈ ∂ϕ(x̄) + N(x̄; S).

Lemma 2.2 (See [12, Proposition 2.3.3]) Let ϕl : X → R, l = 1, . . . , p, p � 2, be a local
Lipschitz around x̄ ∈ X. Then, we have the following inclusion:

∂(ϕ1 + · · · + ϕp)(x̄) ⊂ ∂ϕ1(x̄) + · · · + ∂ϕp(x̄).
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Lemma 2.3 (See [12, Proposition 2.3.12]) Let ϕl : X → R, l = 1, . . . , p, be a local
Lipschitz around x̄ ∈ X. Then, the function φ(·) := max{ϕl(·) | l = 1, . . . , p} is also a
local Lipschitz around x̄ and one has

∂φ(x̄) ⊂
⋃

{
p∑

l=1

λl∂ϕl(x̄) | (λ1, . . . , λp) ∈ R
p
+,

p∑

l=1

λl = 1, λl[ϕl(x̄) − φ(x̄)] = 0

}

.

3 Optimality Conditions

Hereafter, we assume that the following assumptions are satisfied:

(i) T is a compact topological space;
(ii) X is separable; or T is metrizable and ∂gt (x) is upper semicontinuous (w∗) in t for
each x ∈ X.

Denote by R
|T |
+ the set of all functions μ : T → R+ such that μt := μ(t) = 0 for all

t ∈ T except for finitely many points. The active constraint multipliers set of the problem
(VP) at x̄ ∈ � is defined by

A(x̄) :=
{
μ ∈ R

|T |
+ | μtgt (x̄) = 0, ∀t ∈ T

}
.

For each x ∈ X, put G(x) := maxt∈T gt (x) and

T (x) := {t ∈ T | gt (x) = G(x)} .
Fix ξ ∈ R

m+ \ {0}. The following theorem gives a necessary optimality condition of fuzzy
Karush–Kuhn–Tucker type for ξ -weakly Pareto solutions of the problem (VP).

Theorem 3.1 Let x̄ be a ξ -weakly Pareto solution of the problem (VP). If the following
constraint qualification condition holds:

then, for any δ > 0 small enough, there exist xδ ∈ C∩B(x̄, δ) and λ := (λ1, . . . , λm) ∈ R
m+

with
∑

i∈I λi = 1 such that

0 ∈
∑

i∈I

λi∂fi(xδ) + R+cl conv
{⋃

∂gt (xδ) | t ∈ T (xδ)
}

+ N(xδ;�) + 1

δ
max
i∈I

{ξi}BX∗ ,

λi

[
fi(xδ) − fi(x̄) + ξi − max

i∈I
{fi(xδ) − fi(x̄) + ξi}

]
= 0, i ∈ I,

where cl conv(·) denotes the closed convex hull with the closure taken in the weak∗-topology
of the dual space X∗.

Proof For each x ∈ X, put ψ(x) := maxi∈I {fi(x) − fi(x̄) + ξi}. Then, we have ψ(x̄) =
maxi∈I {ξi}. Since x̄ is a ξ -weakly Pareto solution of (VP), one has

ψ(x) � 0, ∀x ∈ C. (3.1)

Clearly, ψ is locally Lipschitz and bounded from below on C. By (3.1), we have

ψ(x̄) � inf
x∈C

ψ(x) + max
i∈I

{ξi}.
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By the Ekeland variational principle [15, Theorem 1.1], for any δ > 0, there exists xδ ∈ C

such that ‖xδ − x̄‖ < δ and

ψ(xδ) � ψ(x) + 1

δ
max
i∈I

{ξi}‖x − xδ‖, ∀x ∈ C.

For each x ∈ C, put

ϕ(x) := ψ(x) + 1

δ
max
i∈I

{ξi}‖x − xδ‖.
Then, xδ is a minimizer of ϕ on C. By Lemma 2.1, we have

0 ∈ ∂ϕ(xδ) + N(xδ; C). (3.2)

By Lemma 2.2 and [21, Example 4, p. 198], one has

∂ϕ(xδ) ⊂ ∂ψ(xδ) + 1

δ
max
i∈I

{ξi}BX∗ . (3.3)

Thanks to Lemma 2.3, we have

∂ψ(xδ) ⊂
{∑

i∈I

λi∂fi(xδ) | λi � 0, i ∈ I,
∑

i∈I

λi = 1, λi[fi(xδ)−fi(x̄)+ξi−ψ(xδ)] = 0

}
.

(3.4)
We claim that there exists δ̄ > 0 such that for all x ∈ B(x̄, δ̄) there is d ∈ T (x; �) satisfying
G◦(x; d) < 0. Indeed, if otherwise, then there exists a sequence {xk} converging to x̄ such
that G◦(xk; d) � 0 for all k ∈ N and d ∈ T (x;�). Hence, G◦(xk; d̄) � 0 for all k ∈ N. By
the upper semicontinuity of G◦(·, ·), we have:

G◦(x̄; d̄) � lim sup
k→∞

G◦(xk; d̄) � 0,

contrary to condition (U ).
By [19, Theorem 6] and [36, Theorem 2.1], for each δ ∈ (0, δ̄), we have

N(xδ;C) ⊂ N(xδ; �) + R+∂G(xδ)

⊂ N(xδ; �) + R+cl conv
{⋃

∂gt (xδ) | t ∈ T (xδ)
}
.

Combining this with (3.2)–(3.4), we obtain the desired assertion.

Remark 3.1 By using approximate subdifferentials, Lee et al. [28, Theorem 8.3] derived
some necessary optimality conditions for ξ -weakly Pareto solutions of a convex infinite
vector optimization problem. However, we are not familiar with any results on optimality
conditions for ξ -weakly Pareto solutions of a nonconvex problem of type (VP). Theorem
3.1 may be the first result of this type. We also note here that when T is a finite set, the
result in Theorem 3.1 is a corresponding result of [11, Theorem 3.4], where the optimality
condition was given in terms of the limiting subdifferential.

Theorem 3.2 Let x̄ be a ξ -quasi-weakly Pareto solution of the problem (VP). If the con-
dition (U ) holds at x̄ and the convex hull of

{⋃
∂gt (x̄) | t ∈ T (x̄)

}
is weak∗-closed, then,

there exist λ := (λ1, . . . , λm) ∈ R
m+ with

∑
i∈I λi = 1, and μ ∈ A(x̄) such that

0 ∈
∑

i∈I

λi∂fi(x̄) +
∑

t∈T

μt∂gt (x̄) +
∑

i∈I

λiξiBX∗ + N(x̄; �). (3.5)
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Proof For each x ∈ X, put 
(x) := maxi∈I {fi(x) − fi(x̄) + ξi‖x − x̄‖}. Then, 
(x̄) = 0.
Since x̄ is a ξ -quasi-weakly Pareto solution of (VP), we have


(x) � 0, ∀x ∈ C.

This means that x̄ is a minimizer of 
 on C. By Lemma 2.1, one has

0 ∈ ∂
(x̄) + N(x̄; C). (3.6)

By Lemma 2.3, we have

∂
(x̄) ⊂
{

∑

i∈I

λi [∂fi(x̄) + ξiBX∗ ] | λi � 0,
∑

i∈I

λi = 1

}

. (3.7)

Since condition (U ) holds at x̄ and the convex hull of
{⋃

∂gt (x̄) | t ∈ T (x̄)
}
is weak∗-

closed, we obtain

N(x̄; C) ⊂ N(x̄;�) + R+∂G(x̄)

⊂ N(x̄;�) + R+conv
{⋃

∂gt (x̄) | t ∈ T (x̄)
}
.

(3.8)

To finish the proof of the theorem, it remains to combine (3.6), (3.7), and (3.8).

Remark 3.2 (i) When X is a finite-dimensional space and the constraint functions gt : X →
R, t ∈ T , are local Lipschitz with respect to x uniformly in t ∈ T , i.e., for each x ∈ X,
there is a neighborhood U of x and a constant K > 0 such that

|gt (u) − gt (v)| � K‖u − v‖, ∀u, v ∈ U and ∀t ∈ T ,

then the set
{⋃

∂gt (x) | t ∈ T (x)
}
is compact. Consequently, its convex hull is always

closed.

(ii) Recently, by using the Chankong–Haimes scalarization scheme (see [6]), Kim
and Son [25, Theorem 3.3] obtained some necessary optimality conditions for ξ -quasi
Pareto solutions of a local Lipschitz semi-infinite vector optimization problem. We
note here that condition (U ) is weaker than the following condition (Ai) used in [25, Theo-
rem 3.3]:

Thus, Theorem 3.2 improves [25, Theorem 3.3]. To illustrate, we consider the following
example:

Example 3.1 Let f : R → R
2 be defined by f (x) := (f1(x), f2(x)), where

f1(x) :=
{

x2 cos
1

x
if x 	= 0,

0 otherwise,

and f2(x) := 0 for all x ∈ R. Assume that � = R, T = [1, 2], and gt (x) = tx for all
x ∈ R. Then, the feasible set of (VP) is C = (−∞, 0]. Let x̄ := 0 ∈ C. Clearly, for any
ξ ∈ R

2+ \ {0}, x̄ is a ξ -quasi-weakly Pareto solution of (VP). It is easy to check that

∂f1(x̄) = [−1, 1], ∂f2(x̄) = {0}, and ∂gt (x̄) = {t}, ∀t ∈ T .

Hence, for each d ∈ R, we have

f ◦
1 (x̄; d) = |d|, f ◦

2 (x̄; d) = 0, and g◦
t (x̄; d) = td, ∀t ∈ T .
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Clearly, every d < 0 satisfies condition (U ). However, for every i = 1, 2, condi-
tion (Ai) does not hold. Thus, Theorem 3.2 can be applied for this example, but not
[25, Theorem 3.3].

The following concepts are inspired from [10].

Definition 3.1 Let f := (f1, . . . , fm) and gT := (gt )t∈T .
(i) We say that (f, gT ) is generalized convex on � at x̄ if, for any x ∈ �, z∗

i ∈ ∂fi(x̄),
i = 1, . . . , m, and x∗

t ∈ ∂gt (x̄), t ∈ T , there exists ν ∈ T (x̄;�) satisfying

fi(x) − fi(x̄) � 〈z∗
i , ν〉, i = 1, . . . , m,

gt (x) − gt (x̄) � 〈x∗
t , ν〉, t ∈ T ,

and
〈b∗, ν〉 � ‖x − x̄‖, ∀b∗ ∈ BX∗ .

(ii) We say that (f, gT ) is strictly generalized convex on � at x̄ if, for any x ∈ � \ {x̄},
z∗
i ∈ ∂fi(x̄), i = 1, . . . , m, and x∗

t ∈ ∂gt (x̄), t ∈ T , there exists ν ∈ T (x̄; �) satisfying

fi(x) − fi(x̄) > 〈z∗
i , ν〉, i = 1, . . . , m,

gt (x) − gt (x̄) � 〈x∗
t , ν〉, t ∈ T ,

and
〈b∗, ν〉 � ‖x − x̄‖, ∀b∗ ∈ BX∗ .

Remark 3.3 Clearly, if � is convex and fi , i ∈ I , and gt , t ∈ T are convex (resp. strictly
convex), then (f, gT ) is generalized convex (resp. strictly generalized convex) on � at any
x̄ ∈ � with ν := x − x̄ for each x ∈ �. Furthermore, by a similar argument in [10, Example
3.2], we can show that the class of generalized convex functions is properly larger than the
one of convex functions.

Theorem 3.3 Let x̄ ∈ C and assume that there exist λ := (λ1, . . . , λm) ∈ R
m+ with∑

i∈I λi = 1, and μ ∈ A(x̄) satisfying (3.5).

(i) If (f, gT ) is generalized convex on � at x̄, then x̄ is a ξ -quasi-weakly Pareto solution of
(VP).
(ii) If (f, gT ) is strictly generalized convex on � at x̄, then x̄ is a ξ -quasi Pareto solution of
(VP).

Proof We will follow the proof scheme of [11, Theorem 3.13]. By (3.5), there exist z∗
i ∈

∂fi(x̄), i = 1, . . . , m, x∗
t ∈ ∂gt (x̄), t ∈ T , b∗ ∈ BX∗ , and ω∗ ∈ N(x̄; �) such that
∑

i∈I

λiz
∗
i +

∑

t∈T

μtx
∗
t +

∑

i∈I

λiξib
∗ + ω∗ = 0,

or, equivalent ∑

i∈I

λiz
∗
i +

∑

t∈T

μtx
∗
t +

∑

i∈I

λiξib
∗ = −ω∗.

We first prove (i). On the contrary, if x̄ is not a ξ -quasi-weakly Pareto solution of (VP), then
there is x ∈ C such that

f (x) + ‖x − x̄‖ξ < f (x̄).
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From this and the fact that
∑

i∈I λi = 1, we obtain
∑

i∈I

λifi(x) +
∑

i∈I

λiξi‖x − x̄‖ <
∑

i∈I

λifi(x̄). (3.9)

Since (f, gT ) is generalized convex on � at x̄, for such x, there exists ν ∈ T (x̄;�) such
that

0 � −〈ω∗, ν〉 =
∑

i∈I

λi〈z∗
i , ν〉 +

∑

t∈T

μt 〈x∗
t , ν〉 +

∑

i∈I

λiξi〈b∗, ν〉

�
∑

i∈I

λi[fi(x) − fi(x̄)] +
∑

t∈T

μt [gt (x) − gt (x̄)] +
∑

i∈I

λiξi‖x − x̄‖.

Hence,
∑

i∈I

λifi(x̄) �
∑

i∈I

λifi(x) +
∑

t∈T

μt [gt (x) − gt (x̄)] +
∑

i∈I

λiξi‖x − x̄‖.

Combining this with the facts that x, x̄ ∈ C, and μ ∈ A(x̄), we conclude that
∑

i∈I

λifi(x̄) �
∑

i∈I

λifi(x) +
∑

i∈I

λiξi‖x − x̄‖, (3.10)

contrary to (3.9).
We now prove (ii). Assume on the contrary that x̄ is not a ξ -quasi Pareto solution of

(VP), i.e., there exists y ∈ C satisfying

f (y) + ‖y − x̄‖ξ ≤ f (x̄).

This implies that y 	= x̄ and
∑

i∈I

λifi(y) +
∑

i∈I

λiξi‖y − x̄‖ �
∑

i∈I

λifi(x̄). (3.11)

Since (f, gT ) is strictly generalized convex on � at x̄, for such y, there exists ϑ ∈ T (x̄; �)

such that

0 � −〈ω∗, ϑ〉 =
∑

i∈I

λi〈z∗
i , ϑ〉 +

∑

t∈T

μt 〈x∗
t , ϑ〉 +

∑

i∈I

λiξi〈b∗, ϑ〉

<
∑

i∈I

λi[fi(y) − fi(x̄)] +
∑

t∈T

μt [gt (y) − gt (x̄)] +
∑

i∈I

λiξi‖y − x̄‖.

An analysis similar to that in the proof of (3.10) shows that
∑

i∈I

λifi(x̄) <
∑

i∈I

λifi(y) +
∑

i∈I

λiξi‖y − x̄‖,

contrary to (3.11).

Remark 3.4 The conclusions of Theorem 3.3 are still valid if (f, gT ) is a generalized convex
in the sense of Chuong and Kim [10, Definition 3.3].

We now present an example which demonstrates the importance of the generalized con-
vexity of (f, gT ) in Theorem 3.3. In particular, condition (3.5) alone is not sufficient to
guarantee that x̄ is a ξ -quasi-weakly Pareto solution of (VP) if the generalized convexity of
(f, gT ) on � at x̄ is violated.
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Example 3.2 Let f : R → R
2 be defined by f (x) := (f1(x), f2(x)), where

fi(x) :=
{

x2 cos
1

x
if x 	= 0,

0 otherwise

for i = 1, 2. Assume that � = R, T = [0, 1], and gt (x) = x− t for all x ∈ R and t ∈ [0, 1].
Then, the feasible set of (VP) is C = (−∞, 0]. Let x̄ := 0 ∈ C. Clearly, fi , i = 1, 2, and
gt , t ∈ T , are local Lipschitz at x̄. An easy computation shows that

∂f1(x̄) = ∂f2(x̄) = [−1, 1], and ∂gt (x̄) = {1}, ∀t ∈ T .

Take arbitrarily ξ = (ξ1, ξ2) ∈ R
2+ \ {0} satisfying ξi < 1

π
for all i = 1, 2. Then, we see

that x̄ satisfies condition (3.5) for λ1 = λ2 = 1
2 , and μt = 0 for all t ∈ T . However, x̄ is

not a ξ -quasi-weakly Pareto solution of (VP). Indeed, let x̂ = − 1
π

∈ C. Then

fi(x̂) + ξi‖x̂ − x̄‖ = 1

π

(
ξi − 1

π

)
< fi(x̄), ∀i = 1, 2,

as required. We now show that (f, gT ) is not generalized convex on � at x̄. Indeed, by
choosing z∗

i = 0 ∈ ∂fi(x̄) for i = 1, 2, we have

fi(x̂) − fi(x̄) = − 1

π2
< 〈z∗

i , ν〉, ∀ν ∈ R.

4 Applications

4.1 Cone-Constrained Convex Vector Optimization Problems

In this subsection, we consider the following cone-constrained convex vector optimization
problem:

MinRm+ f (x) := (f1(x), . . . , fm(x))

s.t. x ∈ C := {x ∈ � | g(x) ∈ −K}, (CCVP)

where the function f and the set� are as in the previous sections,K is a closed convex cone
in a normed space Y , and g is a continuous and K-convex mapping from X to Y . Recall that
the mapping g is said to be K-convex if

g[θx + (1 − θ)y] − θg(x) − (1 − θ)g(y) ∈ −K, ∀x, y ∈ X, ∀θ ∈ [0, 1].
Let Y ∗ be the dual space of Y and K+ be the positive polar cone of K , i.e.,

K+ := {y∗ ∈ Y ∗ | 〈y∗, k〉 � 0, ∀k ∈ K}.
Then, K+ is weak∗-closed. Moreover, it is easily seen that

g(x) ∈ −K ⇔ gs(x) � 0, ∀s ∈ K+,

where gs(x) := 〈s, g(x)〉. Hence, the problem (CCVP) is equivalent to the following vector
optimization problem:

MinRm+ f (x) := (f1(x), . . . , fm(x))

s.t. x ∈ C := {x ∈ � | gs(x) � 0, s ∈ K+}. (4.1)
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In order to apply the results in Section 3 to problem (4.1), we need to have a compact set of
indices, which is not the case with the cone K+. However, since Y is a normed space, it is
easily seen that the set K+ ∩ BY ∗ is weak∗-compact and

g(x) ∈ −K ⇔ gs(x) � 0, ∀s ∈ K+ ∩ BY ∗ .

Hence, we can rewrite problem (4.1) as

MinR
m+ f (x) := (f1(x), . . . , fm(x))

s.t. x ∈ C := {x ∈ � | gs(x) � 0, s ∈ T },
where T := K+ ∩ BY ∗ .

Proposition 4.1 Let ξ ∈ R
m+ \ {0} and x̄ be a ξ -quasi-weakly Pareto solution of the prob-

lem (CCVP). If condition (U ) holds at x̄ and the convex hull co
{⋃

∂gs(x̄) | s ∈ I (x̄)
}
is

weak∗-closed, then, there exist λ := (λ1, . . . , λm) ∈ R
m+ with

∑
i∈I λi = 1, and ζ ∈ K+

such that

0 ∈
∑

i∈I

λi∂fi(x̄) + ∂gζ (x̄) +
∑

i∈I

λiξiBX∗ + N(x̄; �). (4.2)

Proof By Theorem 3.2, there exist λ := (λ1, . . . , λm) ∈ R
m+ with

∑
i∈I λi = 1, and μ ∈

A(x̄) such that

0 ∈
∑

i∈I

λi∂fi(x̄) +
∑

s∈T
μs∂gs(x̄) +

∑

i∈I

λiξiBX∗ + N(x̄;�).

Note that for each s ∈ T , the function gs is continuous and convex on X. Moreover, since
μ ∈ A(x̄), there exists only finitely many μs, s ∈ T , differ from zero. Hence,

∑

s∈T

μs∂gs(x̄) = ∂

(〈
∑

s∈T

μss, g

〉)

(x̄) = ∂gζ (x̄),

where ζ := ∑
s∈T μss. Clearly, ζ ∈ K+. The proof is complete.

Remark 4.1 Assume that � is convex. Since g is continuous and K-convex, we see that
if fi, i ∈ I , are convex (resp. strictly convex), then (f, gT ) is generalized convex (resp.
strictly generalized convex) on � at any x̄ ∈ � with ν := x − x̄ for each x ∈ �. Thus, by
Theorem 3.3, (4.2) is a sufficient condition for a point x̄ ∈ C to be a ξ -quasi-weakly Pareto
(resp. ξ -quasi Pareto) solution of (CCVP) provided that fi, i ∈ I , are convex (resp. strictly
convex).

4.2 Semidefinite Vector Optimization Problem

Let f : Rn → R be a local Lipschitz continuous function, � ⊂ R
n be a nonempty closed

convex subset of Rn, and g : Rn → Sp be a continuous mapping, where Sp denotes the set
of p × p symmetric matrices. For a p × p matrix A = (aij ), the notion trace(A) is defined
by

trace(A) :=
p∑

i=1

aii .

We suppose that Sp is equipped with a scalar product A • B := trace(AB), where AB is
the matrix product of A and B. A matrix A ∈ Sp is said to be a negative semidefinite (resp.

445



T.Q. Son et al.

positive semidefinite) matrix if 〈v, Av〉 � 0 (resp. 〈v, Av〉 � 0) for all v ∈ R
n. If matrix A

is negative semidefinite (resp. positive semidefinite matrix), it is denoted by A � 0 (resp.
A � 0).

We now consider the following semidefinite vector optimization problem:

MinRm+ f (x) := (f1(x), . . . , fm(x))

s.t. x ∈ C := {x ∈ � | g(x) � 0}. (SDVP)

Let us denote by S
p
+ the set of all positive semidefinite matrices of Sp . It is well known that

S
p
+ is a proper convex cone, i.e., it is closed, convex, pointed, and solid (see [3]), and that Sp

+
is a self-dual cone, i.e., (S

p
+)+ = S

p
+. Hence, the problem (SDVP) can be rewritten under

the form of the problem (CCVP), where K := S
p
+. For � ∈ K , the function g� becomes a

function from R
n to R defined by

g�(x) = � • g(x), ∀x ∈ R
n.

If g is affine, i.e., g(x) := F0 + ∑n
i=1 Fixi , where F0, F1, . . . , Fn ∈ Sp are the given

matrices, then the subdifferential of the function g�(x) is equal to

∂(g�)(x) = (� • F1, . . . , � • Fn) =: (� • F).

In that case, by Remark 3.2, the second assumption of Proposition 4.1 can be removed.
Thus, we obtain the following result.

Proposition 4.2 Let ξ ∈ R
m+ \ {0}. If x̄ is a ξ -quasi-weakly Pareto solution of the problem

(SDVP), then there exist λ := (λ1, . . . , λm) ∈ R
m+ with

∑
i∈I λi = 1, and � ∈ S

p
+ such

that

0 ∈
∑

i∈I

λi∂fi(x̄) + � • F +
∑

i∈I

λiξiBX∗ + N(x̄; �). (4.3)

Remark 4.2 Since g is an affine mapping, by Theorem 3.3, (4.3) is a sufficient condition
for a point x̄ ∈ C to be a ξ -quasi-weakly Pareto (resp. ξ -quasi Pareto) solution of (SDVP)
provided that fi, i ∈ I , are convex (resp. strictly convex).
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