^L^p Metric Geometry of Big and Nef Cohomology Classes

Eleonora Di Nezza1 · Chinh H. Lu²

In honor of Lê Văn Thiêm's centenary

Received: 20 August 2018 / Revised: 13 January 2019 / Accepted: 25 February 2019 / © Institute of Mathematics, Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019 Published online: 25 July 2019

Abstract

Let (X, ω) be a compact Kähler manifold of dimension *n*, and let θ be a closed smooth real $(1, 1)$ -form representing a big and nef cohomology class. We introduce a metric d_p , $p \ge 1$, on the finite energy space $\mathcal{E}^p(X, \theta)$, making it a complete geodesic metric space.

Keywords Kähler manifolds · Pluripotential theory · Finite energy classes · Complete metric space

Mathematics Subject Classification (2010) 53C55 · 32Q15 · 32W20 · 53C25

1 Introduction

Finding canonical (Kähler-Einstein, cscK, extremal) metrics on compact Kähler manifolds is one of the central questions in differential geometry (see $[13, 41, 42]$ $[13, 41, 42]$ $[13, 41, 42]$ $[13, 41, 42]$ $[13, 41, 42]$ and the references therein). Given a Kähler metric ω on a compact Kähler manifold X , one looks for a Kähler potential φ such that $\omega_{\varphi} := \omega + dd^c \varphi$ is "canonical". Mabuchi introduced a Riemannian structure on the space of Kähler potentials \mathcal{H}_{ω} . As shown by Chen [\[15\]](#page-15-1) \mathcal{H}_{ω} endowed with the Mabuchi d_2 distance is a metric space. Darvas $[21]$ showed that its metric completion coincides with a finite energy class of plurisubharmonic functions introduced by Guedj

 \boxtimes Chinh H. Lu hoang-chinh.lu@math.u-psud.fr https://www.math.u-psud.fr/∼lu/

Eleonora Di Nezza dinezza@ihes.fr <https://sites.google.com/site/edinezza/home>

 1 Institut des Hautes Études Scientifiques, Université Paris-Saclay, Bures Sur Yvettes, France

² Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France

and Zeriahi [\[36\]](#page-16-2). Other Finsler geometries d_p , $p \ge 1$, on \mathcal{H}_{ω} were studied by Darvas [\[20\]](#page-15-3) and they lead to several spectacular results related to a longstanding conjecture on existence of cscK metrics and properness of K-energy (see [\[6,](#page-15-4) [16](#page-15-5)[–18,](#page-15-6) [29\]](#page-16-3)). Employing the same technique as in $[29]$ and extending the L^1 -Finsler structure of $[20]$ to big and semipositive classes via a formula relating the Monge-Ampère energy and the d_1 distance, Darvas [\[22\]](#page-15-7) established analogous results for singular normal Kähler varieties. Motivated by the same geometric applications, the L^p ($p \ge 1$) Finsler geometry in big and semipositive cohomology classes was constructed in [\[32\]](#page-16-4) via an approximation method.

In this note we extend the main results of $[20, 32]$ $[20, 32]$ $[20, 32]$ to the context of big and nef cohomology classes. Assume that *X* is a compact Kähler manifold of complex dimension *n* and let θ be a smooth closed real (1, 1) form representing a big & nef cohomology class. Fix $p \ge 1$.

Main Theorem *The space* $\mathcal{E}^p(X, \theta)$ *endowed with* d_p *is a complete geodesic metric space.*

For the definition of $\mathcal{E}^p(X, \theta)$, d_p and relevant notions we refer to Section [2.](#page-1-0) When $p = 1$ Main Theorem was established in [\[26\]](#page-15-8) in the more general case of big cohomology classes using the approach of [\[22\]](#page-15-7). Here, we use an approximation argument as in [\[32\]](#page-16-4) with an important modification due to the fact that generally potentials in big cohomology classes are unbounded. Interestingly, this modification greatly simplifies the proof of [\[32,](#page-16-4) Theorem A].

Organization of the Note We recall relevant notions in pluripotential theory in big coho-mology classes in Section [2.](#page-1-0) The metric space $({\mathcal{E}}^p, d_p)$ is introduced in Section [3](#page-6-0) where we prove Main Theorem. In case $p = 1$ we show in Proposition 3.18 that the distance d_1 defined in this note and the one defined in [\[26\]](#page-15-8) do coincide.

2 Preliminaries

Let (X, ω) be a compact Kähler manifold of dimension *n*. We use the following real differential operators $d = \partial + \partial$, $d^c = i(\partial - \partial)$, so that $dd^c = 2i\partial \partial$. We briefly recall known results in pluripotential theory in big cohomology classes, and refer the reader to [\[5,](#page-15-9) [12,](#page-15-10) [24](#page-15-11)[–27\]](#page-15-12) for more details.

2.1 Quasi-plurisubharmonic Functions

A function $u : X \to \mathbb{R} \cup \{-\infty\}$ is quasi-plurisubharmonic (or quasi-psh) if it is locally the sum of a psh function and a smooth function. Given a smooth closed real *(*1*,* 1*)*-form *θ*, we let $PSH(X, \theta)$ denote the set of all integrable quasi-psh functions *u* such that $\theta_u :=$ $\theta + dd^c u \geq 0$, where the inequality is understood in the sense of currents. A function *u* is said to have analytic singularities if locally $u = \log \sum_{j=1}^{N} |f_j|^2 + h$, where the $f'_j s$ are holomorphic and *h* is smooth.

The De Rham cohomology class $\{\theta\}$ is Kähler if it contains a Kähler potential, i.e., a function $u \in PSH(X, \theta) \cap C^{\infty}(X, \mathbb{R})$ such that $\theta + dd^c u > 0$. The class $\{\theta\}$ is nef if $\{\theta + \varepsilon \omega\}$ is Kähler for all $\varepsilon > 0$. It is pseudo-effective if the set $PSH(X, \theta)$ is non-empty, and big if {*θ* −*εω*} is pseudo-effective for some *ε >* 0. The ample locus of {*θ*}, which will be denoted by Amp (θ) , is the set of all points $x \in X$ such that there exists $\psi \in \text{PSH}(X, \theta - \varepsilon \omega)$ with analytic singularities and smooth in a neighborhood of x . It was shown in [\[11,](#page-15-13) Theorem 3.17] that $\{\theta\}$ is Kähler if and only if $\text{Amp}(\theta) = X$.

Throughout this note we always assume that {*θ*} is big and nef. Typically, there are no bounded functions in $PSH(X, \theta)$, but there are plenty of locally bounded functions as we now briefly recall. By the bigness of $\{\theta\}$ there exists $\psi \in \text{PSH}(X, \theta - \varepsilon \omega)$ for some $\varepsilon > 0$. Regularizing ψ (by [\[30,](#page-16-5) Main Theorem 1.1]) we can find a function $u \in PSH(X, \theta - \frac{\varepsilon}{2}\omega)$ smooth in a Zariski open set Ω of *X*. Roughly speaking, θ_u locally behaves as a Kähler form on Ω . As shown in [\[11,](#page-15-13) Theorem 3.17], *u* and Ω can be constructed in such a way that Ω is the ample locus of $\{\theta\}$.

If *u* and *v* are two θ -psh functions on *X*, then *u* is said to be *less singular* than *v* if $v \leq u + C$ for some $C \in \mathbb{R}$, while they are said to have the *same singularity type* if $u-C \le v \le u+C$, for some $C \in \mathbb{R}$. A θ -psh function *u* is said to have *minimal singularities* if it is less singular than any other θ -psh function. An example of a θ -psh function with minimal singularities is

$$
V_{\theta} := \sup \{ u \in \text{PSH}(X, \theta) \mid u \le 0 \}.
$$

For a function $f: X \to \mathbb{R}$, we let f^* denote its upper semicontinuous regularization, i.e.,

$$
f^*(x) := \limsup_{X \ni y \to x} f(y).
$$

Given a measurable function *f* on *X* we define

$$
P_{\theta}(f) := (x \mapsto \sup\{u(x) \mid u \in \text{PSH}(X, \theta), \ u \le f\})^*.
$$

Essential Supremum For *u*, *v* quasi-psh functions, the function $u - v$ is defined almost everywhere on *X* (off the set where $v = -\infty$). By abuse of notation we let sup_{*X*}($u - v$) denote the essential supremum of $u - v$. By basic properties of plurisubharmonic functions we have

$$
u - \sup_X (u - v) \le v \le u + \sup_X (v - u), \text{ on } X.
$$

We will need the following result on regularity of quasi plurisubharmonic envelope due to Berman [\[4\]](#page-15-14).

Theorem 2.1 *Let f be a continuous function such that* $dd^c f \leq C\omega$ *on X, for some* $C > 0$ *. Then* Δ_{ω} (P_{θ} (*f*)) *is locally bounded on* Amp(θ)*, and*

$$
(\theta + dd^c P_{\theta}(f))^n = \mathbf{1}_{\{P_{\theta}(f) = f\}} (\theta + dd^c f)^n.
$$
 (2.1)

If θ *is moreover Kähler then* $\Delta_{\omega}(P_{\theta}(f))$ *is globally bounded on X.*

If $f = min(u, v)$ for *u*, *v* quasi-psh then f is upper semicontinuous on X and there is no need to take the upper semicontinuous regularization in the definition of $P(u, v) :=$ P_θ (min(*u, v*)). The latter is the largest θ -psh function lying below both *u* and *v*, and is called the rooftop envelope of *u* and *v* in [\[28\]](#page-16-6).

The proof of Theorem 2.1 can be found in $[4]$. In the Kähler case, Theorem 2.1 was also surveyed in [\[23\]](#page-15-15). For convenience of the reader, and per recommendation of the referee, we briefly recall the arguments here.

Proof of Theorem 2.1 We first assume that *f* is smooth and fix $\varepsilon \in (0, 1]$. By nefness of $\{\theta\}$, the form $\eta := \theta + \varepsilon \omega$ represents a Kähler class.

Fix $\beta > 1$ and let $u_\beta \in PSH(X, \eta) \cap C^\infty(X)$ be the unique smooth function such that

$$
(\eta + dd^c u_\beta)^n = e^{\beta(u_\beta - f)} \omega^n. \tag{2.2}
$$

The existence (and smoothness) of *u_β* follows from Aubin [\[1\]](#page-15-16) and Yau [\[42\]](#page-16-1).

By [\[4,](#page-15-14) Theorem 1.1], u_β converges uniformly to $P_\eta(f)$ along with a uniform estimate for $dd^c u_\beta$. The proof of [\[4,](#page-15-14) Theorem 1.2] actually establishes a Laplacian estimate for u_β independent of *ε* and *β*.

We fix $\psi \in \text{PSH}(X, \theta)$ such that $\sup_X \psi = 0$, ψ is smooth in Ω , the ample locus of $\{\theta\}$ and $\theta + dd^c \psi \ge a\omega$, where $a > 0$ is a small constant. Note that ψ and a, whose existence follows from the bigness of {*θ*} as recalled in Section [2.1,](#page-1-1) are independent of *ε*.

Consider

$$
H := \log \text{Tr}_{\omega}(\eta + dd^c u_{\beta}) - A(u_{\beta} - \psi),
$$

defined on Ω , where $A > 0$ is a constant to be specified later. Then, *H* is smooth on Ω and tends to $-\infty$ on the boundary of Ω . Let $x \in \Omega$ be a point where *H* attains its maximum in $Ω.$ Setting $ω' := η + dd^c u_\beta$, it follows from [\[14,](#page-15-17) Lemma 2.2] (which is an improvement of $[40]$) that

$$
\Delta_{\omega'} \log \text{Tr}_{\omega}(\omega') \ge \frac{\Delta_{\omega}(\beta(u_{\beta} - f))}{\text{Tr}_{\omega}(\omega')} - B\text{Tr}_{\omega'}(\omega),
$$

where −*B* is a negative lower bound for the holomorphic bisectional curvature of *ω*. In the remainder of this paragraph we carry all computations at the point *x*. By the maximum principle, we have

$$
0 \geq \Delta_{\omega'} H \geq \beta - \beta \frac{\text{Tr}_{\omega} (\eta + dd^c f)}{\text{Tr}_{\omega} (\omega')} - B \text{Tr}_{\omega'} (\omega) - An + A a \text{Tr}_{\omega'} (\omega).
$$

Let $C_1 \ge 0$ be a constant such that $\theta + \omega + dd^c f \le e^{C_1} \omega$. Then, choosing $A = B/a$, we arrive at

$$
0 \geq (\beta - An) - \beta \frac{ne^{C_1}}{\text{Tr}_{\omega}(\omega')}.
$$

Thus, for $\beta > 2An$ we have

$$
\text{Tr}_{\omega}(\omega') \le \frac{\beta n e^{C_1}}{\beta - An} \le 2n e^{C_1}.\tag{2.3}
$$

Let also ρ_0 be the unique θ -psh function with minimal singularities such that

$$
(\theta + dd^c \rho_0)^n = C_3 \omega^n, \ \sup_X \rho_0 = 0,
$$

for a uniform normalization constant $C_3 = C(\theta, \omega) > 0$. The existence of ρ_0 follows from [\[5,](#page-15-9) [12\]](#page-15-10). By [\[12,](#page-15-10) Theorem 4.1] we obtain a lower bound for ρ_0 :

$$
\rho_0 \geq V_\theta - C(\theta, \omega).
$$

Since $\rho_0 \leq f - \inf_X f$ we have that $\rho_0 + \inf_X f + (\log C_3)/\beta$ is a subsolution to the Monge-Ampère equation defining u_β , [\(2.2\)](#page-2-0). By [\[24,](#page-15-11) Lemma 2.5] and the fact that $V_\theta \geq \psi$, we have that

$$
u_{\beta} \ge \rho_0 + \inf_X f + (\log C_3)/\beta \ge \psi - C_4,
$$

where $C_4 > 0$ depends on θ , ω , inf_{*X*} f . From this and [\(2.3\)](#page-3-0), we thus obtain

$$
H(x) \leq \log(2ne^{C_1}) + AC_4.
$$

We finally have, for all $\beta \geq 2nA$,

$$
\operatorname{Tr}_{\omega}(\eta + dd^c u_{\beta}) \le C_5 e^{-A\psi} \text{ on } \Omega.
$$

Letting $\beta \to +\infty$ and noting that u_β converges uniformly to $P_{\theta+\varepsilon\omega}(f)$, we obtain

$$
\Delta_{\omega}(P_{\theta + \varepsilon \omega}(f)) \le C_6 e^{-A\psi},
$$

where C_6 depends on *B*, *a*, C_1 , inf_{*X*} *f*. Letting $\varepsilon \to 0$ we arrive at

$$
\Delta_{\omega}(P_{\theta}(f)) \leq C_6 e^{-A\psi}.
$$

We finally remove the smoothness assumption on f . Assume that f is a continuous function such that $dd^c f \leq C\omega$. We approximate f uniformly by smooth functions f_i such that $dd^c f_j \leq (C+1)\omega$. This is possible thanks to Demailly [\[30\]](#page-16-5). Then, the previous steps yield

$$
\Delta_{\omega}(P_{\theta}(f_j)) \leq C' e^{-A\psi},
$$

where $C' > 0$ depends only on *C*, *B*, *a*, inf_{*X*} *f*, θ , ω . Letting $j \rightarrow +\infty$ we arrive at the conclusion. Having the Laplacian bound, one can then argue as in [\[37,](#page-16-8) Theorem 9.25] to get [\(2.1\)](#page-2-1), completing the proof of Theorem 2.1. \Box

2.2 Non-pluripolar Monge-Ampere Products `

Given u_1, \ldots, u_p *θ*-psh functions with minimal singularities, $\theta_{u_1} \wedge \cdots \wedge \theta_{u_p}$, as defined by Bedford and Taylor [\[2,](#page-15-18) [3\]](#page-15-19) is a closed positive current in Amp (θ) . For general $u_1, \ldots, u_p \in$ $PSH(X, \theta)$, it was shown in [\[12\]](#page-15-10) that the *non-pluripolar product* of $\theta_{u_1}, \ldots, \theta_{u_n}$, that we still denote by

$$
\theta_{u_1} \wedge \ldots \wedge \theta_{u_p},
$$

is well-defined as a closed positive (p, p) -current on *X* which does not charge pluripolar sets. For a θ -psh function *u*, the *non-pluripolar complex Monge-Ampère measure* of *u* is $\text{simply } \theta_u^n := \theta_u \wedge \ldots \wedge \theta_u.$

If *u* has minimal singularities then $\int_X \theta_u^n$, the total mass of θ_u^n , is equal to $\int_X \theta_{V_\theta}^n$, the volume of the class {*θ*} denoted by Vol(*θ*). For a general *u* ∈ PSH(*X*, *θ*), $\int_X θ_u^n$ may take any value in [0, Vol (θ)]. Note that Vol (θ) is a cohomological quantity, i.e., it does not depend on the smooth representative we choose in $\{\theta\}$.

2.3 The Energy Classes

From now on, we fix $p \ge 1$. Recall that for any θ -psh function *u* we have $\int_X \theta_u^n \le \text{Vol}(\theta)$. We denote by $\mathcal{E}(X, \theta)$ the set of θ -psh functions *u* such that $\int_X \theta_u^n = \text{Vol}(\theta)$. We let $\mathcal{E}^p(X, \theta)$ denote the set of $u \in \mathcal{E}(X, \theta)$ such that $\int_X |u - V_\theta|^p \theta_u^n < +\infty$. For $u, v \in \mathbb{R}$ $\mathcal{E}^p(X,\theta)$ we define

$$
I_p(u, v) := I_{p,\theta}(u, v) := \int_X |u - v|^p \left(\theta_u^n + \theta_v^n\right).
$$

It was proved in $[34,$ Theorem 1.6] that I_p satisfies a quasi triangle inequality:

$$
I_{p,\theta}(u,v) \leq C(n,p)(I_{p,\theta}(u,w) + I_{p,\theta}(v,w)), \ \forall u,v,w \in \mathcal{E}^p(X,\theta).
$$

In particular, applying this for $w = V_\theta$ and using Theorem 2.1, we obtain $I_{p,\theta}(u, v) < +\infty$, for all $u, v \in \mathcal{E}^p(X, \theta)$. Moreover, it follows from the domination principle [\[24,](#page-15-11) Proposition 2.4] that I_p is non-degenerate:

$$
I_{p,\theta}(u,v) = 0 \Longrightarrow u = v.
$$

2.4 Weak Geodesics

Geodesic segments connecting Kähler potentials were first introduced by Mabuchi [[38\]](#page-16-10). Semmes [\[39\]](#page-16-11) and Donaldson [\[33\]](#page-16-12) independently realized that the geodesic equation can be reformulated as a degenerate homogeneous complex Monge-Ampère equation. The best

regularity of a geodesic segment connecting two Kähler potentials is known to be $C^{1,1}$ (see [\[8,](#page-15-20) [15,](#page-15-1) [19\]](#page-15-21)).

In the context of a big cohomology class, the regularity of geodesics is very delicate. To avoid this issue, we follow an idea of Berndtsson [\[7\]](#page-15-22) considering geodesics as the upper envelope of subgeodesics (see [\[24\]](#page-15-11)).

For a curve $[0, 1] \ni t \mapsto u_t \in \text{PSH}(X, \theta)$, we define

$$
X \times D \ni (x, z) \mapsto U(x, z) := u_{\log|z|}(x), \tag{2.4}
$$

where $D := \{z \in \mathbb{C} \mid 1 < |z| < e\}$. We let $\pi : X \times D \to X$ be the projection on X.

Definition 2.2 We say that $t \mapsto u_t$ is a subgeodesic if $(x, z) \mapsto U(x, z)$ is a $\pi^*\theta$ -psh function on $X \times D$.

Definition 2.3 For $\varphi_0, \varphi_1 \in \text{PSH}(X, \theta)$, we let $S_{[0,1]}(\varphi_0, \varphi_1)$ denote the set of all subgeodesics $[0, 1] \ni t \mapsto u_t$ such that $\limsup_{t \to 0} u_t \leq \varphi_0$ and $\limsup_{t \to 1} u_t \leq \varphi_1$.

Let $\varphi_0, \varphi_1 \in \text{PSH}(X, \theta)$. We define, for $(x, z) \in X \times D$,

$$
\Phi(x, z) := \sup \{ U(x, z) \mid U \in \mathcal{S}_{[0,1]}(\varphi_0, \varphi_1) \}.
$$

The curve $t \mapsto \varphi_t$ constructed from Φ via [\(2.4\)](#page-5-0) is called the weak Mabuchi geodesic connecting φ_0 and φ_1 .

Geodesic segments connecting two general θ -psh functions may not exist. If $\varphi_0, \varphi_1 \in$ $\mathcal{E}^p(X,\theta)$, it was shown in [\[24,](#page-15-11) Theorem 2.13] that $P(\varphi_0,\varphi_1) \in \mathcal{E}^p(X,\theta)$. Since $P(\varphi_0, \varphi_1) \leq \varphi_t$, we obtain that $t \to \varphi_t$ is a curve in $\mathcal{E}^p(X, \theta)$. Each subgeodesic segment is in particular convex in *t*:

$$
\varphi_t \le (1-t)\,\varphi_0 + t\varphi_1, \ \forall t \in [0,1].
$$

Consequently, the upper semicontinuous regularization (with respect to both variables *x,z*) of Φ is again in $S_{[0,1]}(\varphi_0, \varphi_1)$, hence so is Φ . In particular, if φ_0, φ_1 have minimal singularities, then the geodesic φ_t is Lipschitz on [0, 1] (see [\[24,](#page-15-11) Lemma 3.1]):

$$
|\varphi_t - \varphi_s| \le |t - s| \sup_X |\varphi_0 - \varphi_1|, \ \forall t, s \in [0, 1]. \tag{2.5}
$$

2.5 Finsler Geometry in the Kahler Case ¨

Darvas [\[20\]](#page-15-3) introduced a family of distances in the space of Kähler potentials

$$
\mathcal{H}_{\omega} := \{ \varphi \in C^{\infty}(X, \mathbb{R}) \mid \omega_{\varphi} > 0 \}.
$$

Definition 2.4 Let $\varphi_0, \varphi_1 \in \mathcal{H}_{\omega}$. For $p \geq 1$, we set

 $d_p(\varphi_0, \varphi_1) := \inf \{ \ell_p(\psi) \mid \psi \text{ is a smooth path joining } \varphi_0 \text{ to } \varphi_1 \},$

where $\ell_p(\psi) := \int_0^1 \left(\frac{1}{V} \int_X |\dot{\psi}_t|^p \omega_{\psi_t}^n \right)^{1/p} dt$ and $V := \text{Vol}(\omega) = \int_X \omega^n$.

It was then proved in [\[20,](#page-15-3) Theorem 1] (generalizing Chen's original arguments [\[15\]](#page-15-1)) that *d_p* defines a distance on \mathcal{H}_{ω} , and for all $\varphi_0, \varphi_1 \in \mathcal{H}_{\omega}$,

$$
d_p(\varphi_0, \varphi_1) = \left(\frac{1}{V} \int_X |\dot{\varphi}_t|^p \omega_{\varphi_t}^n \right)^{1/p}, \quad \forall t \in [0, 1], \tag{2.6}
$$

 \mathcal{D} Springer

where $t \to \varphi_t$ is the Mabuchi geodesic (defined in Section [2.4\)](#page-4-0). It was shown in [\[20,](#page-15-3) Lemma 4.11] that [\(2.6\)](#page-5-1) still holds for $\varphi_0, \varphi_1 \in \text{PSH}(X, \omega)$ with $dd^c \varphi_i \leq C \omega, i = 0, 1$, for some positive constant *C*.

By [\[9,](#page-15-23) [30\]](#page-16-5), potentials in $\mathcal{E}^p(X, \omega)$ can be approximated from above by smooth Kähler potentials. As shown in [\[21\]](#page-15-2), the metric d_p can be extended for potentials in $\varphi_0, \varphi_1 \in$ $\mathcal{E}^p(X, \omega)$: if φ_i^k are smooth strictly ω -psh functions decreasing to φ_i , $i = 0, 1$; then, the limit

$$
d_p(\varphi_0, \varphi_1) := \lim_{k \to +\infty} d_p(\varphi_0^k, \varphi_1^k)
$$

exists and it is independent of the approximants. By $[20,$ Lemmas 4.4 and 4.5], d_p defines a metric on $\mathcal{E}^p(X,\omega)$ and $(\mathcal{E}^p(X,\omega), d_p)$ is a complete geodesic metric space.

3 The Metric Space ($\mathcal{E}^p(X, \theta)$, d_p)

The goal of this section is to define a distance d_p on $\mathcal{E}^p(X, \theta)$ and prove that the space $(\mathcal{E}^p(X, \theta), d_p)$ is a complete geodesic metric space. We follow the strategy in [\[32\]](#page-16-4), approximating the space of "Kähler potentials" \mathcal{H}_{θ} by regular spaces. Throughout this note we will use the notation

$$
\omega_{\varepsilon}:=\theta+\varepsilon\omega,\ \varepsilon>0.
$$

By nefness of θ , $\omega_{\varepsilon} := \theta + \varepsilon \omega$ represents a Kähler cohomology class for any $\varepsilon > 0$. Note that ω_{ε} is not necessarily a Kähler form but there exists a smooth potential $f_{\varepsilon} \in C^{\infty}(X, \mathbb{R})$ such that $\omega_{\varepsilon} + dd^c f_{\varepsilon}$ is a Kähler form. For notational convenience we normalize θ so that $\text{Vol}(\theta) = \int_X \theta_{V_\theta}^n = 1$ and we set $V_\varepsilon := \text{Vol}(\omega_\varepsilon)$.

Typically there are no smooth potentials in $PSH(X, \theta)$ but the following class contains plenty of potentials sufficiently regular for our purposes:

$$
\mathcal{H}_{\theta} := \{ \varphi \in \text{PSH}(X,\theta) \mid \varphi = P_{\theta}(f), \ f \in \mathcal{C}(X,\mathbb{R}), \ dd^{c} f \le C(f)\omega \}.
$$

Here $C(f)$ denotes a positive constant which depends only on f. Note that any $u =$ $P_{\theta}(f) \in \mathcal{H}_{\theta}$ has minimal singularities because, for some constant $C > 0$, $V_{\theta} - C$ is a candidate defining $P_{\theta}(f)$. The following elementary observation will be useful in the sequel.

Lemma 3.1 *If* $u, v \in \mathcal{H}_{\theta}$ *then* $P_{\theta}(u, v) \in \mathcal{H}_{\theta}$.

Proof Set $h = min(f, g) \in C^{0}(X, \mathbb{R})$, where $f, g \in C^{0}(X, \mathbb{R})$ are such that $u = P_{\theta}(f)$ and *v* = $P_{\theta}(g)$ and $dd^c f \leq C\omega$, $dd^c g \leq C\omega$. Then, −*h* = max $(-f, -g)$ is a $C\omega$ -psh function on *X*, hence $dd^c(-h) + C\omega > 0$. on *X*, hence $dd^c(-h) + C\omega \geq 0$.

3.1 Defining a Distance ^d^p on *H^θ*

By Darvas [\[20\]](#page-15-3), the Mabuchi distance $d_{p,\omega}$ is well defined on $\mathcal{E}^p(X,\omega)$ when the reference form ω is a Kähler form. With the following observation, we show that such a distance behaves well when we change the Kähler representative in $\{\omega\}$.

Proposition 3.2 *Let* $\omega_f := \omega + dd^c f \in \{\omega\}$ *be another Kähler form. Then, given* $\varphi_0, \varphi_1 \in$ $\mathcal{E}^p(X,\omega)$, we have

$$
d_{p,\omega}(\varphi_0, \varphi_1) = d_{p,\omega_f}(\varphi_0 - f, \varphi_1 - f).
$$

Proof Let φ_t be the Mabuchi geodesic (with respect to ω) joining φ_0 and φ_1 and let φ_t^f be the Mabuchi geodesic (with respect to ω_f) joining $\varphi_0 - f$ and $\varphi_1 - f$. We claim that $\varphi_t^f = \varphi_t - f$. Indeed, $\varphi_t - f$ is an ω_f -subgeodesic connecting $\varphi_0 - f$ and $\varphi_1 - f$. Hence, $\varphi_t - f \leq \varphi_t^f$. On the other hand, $\varphi_t^f + f$ is a candidate defining φ_t , thus $\varphi_t^f + f \leq \varphi_t$, proving the claim.

Assume φ_0 , φ_1 are Kähler potentials. By ([2.6\)](#page-5-1) we have

$$
V d_{p,\omega}^p(\varphi_0, \varphi_1) = \int_X |\dot{\varphi_0}|^p (\omega + dd^c \varphi_0)^n
$$

=
$$
\int_X \left| \lim_{t \to 0^+} \frac{(\varphi_t - f) - (\varphi_0 - f)}{t} \right|^p (\omega_f + dd^c (\varphi_0 - f))^n
$$

=
$$
\int_X |\varphi_0^f|^p (\omega_f + dd^c (\varphi_0 - f))^n
$$

=
$$
V d_{p,\omega_f}^p(\varphi_0 - f, \varphi_1 - f).
$$

The identity for potentials in $\mathcal{E}^p(X, \omega)$ follows from the fact that the distance $d_{p,\omega}$ between potentials $\varphi_0, \varphi_1 \in \mathcal{E}^p(X, \omega)$ is defined as the limit lim_{*j*} $d_{p,\omega}(\varphi_{0,j}, \varphi_{1,j})$, where $\{\varphi_{i,j}\}$ is a sequence of smooth strictly ω -psh functions decreasing to φ_i , for $i = 0, 1$.

Thanks to the above proposition, we can then define the Mabuchi distance with respect to any smooth (1, 1)-form η in the Kähler class $\{\omega\}$:

$$
d_{p,\eta}(\varphi_0, \varphi_1) := d_{p,\eta_f}(\varphi_0 - f, \varphi_1 - f), \quad \varphi_0, \varphi_1 \in \mathcal{E}^p(X, \eta), \tag{3.1}
$$

where $\eta_f = \eta + dd^c f$ is a Kähler form. Proposition 3.2 reveals that the definition is independent of the choice of *f* .

We next extend the Pythagorean formula of $[20, 21]$ $[20, 21]$ $[20, 21]$ for Kähler classes.

Lemma 3.3 *If* $\{\eta\}$ *is Kähler and* $u, v \in \mathcal{E}^p(X, \eta)$ *then* $d_{p,\eta}^p(u,v) = d_{p,\eta}^p(u, P_\eta(u,v)) + d_{p,\eta}^p(v, P_\eta(u,v)).$

Proof By [\[20,](#page-15-3) Corollary 4.14] and [\(3.1\)](#page-7-0), we have

$$
d_{p,\eta}^p(u,v) = d_{p,\eta_f}^p(u - f, P_{\eta_f}(u - f, v - f)) + d_{p,\eta_f}^p(v - f, P_{\eta_f}(u - f, v - f)).
$$

The conclusion follows observing that $P_{\eta_f}(u - f, v - f) = P_\eta(u, v) - f$.

The following results play a crucial role in the sequel.

Lemma 3.4 Let
$$
\varphi = P_{\theta}(f), \psi = P_{\theta}(g) \in \mathcal{H}_{\theta}
$$
. Set $\varphi_{\varepsilon} := P_{\omega_{\varepsilon}}(f)$ and $\psi_{\varepsilon} = P_{\omega_{\varepsilon}}(g)$. Then,
\n
$$
\lim_{\varepsilon \to 0} I_{p,\omega_{\varepsilon}}(\varphi_{\varepsilon}, \psi_{\varepsilon}) = I_{p,\theta}(\varphi, \psi).
$$

Proof Observe that $|\phi_{\varepsilon} - \psi_{\varepsilon}| \to |\phi - \psi|$ almost everywhere on *X* (in fact this holds off a pluripolar set) and they are uniformly bounded:

$$
|\varphi_{\varepsilon}-\psi_{\varepsilon}|\leq \sup_X|f-g|.
$$

Indeed, take a point $x \in X$ such that $\varphi(x) > -\infty$ and $\psi(x) > -\infty$. Recall that $\omega_{\varepsilon} :=$ *θ* + *εω* ≥ *θ* and {*ωε*} is increasing in *ε*. Therefore, *ϕε* decreases to a *θ*-psh function on *X* as $\varepsilon \to 0$. The latter must be φ . We thus have that $\varphi_{\varepsilon}(x) \to \varphi(x)$ and $\psi_{\varepsilon}(x) \to \psi(x)$ as $\varepsilon \to 0$. Also, $\psi_{\varepsilon} + \sup_{X} |f - g|$ is a candidate defining φ_{ε} ; hence, the claimed bound follows.

By Lemma 3.5 below and Lebesgue's dominated convergence theorem,

$$
\lim_{\varepsilon\to 0}\int_X |\varphi_\varepsilon - \psi_\varepsilon|^p \, (\omega_\varepsilon + dd^c \varphi_\varepsilon)^n = \int_X |\varphi - \psi|^p \, (\theta + dd^c \varphi)^n.
$$

Similarly, the other term in the definition of I_{p,ω_c} also converges to the desired limit. \Box

Lemma 3.5 *Let* $\varphi = P_{\theta}(f) \in \mathcal{H}_{\theta}$ *. For* $\varepsilon > 0$ *we set* $\varphi_{\varepsilon} = P_{\omega_{\varepsilon}}(f)$ *and write*

$$
(\omega_{\varepsilon} + dd^c \varphi_{\varepsilon})^n = \rho_{\varepsilon} \omega^n; \; (\theta + dd^c \varphi)^n = \rho \omega^n.
$$

Then, $\varepsilon \mapsto \rho_{\varepsilon}$ *is increasing, uniformly bounded and* $\rho_{\varepsilon} \to \rho$ *pointwise on X.*

Proof Define, for $\varepsilon > 0$, $D_{\varepsilon} := \{x \in X \mid \varphi_{\varepsilon}(x) = f(x)\}\)$. Since $\{\varphi_{\varepsilon}\}\)$ is increasing and $\varphi_{\varepsilon} \leq f$, $\{D_{\varepsilon}\}\$ is also increasing. We set $D := \bigcap_{\varepsilon > 0} D_{\varepsilon}$. Then, $D = \{x \in X \mid \varphi(x) = f(x)\}\$. For $\varepsilon' > \varepsilon > 0$, it follows from Theorem 2.1 that

$$
(\omega_{\varepsilon} + dd^c \varphi_{\varepsilon})^n = 1_{\{\varphi_{\varepsilon} = f\}} (\omega_{\varepsilon} + dd^c f)^n
$$

$$
\leq 1_{\{\varphi_{\varepsilon} = f\}} (\omega_{\varepsilon'} + dd^c f)^n \leq (\omega_{\varepsilon'} + dd^c \varphi_{\varepsilon'})^n.
$$

Here we use the fact that $0 \leq \omega_{\varepsilon} + dd^c f \leq \omega_{\varepsilon'} + dd^c f$ on D_{ε} . This proves the first statement. The second statement follows from the bound $dd^c f \leq C\omega$. We now prove the last statement. If $x \in D$, using $(\theta + dd^c f) \le C' \omega$, we can write

$$
\rho_{\varepsilon}(x)\omega^{n} = (\theta + \varepsilon\omega + dd^{c}f)^{n} \le (\theta + dd^{c}f)^{n} + O(\varepsilon)\omega^{n}
$$

= $(\rho(x) + O(\varepsilon))\omega^{n}$.

Hence, $\rho_{\varepsilon}(x) \to \rho(x)$. If $x \notin D$ then $x \notin D_{\varepsilon}$ for $\varepsilon > 0$ small enough, hence $\rho_{\varepsilon}(x) = 0 = \rho(x)$. *ρ(x)*.

Lemma 3.6 *Let* $\varphi_j = P_\theta(f_j) \in \mathcal{H}_\theta$, for $j = 0, 1$. Let φ_t (resp. $\varphi_{t,\varepsilon}$) be weak Mabuchi *geodesics joining* φ_0 *and* φ_1 (resp. $\varphi_{0,\varepsilon} = P_{\omega_{\varepsilon}}(f_0)$ *and* $\varphi_{1,\varepsilon} = P_{\omega_{\varepsilon}}(f_1)$ *). Then, we have the following pointwise convergence*

$$
\mathbb{1}_{\{\varphi_{0,\varepsilon}=f_0\}}|\dot{\varphi}_{0,\varepsilon}|^p \to \mathbb{1}_{\{\varphi_0=f_0\}}|\dot{\varphi}_0|^p.
$$

Proof Since $P_{\omega_{\varepsilon}}(f_i) \geq P_{\theta}(f_i)$, $j = 0, 1$, it follows from the definition that $\varphi_{t,\varepsilon} \geq \varphi_t$ (the curve φ_t is a candidate defining $\varphi_{t,\varepsilon}$ for any $\varepsilon > 0$). Set $D_{\varepsilon} = {\varphi_{0,\varepsilon}} = f_0$ and $D = {\varphi_0 = f_0}$. Then, D_{ε} is increasing and $\bigcap_{\varepsilon > 0} D_{\varepsilon} = D$ since $\varphi_0 \leq \varphi_{0,\varepsilon} \leq f_0$. If $x \in D$ then, for all small $s > 0$,

$$
\dot{\varphi}_0(x) = \lim_{t \to 0} \frac{\varphi_t(x) - f_0(x)}{t} \leq \dot{\varphi}_{0,\varepsilon}(x) \leq \frac{\varphi_{s,\varepsilon}(x) - \varphi_{0,\varepsilon}(x)}{s},
$$

where in the last inequality we use the convexity of the geodesic in *t*. Letting first $\varepsilon \to 0$ and then $s \to 0$ shows that $\dot{\varphi}_{0,\varepsilon}(x)$ converges to $\dot{\varphi}_0(x)$. If $x \notin D$ then $x \notin D_{\varepsilon}$, for $\varepsilon > 0$ small enough. In this case the convergence we want to prove is trivial. small enough. In this case the convergence we want to prove is trivial.

Theorem 3.7 *Let* $\varphi_0 := P_\theta(f_0), \varphi_1 := P_\theta(f_1) \in \mathcal{H}_\theta$ *and let* $\varphi_{i,\varepsilon} = P_{\omega_{\varepsilon}}(f_i), i = 0, 1$ *. Let* $d_{p,\varepsilon}$ *be the Mabuchi distance with respect to* ω_{ε} *defined in* [\(3.1\)](#page-7-0)*. Then,*

$$
\lim_{\varepsilon \to 0} d_{p,\varepsilon}^p(\varphi_{0,\varepsilon}, \varphi_{1,\varepsilon}) = \int_X |\dot{\varphi}_0|^p (\theta + dd^c \varphi_0)^n = \int_X |\dot{\varphi}_1|^p (\theta + dd^c \varphi_1)^n,
$$

where φ_t *is the weak Mabuchi geodesic connecting* φ_0 *and* φ_1 *.*

Compared with [\[32\]](#page-16-4) our approach is slightly different. We also emphasize that by [\[31,](#page-16-13) Example 4.5], there are functions in $\mathcal{E}^p(X, \theta)$ which are not in $\mathcal{E}^p(X, \omega)$.

Proof Let $\varphi_{t,\varepsilon}$ denote the ω_{ε} -geodesic joining $\varphi_{0,\varepsilon}$ and $\varphi_{1,\varepsilon}$. Set $D_{\varepsilon} = {\varphi_{0,\varepsilon}} = f_0$ and $D = {\varphi_0 = f_0}$. Combining [\(2.6\)](#page-5-1) and Theorem 2.1, we obtain

$$
V_{\varepsilon}d_{p,\varepsilon}^p(\varphi_{0,\varepsilon},\varphi_{1,\varepsilon})=\int_X|\dot{\varphi}_{0,\varepsilon}|^p(\omega_{\varepsilon}+dd^c\varphi_{0,\varepsilon})^n=\int_{D_{\varepsilon}}|\dot{\varphi}_{0,\varepsilon}|^p(\omega_{\varepsilon}+dd^c f_0)^n.
$$

Since $|\varphi_{0,\varepsilon} - \varphi_{1,\varepsilon}| \le \sup_X |f_0 - f_1|$ and $f_0 - f_1$ is bounded, [\(2.5\)](#page-5-2) ensures that $\dot{\varphi}_{0,\varepsilon}$ is uniformly bounded. It follows from Lemma 3.5 and Lemma 3.6 that the functions $1_{D_{\varepsilon}}|\dot{\varphi}_{0,\varepsilon}|^p\rho_{\varepsilon}$ and $\frac{1}{p} \phi_0|^p \rho$ are uniformly bounded and $\frac{1}{p} \phi_0 e^{p} \rho_e$ converges pointwise to $\frac{1}{p} \phi_0|^p \rho$. We also observe that V_{ε} decreases to $Vol(\theta) = 1$. Lebesgue's dominated convergence theorem then yields

$$
\lim_{\varepsilon \to 0} d_{p,\varepsilon}^p (\varphi_{0,\varepsilon}, \varphi_{1,\varepsilon}) = \int_D |\dot{\varphi}_0|^p (\theta + dd^c f_0)^n = \int_X |\dot{\varphi}_0|^p (\theta + dd^c \varphi_0)^n,
$$

where in the last equality we use Theorem 2.1. This shows the first equality in the statement. The second one is obtained by reversing the role of φ_0 and φ_1 . П

Definition 3.8 Assume that $\varphi_0 := P_\theta(f_0), \varphi_1 := P_\theta(f_1) \in \mathcal{H}_\theta$. Let $d_{p,\varepsilon}$ be the Mabuchi distance with respect to $\omega_{\varepsilon} := \theta + \varepsilon \omega$ defined in [\(3.1\)](#page-7-0). We define

$$
d_p(\varphi_0, \varphi_1) := \lim_{\varepsilon \to 0} d_{p,\varepsilon}(\varphi_{0,\varepsilon}, \varphi_{1,\varepsilon}),
$$

where $\varphi_{0,\varepsilon} := P_{\omega_{\varepsilon}}(f_0)$ and $\varphi_{1,\varepsilon} := P_{\omega_{\varepsilon}}(f_1)$.

The limit exists and is independent of the choice of *ω* as shown in Theorem 3.7.

Lemma 3.9 d_p *is a distance on* \mathcal{H}_{θ} *.*

Proof The triangle inequality immediately follows from the fact that *dp,ε* is a distance. From [\[20,](#page-15-3) Theorem 5.5] we know that

$$
d_{p,\varepsilon}^p(\varphi_{0,\varepsilon},\varphi_{1,\varepsilon})\geq \frac{1}{C}I_{p,\omega_\varepsilon}(\varphi_{0,\varepsilon},\varphi_{1,\varepsilon}),\qquad C>0.
$$

Also, by Lemma 3.4 we have $\lim_{\varepsilon \to 0} I_{p,\omega_{\varepsilon}}(\varphi_{0,\varepsilon},\varphi_{1,\varepsilon}) = I_{p,\theta}(\varphi_0,\varphi_1)$. It follows from the domination principe (see $[10, 24]$ $[10, 24]$ $[10, 24]$) that

$$
I_{p,\theta}(\varphi_0,\varphi_1)=0 \Leftrightarrow \varphi_0=\varphi_1.
$$

Hence, d_p is non-degenerate.

3.2 Extension of d_p **to** $\mathcal{E}^p(X, \theta)$

The following comparison between I_p and d_p was established in [\[20,](#page-15-3) Theorem 3] in the Kähler case.

Proposition 3.10 *Given* φ_0 , $\varphi_1 \in \mathcal{H}_{\theta}$ *there exists a constant* $C > 0$ *(depending only on n) such that*

$$
\frac{1}{C}I_p(\varphi_0, \varphi_1) \le d_p^p(\varphi_0, \varphi_1) \le C I_p(\varphi_0, \varphi_1).
$$
\n(3.2)

 \Box

Proof By Darvas [\[20,](#page-15-3) Theorem 3] we know that

$$
\frac{1}{C}I_{p,\omega_{\varepsilon}}(\varphi_{0,\varepsilon},\varphi_{1,\varepsilon})\leq d_{p,\varepsilon}^p(\varphi_{0,\varepsilon},\varphi_{1,\varepsilon})\leq CI_{p,\omega_{\varepsilon}}(\varphi_{0,\varepsilon},\varphi_{1,\varepsilon}).
$$

Letting ε to zero and using Lemma 3.4 and Definition 3.8, we get [\(3.2\)](#page-9-0).

Now, let $\varphi_0, \varphi_1 \in \mathcal{E}^p(X, \theta)$. Let $\{f_{i,j}\}$ be a sequence of smooth functions decreasing to φ_i , $i = 0, 1$. We then clearly have that $\varphi_{i,j} := P_\theta(f_{i,j}) \in \mathcal{H}_\theta$ and $P_\theta(f_{i,j}) \setminus \varphi_i$.

Lemma 3.11 *The sequence* $d_p(\varphi_{0,j}, \varphi_{1,j})$ *converges and the limit is independent of the choice of the approximants fi,j .*

Proof Set $a_j := d_p(\varphi_{0,j}, \varphi_{1,j})$. By the triangle inequality and Proposition 3.10, we have

$$
a_j \leq d_p(\varphi_{0,j}, \varphi_{0,k}) + d_p(\varphi_{0,k}, \varphi_{1,k}) + d_p(\varphi_{1,k}, \varphi_{1,j})
$$

$$
\leq a_k + C\left(I_p^{1/p}(\varphi_{0,j}, \varphi_{0,k}) + I_p^{1/p}(\varphi_{1,j}, \varphi_{1,k})\right),
$$

where $C > 0$ depends only on *n*, *p*. Hence,

$$
|a_j - a_k| \le C \left(I_p^{1/p}(\varphi_{0,j}, \varphi_{0,k}) + I_p^{1/p}(\varphi_{1,j}, \varphi_{1,k}) \right).
$$

By [\[34,](#page-16-9) Theorem 1.6 and Proposition 1.9], it then follows that $|a_i - a_k| \to 0$ as $j, k \to +\infty$. This proves that the sequence $d_p(\varphi_{0,j}, \varphi_{1,j})$ is Cauchy; hence, it converges.

Let $\tilde{\varphi}_{i,j} = P_{\theta}(f_{i,j})$ be another sequence in \mathcal{H}_{θ} decreasing to φ_i , $i = 0, 1$. Then, applying the triangle inequality several times, we get

$$
d_p(\varphi_{0,j}, \varphi_{1,j}) \le d_p(\varphi_{0,j}, \tilde{\varphi}_{0,j}) + d_p(\tilde{\varphi}_{0,j}, \tilde{\varphi}_{1,j}) + d_p(\tilde{\varphi}_{1,j}, \varphi_{1,j}),
$$

and thus

$$
|d_p(\varphi_{0,j}, \varphi_{1,j}) - d_p(\tilde{\varphi}_{0,j}, \tilde{\varphi}_{1,j})| \le C \left(I_p^{1/p}(\varphi_{0,j}, \tilde{\varphi}_{0,j}) + I_p^{1/p}(\varphi_{1,j}, \tilde{\varphi}_{1,j}) \right).
$$

It then follows again from [\[34,](#page-16-9) Theorem 1.6 and Proposition 1.9] that the limit does not depend on the choice of the approximants. □

Given $\varphi_0, \varphi_1 \in \mathcal{E}^p(X, \theta)$, we then define

$$
d_p(\varphi_0, \varphi_1) := \lim_{j \to +\infty} d_p(P_\theta(f_{0,j}), P_\theta(f_{1,j})).
$$

Proposition 3.12 *d_p is a distance on* $\mathcal{E}^p(X, \theta)$ *and the inequalities comparing d_p and* I_p *on* \mathcal{H}_{θ} [\(3.2\)](#page-9-0) *hold on* $\mathcal{E}^p(X, \theta)$ *. Moreover, if* $u_j \in \mathcal{E}^p(X, \theta)$ *decreases to* $u \in \mathcal{E}^p(X, \theta)$ *then* $d_p(u_j, u) \rightarrow 0$.

Proof By the definition of d_p on $\mathcal{E}^p(X, \theta)$ we infer that the comparison between d_p and I_p in Proposition 3.10 holds on $\mathcal{E}^p(X, \theta)$. From this and the domination principle [\[24\]](#page-15-11), we deduce that d_p is non-degenerate. The last statement follows from (3.2) and $[34,$ Proposition 1.9]. □

The next result was proved in $[6,$ Lemma 3.4] for the Kähler case.

Lemma 3.13 *Let* u_t *be the Mabuchi geodesic joining* $u_0 \in \mathcal{H}_{\theta}$ *and let* $u_1 \in \mathcal{E}^p(X, \theta)$ *. Then,*

$$
d_p^p(u_0, u_1) = \int_X |\dot{u}_0|^p (\theta + dd^c u_0)^n.
$$

63

Proof We first assume that $u_0 \geq u_1 + 1$. We approximate u_1 from above by $u_1^j \in H_\theta$ such that $u_1^j \le u_0$, for all *j*. Let u_t^j be the Mabuchi geodesic joining u_0 to u_1^j . Note that $u_t^j \ge u_t$ and that $\dot{u}_t^j \leq 0$. By Theorem 3.7,

$$
d_p^p(u_0, u_1^j) = \int_X (-\dot{u}_0^j)^p \theta_{u_0}^n.
$$

Also, \dot{u}_0^j decreases to \dot{u}_0 ; hence, the monotone convergence theorem and Proposition 3.12 give

$$
d_p^p(u_0, u_1) = \int_X (-\dot{u}_0)^p \theta_{u_0}^n < +\infty.
$$

In particular $|\dot{u}_0|^p \in L^1(X, \theta_{u_0}^n)$.

For the general case we can find a constant $C > 0$ such that $u_1 \le u_0 + C$ since u_0 has minimal singularities. Let w_t be the Mabuchi geodesic joining u_0 and $u_1 - C - 1$. Note that *w_t* ≤ *u*_{*i*}^{*j*} since *w*₁ = *u*₁ − *C* − 1 < *u*₁ ≤ *u*₁^{*j*} and *w*₀ = *u*₀^{*j*} and *w*_{*t*} ≤ 0. It then follows that

$$
\dot{w}_0 \le \dot{u}_0^j \le u_1^j - u_0 \le (u_1^j - V_\theta) + (V_\theta - u_0) \le \sup_X u_1^j + \sup_X (V_\theta - u_0) \le C_1,
$$

for a uniform constant $C_1 > 0$. In the second inequality above, we use the fact that the Mabuchi geodesic u_t^j connecting u_0 to u_1^j is convex in *t*, while in the last inequality we use the fact that u_0 has minimal singularities.

The previous inequalities then yield $|\dot{u}_0^j|^p \le C_2 + 2^{p-1}|\dot{w}_0|^p$, where C_2 is a uniform constant. On the other hand by Theorem 3.7, we have

$$
d_p^p(u_0, u_1^j) = \int_X |\dot{u}_0^j|^p \theta_{u_0}^n.
$$

We claim that $|\dot{u}_0^j|^p$ converges a.e. to $|\dot{u}_0|^p$. Indeed, the convergence is pointwise at points *x* such that $u_1(x) > -\infty$, but the set $\{u_1 = -\infty\}$ has Lebesgue measure zero. Also, the above estimate ensures that $|\dot{u}_0^j|^p$ are uniformly bounded by $2^{p-1}(-\dot{w}_0)^p + C_2$ which is integrable with respect to the measure $\theta_{u_0}^n$ since $\int_X |\dot{w}_0|^p \theta_{u_0}^n = d_p^p(u_0, u_1 - C - 1) < +\infty$. Proposition 3.12 and Lebesgue's dominated convergence theorem then give the result. \square

Proposition 3.14 *If* $u, v \in \mathcal{E}^p(X, \theta)$ *then*

- (i) $d_p^p(u, v) = d_p^p(u, P_\theta(u, v)) + d_p^p(v, P_\theta(u, v))$ and
- (ii) $d_p(u, \max(u, v)) \ge d_p(v, P_\theta(u, v)).$

We recall that from [\[24,](#page-15-11) Theorem 2.13] $P_{\theta}(u, v) \in \mathcal{E}^p(X, \theta)$. The identity in the first statement is known as the Pythagorean formula and it was established in the Kähler case by Darvas [\[20\]](#page-15-3). The second statement was proved for $p = 1$ in [\[26\]](#page-15-8) using the differentiability of the Monge-Ampère energy. As will be shown in Proposition 3.18, our definition of d_1 and the one in [\[26\]](#page-15-8) do coincide.

Proof To prove the Pythagorean formula, we first assume that $u = P_{\theta}(f)$, $v = P_{\theta}(g) \in$ \mathcal{H}_{θ} . Set $u_{\varepsilon} := P_{\omega_{\varepsilon}}(f)$, $v_{\varepsilon} := P_{\omega_{\varepsilon}}(g)$. It follows from Lemma 3.3 that

$$
d_{p,\varepsilon}^p(u_\varepsilon, v_\varepsilon) = d_{p,\varepsilon}^p(u_\varepsilon, P_{\omega_\varepsilon}(u_\varepsilon, v_\varepsilon)) + d_{p,\varepsilon}^p(v_\varepsilon, P_{\omega_\varepsilon}(u_\varepsilon, v_\varepsilon))
$$

=
$$
d_{p,\varepsilon}^p(u_\varepsilon, P_{\omega_\varepsilon}(\min(f, g)) + d_{p,\varepsilon}^p(v_\varepsilon, P_{\omega_\varepsilon}(\min(f, g)),
$$

where in the last identity we use that $P_{\omega_{\varepsilon}}(u_{\varepsilon}, v_{\varepsilon}) = P_{\omega_{\varepsilon}}(\min(f, g))$. It follows from Lemma 3.1 that dd^c min $(f, g) \leq C\omega$. Applying Theorem 3.7 we obtain (i) for this case. To treat the general case, let $u_j = P_\theta(f_j)$, $v_j = P_\theta(g_j)$ be sequences in \mathcal{H}_θ decreasing to *u*, *v*. By Lemma 3.1, $P_\theta(u_j, v_j) = P_\theta(\min(f_j, g_j)) \in \mathcal{H}_\theta$ and it decreases to $P_\theta(u, v)$. Then, (i) follows from the first step and Proposition 3.12 since

$$
|d_p(u_j, v_j) - d_p(u, v)| \le d_p(u_j, u) + d_p(v, v_j).
$$

To prove the second statement, in view of Proposition 3.12, we can assume that $u =$ $P_{\theta}(f)$, $v = P_{\theta}(g) \in \mathcal{H}_{\theta}$. By Lemma 3.13 we have

$$
d_p^p(u, \max(u, v)) = \int_X |\dot{u}_0|^p \theta_u^n,
$$

where $t \mapsto u_t$ is the Mabuchi geodesic joining $u_0 = u$ to $u_1 = \max(u, v)$.

Let φ_t be the Mabuchi geodesic joining $\varphi_0 = P_\theta(u, v)$ to $\varphi_1 = v$. We note that $0 \leq \dot{\varphi}_0 \leq$ $v - P(u, v)$. Indeed, $\dot{\varphi}_0 \ge 0$ since $\varphi_0 \le \varphi_1$ while the second inequality follows from the convexity in *t* of the geodesic. Using this observation and the fact that $\varphi_t \leq u_t$, we obtain

$$
\mathbb{1}_{\{P(u,v)=u\}}\dot{\varphi}_0 \leq \mathbb{1}_{\{P(u,v)=u\}}\dot{u}_0, \text{ and } \mathbb{1}_{\{P(u,v)=v\}}\dot{\varphi}_0 = 0.
$$

Since $P_\theta(u, v) = P_\theta(\min(f, g))$ with $dd^c \min(f, g) < C\omega$, Theorem 2.1, Theorem 3.7, and [\[34,](#page-16-9) Lemma 4.1] then yield

$$
d_p^p(P_\theta(u, v), v) = \int_X \dot{\varphi}_0^p (\theta + dd^c \varphi_0)^n \le \int_{\{P(u, v) = u\}} \dot{\varphi}_0^p (\theta + dd^c u)^n
$$

$$
\le \int_{\{P(u, v) = u\}} \dot{u}_0^p (\theta + dd^c u)^n \le d_p^p(u, \max(u, v)).
$$

Remark 3.15 By Proposition 3.14 we have a "Pythagorean inequality" for max:

$$
d_p^p(u, \max(u, v)) + d_p^p(v, \max(u, v)) \ge d_p^p(u, v), \forall u, v \in \mathcal{E}^p(X, \theta).
$$

3.3 Completeness of $(E^p(X, \theta), d_p)$

In the sequel we fix a smooth volume form dV on X such that $\int_X dV = 1$.

Lemma 3.16 *Let* $u \in \mathcal{E}^p(X, \theta)$ *and let* ϕ *be a* θ *-psh function with minimal singularities,* $\sup_X \phi = 0$ *satisfying* $\theta_{\phi}^n = dV$ *. Then, there exist uniform constants* $C_1 = C_1(n, \theta)$ *and* $C_2 = C_2(n) > 0$ *such that*

$$
|\sup_X u| \le C_1 + C_2 d_p(u, \phi).
$$

Proof Using the Hölder inequality and [[35,](#page-16-14) Proposition 2.7], we obtain

$$
|\sup_X u| \leq \int_X |u - \sup_X u| dV + \int_X |u| dV \leq A + \left(\int_X |u|^p dV\right)^{1/p}
$$

$$
\leq A + \left(\|u - \phi\|_{L^p(dV)} + \|\phi\|_{L^p(dV)}\right).
$$

By Proposition 3.12,

$$
\int_X |u - \phi|^p dV = \int_X |u - \phi|^p \theta_{\phi}^n \le I_p(u, \phi) \le C(n) d_p^p(u, \phi).
$$

 $\textcircled{2}$ Springer

Combining the above inequalities we get the conclusion.

Theorem 3.17 *The space* $(\mathcal{E}^p(X, \theta), d_p)$ *is a complete geodesic metric space which is the completion of* $(\mathcal{H}_{\theta}, d_p)$ *.*

Proof Let $(\varphi_j) \in \mathcal{E}^p(X, \theta)^\mathbb{N}$ be a Cauchy sequence for d_p . Extracting and relabelling we can assume that there exists a subsequence $(u_i) \subseteq (\varphi_i)$ such that

$$
d_p(u_j, u_{j+1}) \leq 2^{-j}.
$$

Define $v_{j,k} := P_\theta(u_j, \dots, u_{j+k})$ and observe that it is decreasing in *k*. Also, by Proposition 3.14 (i) and the triangle inequality,

$$
d_p(u_j, v_{j,k}) = d_p(u_j, P_\theta(u_j, v_{j+1,k})) \le d_p(u_j, v_{j+1,k}) \le 2^{-j} + d_p(u_{j+1}, v_{j+1,k}).
$$
\nSince

Hence,

$$
d_p(u_j, v_{j,k}) \le \sum_{\ell=j}^{k-1} 2^{-\ell} \le 2^{-j+1}.
$$

In particular $I_p(u_j, v_{j,k})$ is uniformly bounded from above. We then infer that $v_{j,k}$ decreases to $v_j \in PSH(X, \theta)$ as $k \to +\infty$ and a combination of Proposition 3.12 and [\[34,](#page-16-9) Proposition 1.9] gives

$$
d_p(u_j, v_j) \le 2^{1-j}, \ \forall j. \tag{3.3}
$$

Let ϕ be the unique θ -psh function with minimal singularities such that sup_{*X*} $\phi = 0$ and $\theta_{\phi}^{n} = dV$. By Lemma 3.16,

$$
|\sup_{X} v_{j}| \leq C_{1} + C_{2}d_{p}(v_{j}, \phi) \leq C_{1} + C_{2} (d_{p}(v_{j}, u_{1}) + d_{p}(u_{1}, \phi))
$$

\n
$$
\leq C_{1} + C_{2} (d_{p}(v_{j}, u_{j}) + d_{p}(u_{j}, u_{1}) + d_{p}(u_{1}, \phi))
$$

\n
$$
\leq C_{1} + C_{2} (4 + d_{p}(u_{1}, \phi)).
$$

It thus follows that v_j increases a.e. to a θ -psh function v . By the triangle inequality we have

$$
d_p(\varphi_j, v) \le d_p(\varphi_j, u_j) + d_p(u_j, v_j) + d_p(v_j, v).
$$

Since (φ_i) is Cauchy, $d_p(\varphi_i, u_i) \to 0$. By [\[34,](#page-16-9) Proposition 1.9] and Proposition 3.12, we have $d_p(v_i, v) \rightarrow 0$. These facts together with [\(3.3\)](#page-13-0) yield $d_p(\varphi_i, v) \rightarrow 0$; hence, $(\mathcal{E}^p(X, \theta), d_p)$ is a complete metric space.

Also, any $u \in \mathcal{E}^p(X, \theta)$ can be approximated from above by functions $u_i \in \mathcal{H}_\theta$ such that $d_p(u_i, u) \to 0$ (Proposition 3.12). It thus follows that $(\mathcal{E}^p(X, \theta), d_p)$ is the metric completion of H*^θ* .

Let now u_t be the Mabuchi geodesic joining $u_0, u_1 \in \mathcal{E}^p(X, \theta)$. We are going to prove that, for all $t \in [0, 1]$,

$$
d_p(u_t, u_s) = |t - s| d_p(u_0, u_1).
$$

We claim that for all $t \in [0, 1]$,

$$
d_p(u_0, u_t) = td_p(u_0, u_1) \text{ and } d_p(u_1, u_t) = (1 - t)d_p(u_0, u_1). \tag{3.4}
$$

We first assume that $u_0, u_1 \in H_\theta$. The Mabuchi geodesic joining u_0 to u_t is given by $w_{\ell} = u_{t\ell}, \ell \in [0, 1]$. Lemma 3.13 thus gives

$$
d_p^p(u_0, u_t) = \int_X |\dot{w}_0|^p \theta_{u_0}^n = t^p \int_X |\dot{u}_0|^p \theta_{u_0}^n = t^p d_p^p(u_0, u_1),
$$

proving the first equality in [\(3.4\)](#page-13-1). The second one is proved similarly.

 \mathcal{D} Springer

 \Box

We next prove the claim for $u_0, u_1 \in \mathcal{E}^p(X, \theta)$. Let $(u_i^j), i = 0, 1, j \in \mathbb{N}$, be decreasing sequences of functions in \mathcal{H}_{θ} such that $u_i^j \downarrow u_i$, $i = 0, 1$. Let u_i^j be the Mabuchi geodesic joining u_0^j and u_1^j . Then, u_t^j decreases to u_t . By the triangle inequality we have $|d_p(u_0^j, u_t^j)$ $d_p(u_0, u_t)| \leq d_p(u_0^j, u_0) + d_p(u_t, u_t^j)$. The claim thus follows from Proposition 3.12 and the previous step.

Now, if $0 < t < s < 1$ then applying twice [\(3.4\)](#page-13-1), we get

$$
d_p(u_t, u_s) = \frac{s-t}{s} d_p(u_0, u_s) = (s-t) d_p(u_0, u_1).
$$

We end this section by proving that the distance d_1 defined by approximation (see Definition 3.8) coincides with the one defined in [\[26\]](#page-15-8) using the Monge-Ampère energy.

Proposition 3.18 *Assume* $u_0, u_1 \in \mathcal{E}^1(X, \theta)$ *. Then,*

$$
d_1(u_0, u_1) = E(u_0) + E(u_1) - 2E(P(u_0, u_1)).
$$

Here the Monge-Ampère energy E is defined as

$$
E(u) := \frac{1}{n+1} \sum_{j=0}^{n} \int_{X} (u - V_{\theta}) \theta_u^j \wedge \theta_{V_{\theta}}^{n-j}.
$$

Proof We first assume that $u_0, u_1 \in \mathcal{H}_{\theta}$ and $u_0 \leq u_1$. Let $[0, 1] \ni t \mapsto u_t$ be the Mabuchi geodesic joining u_0 and u_1 . By [\[24,](#page-15-11) Theorem 3.12], $t \mapsto E(u_t)$ is affine, hence for all $t \in [0, 1],$

$$
\frac{E(u_t) - E(u_0)}{t} = E(u_1) - E(u_0) = \frac{E(u_1) - E(u_t)}{1 - t}.
$$

Since E is concave along affine curves (see $[5, 12]$ $[5, 12]$ $[5, 12]$, $[26,$ Theorem 2.1]), we thus have

$$
\int_X \frac{u_t - u_0}{t} \theta_{u_0}^n \ge E(u_1) - E(u_0) \ge \int_X \frac{u_1 - u_t}{1 - t} \theta_{u_1}^n.
$$

Letting $t \to 0$ in the first inequality and $t \to 1$ in the second one, we obtain

$$
\int_X \dot{u}_0 \theta_{u_0}^n \ge E(u_1) - E(u_0) \ge \int_X \dot{u}_1 \theta_{u_1}^n.
$$

By Theorem 3.7 we then have

$$
d_1(u_0, u_1) = \int_X \dot{u}_0 \theta_{u_0}^n = \int_X \dot{u}_1 \theta_{u_1}^n = E(u_1) - E(u_0).
$$

We next assume that $u_0, u_1 \in \mathcal{H}_{\theta}$ but we remove the assumption that $u_0 \leq u_1$. By Lemma 3.1, $P(u_0, u_1) \in \mathcal{H}_{\theta}$. By the Pythagorean formula (Proposition 3.14) and the first step, we have

$$
d_1(u_0, u_1) = d_1(u_0, P(u_0, u_1)) + d_1(u_1, P(u_0, u_1))
$$

= $E(u_0) - E(P(u_0, u_1)) + E(u_1) - E(P(u_0, u_1)).$

We now treat the general case. Let (u_i^j) , $i = 0, 1, j \in \mathbb{N}$ be decreasing sequences of functions in \mathcal{H}_{θ} such that $u_i^j \downarrow u_i$, $i = 0, 1$. Then, $P(u_0^j, u_1^j) \downarrow P(u_0, u_1)$. By [\[26,](#page-15-8) Proposition 2.4], $E(u_i^j) \to E(u_i)$, for $i = 0, 1$ and $E(P(u_0^j, u_1^j)) \to E(P(u_0, u_1))$ as $j \to +\infty$. The result thus follows from Proposition 3.12, the triangle inequality, and the previous step. \Box

Acknowledgments We thank Tamás Darvas for valuable discussions, and the referee for several useful comments which allowed us to improve the presentation of the note.

Funding Information The authors are partially supported by the French ANR project GRACK.

References

- 1. Aubin, T.: Équations du type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. (2) **102**(1), 63–95 (1978)
- 2. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampere equation. Invent. Math. ` **37**(1), 1–44 (1976)
- 3. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. **149**(1–2), 1–40 (1982)
- 4. Berman, R.J.: From Monge–Ampère equations to envelopes and geodesic rays in the zero temperature limit. Mathematische Zeitschrift (2018)
- 5. Berman, R.J., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge-Ampere ` equations. Publ. Math. Inst. Hautes Études Sci. 117, 179–245 (2013)
- 6. Berman, R.J., Darvas, T., Lu, C.H.: Regularity of weak minimizers of the K-energy and applications to properness and K-stability. Accepted in Annales scientifiques de l'ENS (2018)
- 7. Berndtsson, B.: A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math. **200**(1), 149–200 (2015)
- 8. Błocki, Z.: On Geodesics in the Space of Kähler Metrics. Adv.nces in Geometric Analysis, Adv. Lect. Math. (ALM), vol. 21, pp. 3–19. Int. Press, Somerville (2012)
- 9. Błocki, Z., Kołodziej, S.: On regularization of plurisubharmonic functions on manifolds. Proc. Am. Math. Soc. **135**(7), 2089–2093 (2007)
- 10. Bloom, T., Levenberg, N.: Pluripotential energy. Potential Anal. **36**(1), 155–176 (2012)
- 11. Boucksom, S.: Divisorial Zariski decompositions on compact complex manifolds. Ann. Sci. Ecole Norm. ´ Sup. (4) **37**(1), 45–76 (2004)
- 12. Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Monge-Ampere equations in big cohomology ` classes. Acta Math. **205**(2), 199–262 (2010)
- 13. Calabi, E.: Extremal Kahler Metrics. Seminar on Differential Geometry, vol. 102, pp. 259–290. Princeton ¨ Univ. Press, Princeton (1982)
- 14. Campana, F., Guenancia, H., Paun, M.: Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Ann. Sci. Ecole Norm. Sup. (4) ´ **46**(6), 879–916 (2013)
- 15. Chen, X.: The space of Kähler metrics. J. Differential Geom. **56**(2), 189–234 (2000)
- 16. Chen, X., Cheng, J.: On the constant scalar curvature Kähler metrics, apriori estimates. arXiv[:1712.06697](http://arXiv.org/abs/1712.06697)
- 17. Chen, X., Cheng, J.: On the constant scalar curvature Kähler metrics, existence results. arXiv: [1801.00656](http://arXiv.org/abs/1801.00656)
- 18. Chen, X., Cheng, J.: On the constant scalar curvature Kähler metrics, general automorphism group. arXiv[:1801.05907](http://arXiv.org/abs/1801.05907)
- 19. Chu, J., Tosatti, V., Weinkove, B.: On the $C^{1,1}$ regularity of geodesics in the space of Kähler metrics. Ann. PDE **3**(2), Art. 15, 12 (2017)
- 20. Darvas, T.: The Mabuchi geometry of finite energy classes. Adv. Math. **285**, 182–219 (2015)
- 21. Darvas, T.: The Mabuchi completion of the space of Kähler potentials. Am. J. Math. **139**(5), 1275–1313 (2017)
- 22. Darvas, T.: Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics. Int. Math. Res. Not. IMRN **22**, 6752–6777 (2017)
- 23. Darvas, T.: Geometric pluripotential theory on Kähler manifolds. Lecture notes available at the author's webpage (2018)
- 24. Darvas, T., Di Nezza, E., Lu, C.H.: On the singularity type of full mass currents in big cohomology classes. Compos. Math. **154**(2), 380–409 (2018)
- 25. Darvas, T., Di Nezza, E., Lu, C.H.: Monotonicity of nonpluripolar products and complex Monge– Ampère equations with prescribed singularity. Anal. PDE 11(8), 2049–2087 (2018)
- 26. Darvas, T., Di Nezza, E., Lu, C.H.: *L*¹ metric geometry of big cohomology classes. arXiv[:1802.00087](http://arXiv.org/abs/1802.00087) to appear in Annales de l'Institut Fourier (2018)
- 27. Darvas, T., Di Nezza, E., Lu, C.H.: Log-concavity of volume and complex Monge-Ampere equations ` with prescribed singularity. arXiv[:072018.](http://arXiv.org/abs/072018) Preprint 07/2018

- 28. Darvas, T., Rubinstein, Y.A.: Kiselman's principle, the Dirichlet problem for the Monge-Ampere ` equation, and rooftop obstacle problems. J. Math. Soc. Japan **68**(2), 773–796 (2016)
- 29. Darvas, T., Rubinstein, Y.A.: Tian's properness conjectures and Finsler geometry of the space of Kähler metrics. J. Am. Math. Soc. **30**(2), 347–387 (2017)
- 30. Demailly, J.-P.: Regularization of closed positive currents and intersection theory. J. Algebraic Geom. **1**(3), 361–409 (1992)
- 31. Di Nezza, E.: Stability of Monge-Ampere energy classes. J. Geom. Anal. ` **25**(4), 2565–2589 (2015)
- 32. Di Nezza, E., Guedj, V.: Geometry and topology of the space of Kahler metrics on singular varieties. ¨ Compos. Math. **154**(8), 1593–1632 (2018)
- 33. Donaldson, S.K.: Symmetric Spaces, Kahler Geometry and Hamiltonian Dynamics. Northern Califor- ¨ nia Symplectic Geometry Seminar. Am. Math. Soc. Transl. Ser. 2 196, pp. 13–33. Am. Math. Soc., Providence (1999)
- 34. Guedj, V., Lu, C.H., Zeriahi, A.: Plurisubharmonic envelopes and supersolutions. arXiv[:1703.05254,](http://arXiv.org/abs/1703.05254) J. Differ. Geom. (2017)
- 35. Guedj, V., Zeriahi, A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)
- 36. Guedj, V., Zeriahi, A.: The weighted Monge-Ampere energy of quasiplurisubharmonic functions. J. ` Funct. Anal. **250**(2), 442–482 (2007)
- 37. Guedj, V., Zeriahi, A.: Degenerate Complex Monge-Ampere. Equations EMS Tracts in Mathematics, ` vol. 26. European Mathematical Society (EMS), Zürich (2017)
- 38. Mabuchi, T.: Some symplectic geometry on compact Kahler manifolds. I. Osaka J. Math. ¨ **24**(2), 227–252 (1987)
- 39. Semmes, S.: Complex Monge-Ampere and symplectic manifolds. Am. J. Math. ` **114**(3), 495–550 (1992)
- 40. Siu, Y.-T.: Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. Birkhäuser (1987)
- 41. Székelyhidi, G.: An Introduction to Extremal Kähler Metrics Graduate Studies in Mathematics, vol. 152. American Mathematical Society, Providence (2014)
- 42. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. **31**(3), 339–411 (1978)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.