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Abstract
In this paper, we study the common null point problem in Banach spaces. Then, using the
shrinking projection method and ε-enlargement of maximal monotone operator, we prove
two strong convergence theorems with nonsummable errors for solving this problem.
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1 Introduction

Let H be a real Hilbert space and let f : H −→ (−∞,∞] be a proper, lower semicontin-
uous and convex function. In order to find a minimum point of f , Martinet [19] proposed
the iterative method as follows: x1 ∈ H and

xn+1 = arg min
y∈H

{
f (y) + 1

2
‖y − xn‖2

}
,

for all n ≥ 1. He proved that, the sequence {xn} converges weakly to a minimum point of
f . Note that, the above sequence {xn} can be rewritten in the form

∂f (xn+1) + xn+1 � xn, ∀n ≥ 1.

We know that the subdifferential operator ∂f of f is a maximal monotone operator (see
[27]). So, the problem of finding a null point of a maximal monotone operator plays an
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important role in optimization. One popular method of solving equation 0 ∈ A(x) where A

is a maximal monotone operator in Hilbert space H , is the proximal point algorithm. The
proximal point algorithm generates, for any starting point x0 = x ∈ E, a sequence {xn} by
the rule

xn+1 = JA
cn

(xn), for all n ∈ N, (1.1)

where {cn} is a sequence of positive real numbers and JA
cn

= (I + cnA)−1 is the resolvent of
A. Some of them dealt with the weak convergence of the sequence {xn} generated by (1.1)
and others proved strong convergence theorems by imposing assumptions on A. Moreover,
Rockafellar [29] gave a more practical method which is an inexact variant of the method:

xn + en ∈ xn+1 + cnAxn+1 for all n ∈ N, (1.2)

where {en} is regarded as an error sequence and {cn} is a sequence of positive regularization
parameters. Note that the algorithm (1.2) can be rewritten as

xn+1 = JA
cn

(xn + en) for all n ∈ N. (1.3)

This method is called inexact proximal point algorithm. It was shown in Rockafellar [29]
that if en −→ 0 quickly enough such that

∑∞
n=1 ‖en‖ < ∞, then xn ⇀ z ∈ H with 0 ∈ Az.

In [10], Burachik et al. used the enlargement Aε to devise an approximate generalized
proximal point algorithm. The exact version of this algorithm can be stated as follows:
having xn, the next element xn+1 is the solution of

0 ∈ cnA(x) + 	f (x) − 	f (xn), (1.4)

where f is a suitable regularization function. Note that, if f (x) = 1
2‖x‖2, then the above

algorithm becomes the classical proximal point algorithm. Approximate solutions of (1.4)
are treated in [10] via Aε . Specifically, an approximate solution of (1.4) is regarded as an
exact solution of

0 ∈ cnA
εn(x) + 	f (x) − 	f (xn),

for an appropriate value of εn. Note that, if f (x) = 1
2‖x‖2, the above relation is equivalent

to the problem of finding an element xn+1 ∈ H , and vn+1 ∈ Aεn(xn+1) with εn ≥ 0 such
that

0 = cnvn+1 + (xn+1 − xn).

They proved that if
∑∞

n=1 εn < ∞, then the sequence {xn} converges weakly to a null point
of A.

In [25], Solodov and Svaiter proposed a new criterion for the approximate solution of
subproblems as follows: Two element yn and vn are admissible if

vn ∈ A(yn), 0 = cnvn + (yn − xn) − en,

and the error en satisfies

‖en‖ ≤ σ max{cn‖vn‖, ‖yn − xn‖},
where σ is a real number in [0, 1). And the next iterative xn+1 is obtained by projecting xn

onto the hyperplane
{z ∈ H : 〈vn, z − yn〉 = 0}.

By combining the ideas of [10, 25], Solodov et al. [24] proposed an even simpler method,
in which no projection is performed. An approximate solution is regarded as a pair yn, vn

such that
vn ∈ cnA

εn(yn), 0 = cnvn + (yn − xn) − en,
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where εn, en are “relatively small” in comparison with ‖yn − xn‖, and the next iterative
xn+1 is defined by

xn+1 = xn − cnvn.

Rockafellar [29] posed an open question of whether the sequence generated by (1.1)
converges strongly or not. In 1991, Güler [15] gave an example showing that Rockafellar’s
proximal point algorithm does not converge strongly. An example of the authors Bauschke,
Matoušková, and Reich [7] also showed that the proximal algorithm only converges weakly
but not in norm. In 2000, Solodov and Svaiter [26] proposed the following algorithm (hybrid
projection method): Choose any x0 ∈ H and σ ∈ [0, 1). At iteration n, having xn, choose
μn > 0 and find (yn, vn) an inexact solution of

0 ∈ A(x) + μn(x − xn),

with tolerance σ . Define

Cn = {z ∈ H : 〈z − yn, vn〉 ≤ 0},
and

Qn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0}.
Take

xn+1 = PCn∩Qnx0.

They proved that if the sequence of the regularization parameters μn is bounded from above,
then {xn} converges strongly to x∗ ∈ A−10. Moreover, based on the important fact that Cn

and Qn in the above algorithm are two halfspaces, they showed that

xn+1 = x0 + λ1vn + λ2(x0 − xn),

where (λ1, λ2) is the solution of the linear system of two equations with two unknowns:{
λ1‖vn‖2 + λ2〈vn, x0 − xn〉 = −〈x0 − yn, vn〉
λ1〈vn, x0 − xn〉 + λ2‖x0 − xn‖2 = −‖x0 − xn‖2.

In 2003, Bauschke et al. introduced a new algorithm (see [6, Algorithm 4.1]) for finding
a common fixed point of a family of operators (Ti)i∈I in B-class operators (see [5]). Let
E be a real Banach space and f : E −→ (0, ∞] be a lower semicontinuous convex
function which is Gâteaux differentiable on int dom f �= ∅ and Legendre, i.e., it satisfies
the following two properties:

(i) ∂f is both locally bounded and single-valued on its domain;
(ii) (∂f )−1 is locally bounded on its domain and f is strictly convex on every bounded set
of dom ∂f .

The Bregman distance associated with f is the function

D : E × E −→ [0, ∞]
(x, y) �−→

{
f (x) − f (y) − 〈x − y,	f (y)〉 if x, y ∈ int dom f,

∞ otherwise,

and the D-projector onto a set C ⊂ E is the operator

PC : E −→ 2E,

y �−→ {x ∈ C : D(x, y) = DC(y) < ∞}.
It is easy to see that if E is a real Hilbert space and f (x) = ‖x‖2/2 for all x ∈ H , and C is
a nonempty closed convex subset of E, then PC is the metric projection from E onto C.
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They gave an application of [6, Algorithm 4.1] for finding a common zero of a family of
maximal monotone operators (Ai)i∈I in Banach space E as follows: for every n ∈ N, take
i(n) ∈ I , γn ∈ (0, ∞) and set xn+1 = Q(x0, xn, (	f + γnAi(n))

−1 ◦ 	f (xn)), where

Q(x, y, z) = {u ∈ E : 〈u − y,	f (x) − 	f (y)〉 ≤ 0}
∩{u ∈ E : 〈u − z,	f (y) − 	f (z)〉 ≤ 0}.

They proved that if 	f is uniformly continuous on bounded subsets of E and for every
i ∈ I , and every strictly increasing sequence {pn} such that i(pn) ≡ i, one has infn γpn > 0
and if the following conditions hold:

(i) The index control mapping i : N −→ I satisfies

(∀i ∈ I )(∃Mi > 0)(∀n ∈ N) i ∈ {i(n), . . . , i(n + Mi − 1)}.
(ii) For every sequence {yn} in int dom f and every bounded sequence {zn} in int dom f ,
one has

D(yn, zn) → 0 ⇒ yn − zn → 0,

then xn → PSx0, where S = domf ∩ (∩i∈IA
−1
i 0).

In order to find a fixed point of a nonexpansive mapping T on the closed and convex subset
C of H , motivated by the result of Solodov and Svaiter, Takahashi et al. [32] introduced the
following iterative method

C0 = C, x0 ∈ C,

yn = αnxn + (1 − αn)T xn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ≥ 0,

and they proved that the sequence {xn} converges strongly to PF(T )x0, when {αn} ⊂ [0, a),
with a ∈ [0, 1). Moreover, they also gave a similar iterative method to find zero of a
maximal monotone operator in the following form

C0 = C, x0 ∈ C,

yn = αnxn + (1 − αn)J
A
cn

xn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1x0, n ≥ 0. (1.5)

They showed that if {αn} ⊂ [0, a), with a ∈ [0, 1) and cn → ∞, then the sequence {xn}
generated by (1.5) converges strongly to PA−10x0.

We can see that the shrinking projection method (1.5) of Takahashi et al. is more com-
plex than the hybrid projection method of Solodov and Svaiter. Because in the iterative
method (1.5), to define xn+1, we have to find the projection of x0 over the intersection of
n closed and convex subsets of H , but in hybrid projection method, we only compute the
projection of x0 over the intersection of two hyperplanes. However, recently, many mathe-
maticians studied the shrinking projection method for solving the difference problems, see
for instance, Dadashi [13], Kimura [18], Qin et al. [22], Takahashi [33], Takahashi et al.
[30, 34], Sean et al. [37].

In this paper, by using shrinking projection method, we introduce two parallel iterative
methods for finding a common null point of a finite family of maximal monotone operators
in Banach spaces. Moreover, we also give some applications of the main results for solving
the problem of finding a common minimum point of convex functions, the convex feasibility
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problem and the system of variational inequalities. In Section 5, a numerical example is also
given to illustrate the effectiveness of the proposed algorithms.

2 Preliminaries

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The value of f ∈ E∗
at x ∈ E will be denoted by 〈x, f 〉. When {xn} is a sequence in E, then xn → x (resp.

xn ⇀ x, xn
∗
⇀ x) will denote strong (resp. weak, weak∗) convergence of the sequence {xn}

to x. Let JE denote the normalized duality mapping from E into 2E∗
given by

JEx =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖2 = ‖f ‖2

}
, ∀x ∈ E.

We always use SE to denote the unit sphere SE = {x ∈ E : ‖x‖ = 1}. A Banach space
E is said to be strictly convex if x, y ∈ SE with x �= y, and, for all t ∈ (0, 1),

‖(1 − t)x + ty‖ < 1.

A Banach space E is said to be uniformly convex if for any ε ∈ (0, 2] and the inequalities
‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε, there exists a δ = δ(ε) > 0 such that

‖x + y‖
2

≤ 1 − δ.

Recall that a Banach space E is called having the Kadec-Klee property, if for every
sequence {xn} ⊂ E such that ‖xn‖ → ‖x‖ and xn ⇀ x, as n → ∞, we have xn → x,
as n → ∞. It is well known that every uniformly convex Banach space has Kadec-Klee
property (see [12, 23]).

A Banach space E is said to be smooth provided the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x and y in SE . In this case, the norm of E is said to be Gâteaux differentiable.
It is said to be uniformly Gâteaux differentiable if for each y ∈ SE , this limit attained
uniformly for x ∈ SE .

Let E be a reflexive Banach space, we know that E is uniformly convex if and only if
E∗ is uniformly smooth [1, 14].

We have the following properties of the normalized duality mapping JE (see [1, 12, 14]):

i) E is reflexive if and only if JE is surjective.
ii) If E∗ is strictly convex, then JE is single-valued.
iii) If E is a smooth, strictly convex and reflexive Banach space, then JE is single-valued
bijection.
iv) If E∗ is uniformly convex, then JE is uniformly continuous on each bounded set of E.

We know that if E is a smooth, strictly convex and reflexive Banach space and C is a
nonempty, closed, and convex subset of E; then, for each x ∈ E, there exists a unique z ∈ C

such that
‖x − z‖ = inf

y∈C
‖x − y‖.

The mapping PC : E −→ C defined by PCx = z is called metric projection from E on to
C and we denote by d(x, C) = ‖x − PCx‖.

Let A : E −→ 2E∗
be an operator. The effective domain of A is denoted by D(A), that

is, D(A) = {x ∈ E : Ax �= ∅}. Recall that A is called monotone operator if 〈x−y, u−v〉 ≥
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0 for all x, y ∈ D(A) and for all u ∈ Ax, v ∈ A(y). A monotone operator A on E is
called maximal monotone if its graph is not properly contained in the graph of any other
monotone operator on E. We know that if A is a maximal monotone operator on E and if
E is a uniformly convex and smooth Banach space, then R(JE + rA) = E∗ for all r > 0,
where R(JE + rA) is the range of JE + rA (see [9, 28]). For all x ∈ E and r > 0, there
exists a unique xr ∈ E such that

0 ∈ JE(xr − x) + rAxr .

We define Jr by xr = Jrx and Jr is called the metric resolvent of A.
Hence, in this case, we can define a mapping Jr : E −→ E by Jrx = xr and Jr is called

the generalized resolvent of A.
The set of null point of A is defined by A−10 = {z ∈ E : 0 ∈ Az} and we know that

A−10 is a closed and convex subset of E (see [31]).
Let A : E −→ 2E∗

be a maximal monotone operator. In [11], for each ε ≥ 0, Burachik
and Svaiter defined Aε(x), an ε-enlargement of A, as follows

Aεx = {u ∈ E∗ : 〈y − x, v − u〉 ≥ −ε, ∀y ∈ E, v ∈ Ay}.
It is easy to see that A0x = Ax and if 0 ≤ ε1 ≤ ε2, then Aε1x ⊆ Aε2x for any x ∈ E. The
use of element in Aε instead of T allows an extra degree freedom which is very useful in
various applications.

Let {Cn} be a sequence of closed, convex, and nonempty subsets of a reflexive Banach
space E. We define the subsets s-LinCn and w-LsnCn of E as follows: x ∈ s-LinCn if and
only if there exists {xn} ⊂ E converges strongly to x and that xn ∈ Cn for all n ≥ 1; x ∈
w-LsnCn if and only if there exists a subsequence {Cnk

} of {Cn} and the sequence {yk} ⊂ E

such that yk ⇀ x and yk ∈ Cnk
for all k ≥ 1. If s-LinCn = w-LsnCn = C0, then C0 is called

the limits of {Cn} in the sense of Mosco [20] and it is denoted by C0 = M − limn→∞ Cn.

Remark 2.1 We know that, if {Cn} is a decreasing sequence of closed convex subsets of a
reflexive Banach space E and C0 = ∩∞

n=1Cn �= ∅, then C0 = M− limn→∞ Cn (see [8, 17]).

Indeed, it is clear that if x ∈ C0, then x ∈ s-LinCn and x ∈ w-LsnCn, because the
sequence {xn} with xn = x for all n ≥ 1 converges strongly to x. Thus, we have C0 ⊂
s-LinCn and C0 ⊂ w-LsnCn.

Now, we will show that C0 ⊇ s-LinCn and C0 ⊇ w-LsnCn. Let x ∈ s-LinCn, from the
definition of s-LinCn, there exists a sequence {xn} ⊂ E with xn ∈ Cn for all n ≥ 1 such
that xn → x, as n → ∞. Since {Cn} is a decreasing sequence, xn+k ∈ Cn for all n ≥ 1
and k ≥ 0. So, letting k → ∞ and by the closedness of Cn, we get that x ∈ Cn for all
n ≥ 1. Thus, x ∈ C0 and hence C0 ⊇ s-LinCn. Next, let y ∈ w-LsnCn, from the definition
of w-LsnCn, there exist a subsequence {Cnk

} of {Cn} and the sequence {yk} ⊂ E such that
yk ⇀ x and yk ∈ Cnk

for all k ≥ 1. From {Cn} is a decreasing sequence, we have

yk+p ∈ Cnk
(2.1)

for all k ≥ 1 and p ≥ 0. Since Cnk
is closed and convex, Cnk

is weakly closed in E for all
k ≥ 1. So, in (21), letting p → ∞, we get that y ∈ Cnk

for all k ≥ 1. Since Ck ⊇ Cnk
,

y ∈ Ck for all k ≥ 1. So, y ∈ C0 and hence C0 ⊇ w-LsnCn.
Consequently, we obtain that s-LinCn = and w-LsnCn = C0. Thus, C0 = M −

limn→∞ Cn.
The following lemmas will be needed in the sequel for the proof of main theorems.
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Lemma 2.2 [2, 3, 16] Let E be a smooth, strictly convex and reflexive Banach space. Let
C be a nonempty closed convex subset of E and let x1 ∈ E and z ∈ C. Then, the following
conditions are equivalent:

i) z = PCx1;
ii) 〈z − y, JE(x1 − z)〉 ≥ 0, ∀y ∈ C.

Lemma 2.3 [36] Let E be a Banach space, R ∈ (0,∞) and BR = {x ∈ E : ‖x‖ ≤ R}. If
E is uniformly convex, then there exists a continuous, strictly increasing and convex function
g : [0, 2R] −→ [0, ∞) with g(0) = 0 such that

‖αx + (1 − α)y‖2 ≤ α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)g(‖x − y‖),
for all x, y ∈ BR and α ∈ [0, 1].

Lemma 2.4 [35] Let E be a smooth, reflexive, and strictly convex Banach space having the
Kadec-Klee property. Let {Cn} be a sequence of nonempty closed convex subsets of E. If
C0 = M − limn→∞ Cn exists and is nonempty, then {PCnx} converges strongly to PC0x for
each x ∈ C.

Lemma 2.5 [11] The graph of Aε : R+ × E −→ 2E∗
is demiclosed, i.e., the conditions

below hold:

i) If {xn} ⊂ E converges strongly to x0, {un ∈ Aεnxn} converges weakly to u0 in E∗ and
{εn} ⊂ R+ converges to ε, then u0 ∈ Aεx0.
ii) If {xn} ⊂ E converges weakly to x0, {un ∈ Aεnxn} converges strongly to u0 in E∗ and
{εn} ⊂ R+ converges to ε, then u0 ∈ Aεx0.

3 Main Results

First, we have the following lemma:

Lemma 3.1 Let E be a uniformly convex and smooth Banach space and let {Cn} be a
decreasing sequence of closed and convex subsets of E such that C0 = ∩∞

n=1Cn �= ∅. Let
pn = PCnu with u ∈ E and let {xn} be the sequence in E such that

xn ∈ {z ∈ Cn : ‖u − z‖2 ≤ d2(u, Cn) + δn},
for all n ≥ 1, where {δn} is a sequence of positive real numbers. If limn→∞ δn = 0, then
{xn} and {pn} converge strongly to the same point p0 = PC0u.

Proof From Remark 2.1, we have C0 = M − limn→∞ Cn. By Lemma 2.4, we have pn →
p0 = PC0u, as n → ∞.

Since pn = PCnu, d(u, Cn) = ‖u−pn‖. From xn ∈ Cn and the definition of Cn, we have

‖u − xn‖2 ≤ ‖u − pn‖2 + δn, ∀n ≥ 2. (3.1)

From (3.1) and the boundedness of {pn}, the sequence {xn} is bounded. So, R =
max{supn{‖xn‖}, supn{‖pn‖}} < ∞.
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From the convexity of Cn, we have αpn + (1 − α)xn ∈ Cn for all α ∈ (0, 1). Thus, from
the definition of PCnu and apply Lemma 2.3 on BR , we get

‖pn − u‖2 ≤ ‖αpn + (1 − α)xn − u‖2

≤ α‖pn − u‖2 + (1 − α)‖xn − u‖2 − α(1 − α)g(‖xn − pn‖),
this combines with (3.1), we obtain that

αg(‖xn − pn‖) ≤ δn, ∀α ∈ (0, 1). (3.2)

In (3.2), letting α → 1−, we get

g(‖xn − pn‖) ≤ δn.

By the property of g and δn → 0, we have

‖xn − pn‖ → 0.

Thus, the sequences {xn} and {pn} converge strongly to the same point p0, as n → ∞.

Now, we have the following theorem:

Theorem 3.2 Let E be a uniformly convex and smooth Banach space and let Ai :
E −→ 2E∗

, i = 1, 2, . . . , N , be maximal monotone operators of E into 2E∗
such that

S = ∩N
i=1A

−1
i 0 �= ∅. Let {εn} and {δn} be nonnegative real sequences and let {ri,n},

i = 1, 2, . . . , N , be positive real sequences such that mini{infn{ri,n}} ≥ r > 0. For a given
point u ∈ E, we define the sequence {xn} by x1 = x ∈ E, C1 = E and

i) Find yi,n ∈ E such that JE(yi,n − xn) + ri,nA
εn

i yi,n � 0, i = 1, 2, . . . , N .
ii) Choose in such that ‖yin,n − xn‖ = maxi=1,...,N {‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ −εnrin,n}. (3.3)

iii) Find xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖2 ≤ d2(u, Cn+1) + δn+1}, n = 1, 2, . . .

If limn→∞ εnri,n = limn→∞ δn = 0 for all i = 1, 2, . . . , N , then the sequence {xn}
converges strongly to PSu, as n → ∞.

Proof First, we show that S ⊂ Cn for all n ≥ 1 by mathematical induction. Indeed, it is
clear that S ⊂ C1 = E. Suppose that S ⊂ Cn for some n ≥ 1. Take v ∈ S, we have

JE(yin,n − xn) + rin,nA
εn

in
yin,n � 0, Ainv � 0.

From the definition of A
εn

in
, we get

〈yn − v, JE(xn − yn)〉 ≥ −εnrin,n.

Thus, v ∈ Cn+1. Since v is arbitrary in S, S ⊂ Cn+1. So, by induction we obtain that
S ⊂ Cn for all n ≥ 1.

Moreover, Cn is a closed and convex subset of E for all n. Hence, the sequence {xn} is
well defined.

Now, for each n ≥ 1, denote by pn = PCnu. By Lemma 3.1, we obtain that the sequences
{xn} and {pn} converge strongly to the same point p0 = PC0u with C0 = ∩∞

n=1Cn.
From pn+1 ∈ Cn+1 and the definition of Cn+1, we have

〈yn − pn+1, JE(xn − yn)〉 ≥ −εnrin,n.
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The above inequality is equivalent to

〈yn − xn, JE(xn − yn)〉 + 〈xn − pn+1, JE(xn − yn)〉 ≥ −εnrin,n.

So, we have

‖xn − yn‖2 − εnrin,n ≤ 〈xn − pn+1, JE(xn − yn)〉
≤ ‖xn − pn+1‖ ‖xn − yn‖
≤ 1

2
(‖xn − pn+1‖2 + ‖xn − yn‖2).

This implies that

‖xn − yn‖2 ≤ ‖xn − pn+1‖2 + 2εnrin,n.

From pn → p0, xn → p0 and εnrin,n → 0, we obtain that

‖xn − yn‖ → 0.

By the definition of yn, we get that

‖xn − yi,n‖ → 0, ∀i = 1, 2, . . . , N . (3.4)

This implies that yi,n → p0 for all i = 1, 2, . . . , N , as n → ∞. Furthermore, since
mini{infn{ri,n}} ≥ r > 0 and (3.4), we have

0 ← 1

ri,n
JE(xn − yi,n) ∈ A

εn

i yi,n,

for all i = 1, 2, . . . , N , as n → ∞. So, by Lemma 2.5, we obtain p0 ∈ A−1
i 0 for all

i = 1, 2, . . . , N , that is, p0 ∈ S.
Finally, we show that p0 = PSu. Indeed, let x∗ = PSu. Since S ⊂ Cn, x∗ ∈ Cn. Thus,

from pn = PCnu, we have

‖pn − u‖ ≤ ‖u − x∗‖, ∀n ≥ 1.

Letting n → ∞, we get that ‖u − p0‖ ≤ ‖u − x∗‖. By the uniqueness of x∗, we obtain that
p0 = x∗ = PSu. This completes the proof.

Now, in the following theorem, we give another way to construct the subsets Cn.

Theorem 3.3 Let E be a uniformly convex and smooth Banach space and let Ai :
E −→ 2E∗

, i = 1, 2, . . . , N , be maximal monotone operators of E into 2E∗
such that

S = ∩N
i=1A

−1
i 0 �= ∅. Let {εn} and {δn} be nonnegative real sequences and let {ri,n},

i = 1, 2, . . . , N , be positive real sequences such that mini{infn{ri,n}} ≥ r > 0. For a given
point u ∈ E, we define the sequence {xn} by x1 = x ∈ E, C1 = E and

i) Find yi,n ∈ E such that JE(yi,n − xn) + ri,nA
εn

i yi,n � 0, i = 1, 2, . . . , N,

Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ −εnri,n}, i = 1, 2, . . . , N,

Cn+1 = ∩N
i=1C

i
n+1.

ii) Find xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖2 ≤ d2(u, Cn+1) + δn+1}, n = 1, 2, . . .

If limn→∞ εnri,n = limn→∞ δn = 0 for all i = 1, 2, . . . , N , then the sequence {xn}
converges strongly to PSu, as n → ∞.
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Proof First, we show that S ⊂ Cn for all n ≥ 1 by mathematical induction. Indeed, it is
clear that S ⊂ C1 = E. Suppose that S ⊂ Cn for some n ≥ 1. Take v ∈ S, we have

JE(yi,n − xn) + ri,nA
εn

i yi,n � 0, Aiv � 0.

From the definition of A
εn

i , we get

〈yi,n − v, JE(xn − yi,n)〉 ≥ −εnri,n.

Thus, v ∈ Ci
n+1 for all i = 1, 2, . . . , N . So, v ∈ Cn+1 = ∩N

i=1C
i
n+1. By induction, we

obtain that S ⊂ Cn for all n ≥ 1.
It is clear that {Cn} is a decreasing sequence of closed and convex subsets of E with

∩∞
n=1Cn = C0 ⊃ S �= ∅.

Now, for each n, denote by pn = PCnu. By Lemma 3.1, the sequences {xn} and {pn}
converge strongly to the same point p0 = PC0u.

We have pn+1 ∈ Cn+1 = ∩N
i=1C

i
n+1. Hence, pn+1 ∈ Ci

n+1 for all i = 1, 2, . . . , N . Thus,
from the definition of Ci

n+1, we have

〈yi,n − pn+1, j (xn − yi,n)〉 ≥ −εnri,n,

for all i = 1, 2, . . . , N . Thus, we get that

‖xn − yi,n‖2 ≤ ‖xn − pn+1‖2 + 2εnri,n,

for all i = 1, 2, . . . , N . From pn → p0, xn → p0 and εnrin,n → 0, we obtain that

‖xn − yi,n‖ → 0,

for all i = 1, 2, . . . , N .
The rest of the proof follows the pattern of Theorem 3.2. This completes the proof.

Remark 3.4 a) In Theorems 3.2 and 3.3, if N = 1 then the sequence {xn} is defined by: For
a given point u ∈ E, we define the sequence {xn} by x1 = x ∈ E, C1 = E and

i) Find yn ∈ E such that JE(yn − xn) + rnA
εnyn � 0,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ −εnrn}.
ii) Find xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖2 ≤ d2(u, Cn+1) + δn+1}, n = 1, 2, . . . ,

where {rn} is the positive real sequence and {εn}, {δn} are nonnegative real sequences such
that infn{rn} ≥ r > 0 and limn→∞ rnεn = limn→∞ δn = 0.

b) In Theorem 3.3, to define the element xn+1, we have to find the projection of u onto
the intersection of n × N half-spaces. In Theorem 3.2, we only find the projection of u

onto the intersection of n half-spaces. So, the algorithm to define xn+1 in Theorem 3.2 is
simpler than the algorithm in Theorem 3.3. However, in the both cases, we can find the
element xn+1 by the approximation solution of the following minimization problem: Find
a minimum point of f (x) = 1

2‖x − u‖2 over the intersection of a finite family of half-
spaces Ci . In particular, if E = R

m, then we can find xn+1 easily by using the “Quadratic
Programming Algorithms” package in MATLAB software.

Next, we have the following corollaries:

Corollary 3.5 Let E be a uniformly convex and smooth Banach space and let Ai :
E −→ 2E∗

, i = 1, 2, . . . , N , be maximal monotone operators of E into 2E∗
such that

S = ∩N
i=1A

−1
i 0 �= ∅. Let J i

r be the metric resolvent ofAi for r > 0 with i = 1, 2, . . . , N . Let
{δn} be nonnegative real sequence and let {ri,n}, i = 1, 2, . . . , N , be positive real sequences
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such that mini{infn{ri,n}} ≥ r > 0. For a given point u ∈ E, we define the sequence {xn}
by x1 = x ∈ E, C1 = E and

i) yi,n = J i
ri,n

xn, i = 1, 2, . . . , N

ii) Choose in such that ‖yin,n − xn‖ = max
i=1,...,N

{‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ 0}, or

ii*) Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ 0}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1,

iii) Find xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖2 ≤ d2(u, Cn+1) + δn+1}, n = 1, 2, . . .

If limn→∞ δn = 0, then the sequence {xn} converges strongly to PSu, as n → ∞.

Proof In (3.3) if εn = 0 for all n ≥ 1, then the elements yi,n, i = 1, 2, . . . , N , can be
rewritten in the form

JE(yi,n − xn) + ri,nAiyi,n � 0.

The above inclusion equation is equivalent to

yi,n = J i
ri,n

xn,

for all i = 1, 2, . . . , N .
So, apply Theorems 3.2 and 3.3 with εn = 0 for all n ≥ 1, we obtain the proof of this

corollary.

Corollary 3.6 Let E be a uniformly convex and smooth Banach space and let Ai :
E −→ 2E∗

, i = 1, 2, . . . , N , be maximal monotone operators of E into 2E∗
such that

S = ∩N
i=1A

−1
i 0 �= ∅. Let {εn} be a nonnegative real sequence and let {ri,n}, i = 1, 2, . . . , N ,

be positive real sequences such that mini{infn{ri,n}} ≥ r > 0. For a given point u ∈ E, we
define the sequence {xn} by x1 = x ∈ E, C1 = E and

i) Find yi,n ∈ E such that JE(yi,n − xn) + ri,nA
εn

i yi,n � 0, i = 1, 2, . . . , N

ii) Choose in such that ‖yin,n − xn‖ = max
i=1,...,N

{‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ −εnrin,n}, or

ii*) Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ −εnri,n}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1,

iii) xn+1 = PCn+1u, n = 1, 2, . . .

If limn→∞ εnri,n = 0 for all i = 1, 2, . . . , N , then the sequence {xn} converges strongly to
PSu, as n → ∞.

Proof In (3.3), if δn = 0 for all n ≥ 1, then we have the element xn+1 is defined by

xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖ ≤ d(u, Cn+1)},
that is xn+1 = PCn+1u.

So, apply Theorem 3.2 with δn = 0 for all n ≥ 1, we obtain the proof of this corollary.
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Remark 3.7 If ε = δn = 0 for all n ≥ 1, then the sequence {xn} is defined as follows: For a
given point u ∈ E, we define the sequence {xn} by x1 = x ∈ E, C1 = E and

i) yi,n = J i
ri,n

xn, i = 1, 2, . . . , N,

ii) Choose in such that ‖yin,n − xn‖ = max
i=1,...,N

{‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ 0}, or

ii*) Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ 0}, i = 1, 2, . . . , N

Cn+1 = ∩N
i=1C

i
n+1,

iii) xn+1 = PCn+1u, n = 1, 2, . . .

Remark 3.8 In Remark 3.7, if E is a real Hilbert space, N = 1 then we obtain the result of
Takahashi et al. in [32] (see [32, Theorem 4.5]). Note that in this case, we do not use the
condition rn → ∞. So, Theorems 3.2 and 3.3 are more general than the result of Takahashi
et al. Furthermore, in the proof of Theorems 3.2 and 3.3, we used the properties (Remark
2.1) of the limits of {Cn} in the sense of Mosco [20] and Lemmas 2.3–2.5 to show that
the sequence {xn} converges strongly to PSu. But in order to prove [32, Theorem 4.5],
Takahashi et al. used NST(I) condition and Lemma 3.1, Theorems 3.2 and 3.3. Thus, the
proofs of main theorems in this paper are simpler than the proof of [32, Theorem 4.5].

4 Applications

4.1 The CommonMinimum Point Problem

Let E be a Banach space and let f : E −→ (−∞,∞] be a proper, lower semicontinuous
and convex function. The subdifferential of f is the multi-valued mapping ∂f : E −→ 2E∗

which is defined by

∂f (x) = {g ∈ E∗ : f (y) − f (x) ≥ 〈y − x, g〉, ∀y ∈ E}

for all x ∈ E. We know that ∂f is a maximal monotone operator (see [28]) and x0 ∈
arg minE f (x) if and only if ∂f (x0) � 0.

The ε-subdifferential enlargement of ∂f , is given by

∂εf (x) = {u ∈ E∗ : f (y) − f (x) ≥ 〈y − x, u〉 − ε, ∀y ∈ E},

for each ε ≥ 0. We know that ∂εf (x) ⊂ ∂εf (x), for any x ∈ E. Moreover, in some
particular cases, we have that ∂εf (x) � ∂εf (x) (see [10, Example 2 and Example 3]).

In [4], when E is a real Hilbert space, Alvarez proposed the following approximate
inertial proximal algorithm:

cn∂εnf (xn+1) + xn+1 − xn − αn(xn − xn−1) � 0.

In [21], Moudafi and Elisabeth extended the above iterative method in the form

cn∂
εnf (xn+1) + xn+1 − xn − αn(xn − xn−1) � 0. (4.1)
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They proved that if there exists c > 0 such that cn ≥ c for all n ≥ 1, and there is α ∈ [0, 1)

such that {αn} ⊂ [0, α], ∑∞
n=1 ckεk < ∞ and

∞∑
n=1

αn‖xn − xn−1‖2 < ∞,

then the sequence {xn} converges weakly to a minimum point of f .
Note that, if αn = 0 for all n ≥ 1, then (4.1) becomes

cn∂
εnf (xn+1) + xn+1 − xn � 0.

From Theorems 3.2 and 3.3, we have the following theorem:

Theorem 4.1 Let E be a uniformly convex and smooth Banach space and let fi, i =
1, 2, . . . , N be proper, lower semicontinuous and convex functions of E into (−∞,∞] such
that S = ∩N

i=1 arg minx∈E fi(x) �= ∅. Let {εn} and {δn} be nonnegative real sequences and
let {ri,n}, i = 1, 2, . . . , N , be positive real sequences such that mini{infn{ri,n}} ≥ r > 0.
For a given point u ∈ E, we define the sequence {xn} by x1 = x ∈ E, C1 = E and

i) Find yi,n ∈ E such that JE(yi,n − xn) + ri,n∂
εnfi(yi,n) � 0, i = 1, 2, . . . , N,

ii) Choose in such that ‖yin,n − xn‖ = max
i=1,...,N

{‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ −εnrin,n}, or

ii*) Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ −εnri,n}, i = 1, 2, . . . , N,

Cn+1 = ∩N
i=1C

i
n+1,

iii) Find xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖2 ≤ d2(u, Cn+1) + δn+1}, n = 1, 2, . . .

If limn→∞ εnri,n = limn→∞ δn = 0 for all i = 1, 2, . . . , N , then the sequence {xn}
converges strongly to PSu, as n → ∞.

Remark 4.2 In Theorem 4.1, if εn = 0 for all n ≥ 1, then the sequence {xn} is defined as
follows: For a given point u ∈ E, we define the sequence {xn} by x1 = x ∈ E, C1 = E and

i) yi,n = arg min
y∈E

{
fi(y) + 1

2ri,n
‖y − xn‖2

}
, i = 1, 2, . . . , N,

ii) Choose in such that ‖yin,n − xn‖ = max
i=1,...,N

{‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ 0}, or

ii*) Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ 0}, i = 1, 2, . . . , N,

Cn+1 = ∩N
i=1C

i
n+1,

iii) Find xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖2 ≤ d2(u, Cn+1) + δn+1}, n = 1, 2, . . .

Note that if E is a real Hilbert space, then the element yi,n can be defined as follows

yi,n = (I + ri,n∂fi)
−1(xn)

for all i = 1, 2, . . . , N and for all n ≥ 0.
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4.2 The Convex Feasibility Problem

Let C be a nonempty closed convex subset of E. Let iC be the indicator function of C,
that is,

iC(x) =
{

0 if x ∈ C,

∞ if x /∈ C.

It is easy to see that iC is the proper, semicontinuous and convex function, so its
subdifferentiable ∂iC is a maximal monotone operator. We know that

∂iC(u) = N(u,C) = {f ∈ E∗ : 〈u − y, f 〉 ≥ 0 ∀y ∈ C},
where N(u,C) is the normal cone of C at u.

We denote the metric resolvent of ∂iC by Jr with r > 0. Suppose u = Jrx for x ∈ E,
that is

JE(x − u)

r
∈ ∂iC(u) = N(u,C).

Thus, we have
〈u − y, JE(x − u)〉 ≥ 0,

for all y ∈ C. From Lemma 2.4, we get that u = PCx.
So, from Corollary 3.5, we have the following theorem:

Theorem 4.3 Let E be a uniformly convex and smooth Banach space and let Qi , i =
1, 2, . . . , N,be nonempty closed convex subsets of E such that S = ∩N

i=1Qi �= ∅. Let {δn}
be nonnegative real sequence. For a given point u ∈ E, we define the sequence {xn} by
x1 = x ∈ E, C1 = E and

i) yi,n = PQi
xn, i = 1, 2, . . . , N,

ii) Choose in such that ‖yin,n − xn‖ = max
i=1,...,N

{‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ 0}, or

ii*) Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ 0}, i = 1, 2, . . . , N,

Cn+1 = ∩N
i=1C

i
n+1,

iii) Find xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖2 ≤ d2(u, Cn+1) + δn+1}, n = 1, 2, . . .

If limn→∞ δn = 0, then the sequence {xn} converges strongly to PSu, as n → ∞.

4.3 A System Variational Inequalities

Let C be a nonempty closed convex subset of E and let A : C −→ E∗ be a monotone
operator which is hemicontinuous (that is for any x ∈ C and tn → 0+ we have A(x+tny) ⇀

Ax for all y ∈ E such that x + tny ∈ C). Then, a point u ∈ C is called a solution of the
variational inequality for A, if

〈y − u,Au〉 ≥ 0 ∀y ∈ C.

We denote by V I (C, A) the set of all solutions of the variational inequality for A.
Define a mapping T by

TAx =
{

Ax + N(x,C) if x ∈ C,

∅ if x /∈ C.

By Rockafellar [28], we know that TA is maximal monotone and T −1
A 0 = V I (C,A).
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For any y ∈ E and r > 0, we know that the variational inequality V I (C, rA+JE(·−y))

has a unique solution. Suppose that x = V I (C, rAx + JE(x − y)), that is

〈z − x, rA(x) + JE(x − y)〉 ≥ 0 ∀z ∈ C.

From the definition of N(x, C), we have

−rAx − JE(x − y) ∈ N(x, C) = rN(x, C),

which implies that
JE(y − x)

r
∈ Ax + N(x, C) = TAx.

Thus, we obtain that x = Jry, where Jr is the metric resolvent of TA.
Now, let E and F be two uniformly convex and smooth Banach spaces and let Ki, i =

1, 2, . . . , N be closed convex subsets of E. Let Ai : Ki −→ E∗ be monotone and
hemicontinuous operators. Suppose that S = ∩N

i=1V I (Ki, Ai) �= ∅.
We consider the following problem:

Find an element x∗ ∈ S. (4.2)

To solve Problem (4.2), we define the operators TAi
as follows

TAi
x =

{
Aix + N(x,Ki) if x ∈ Ki,

∅ if x /∈ Ki,

for all i = 1, 2, . . . , N .
So, from Corollary 3.5, we have the following theorem:

Theorem 4.4 Let {δn} be a nonnegative real sequence and let {ri,n}, i = 1, 2, . . . , N , be
positive real sequences such that mini{infn{ri,n}} ≥ r > 0. For a given point u ∈ E, we
define the sequence {xn} by x1 = x ∈ E, C1 = E and

i) yi,n = V I
(
Ki, ri,nAi(·) + JE(· − xn)

)
, i = 1, 2, . . . , N,

ii) Choose in such that ‖yin,n − xn‖ = max
i=1,...,N

{‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ 0}, or

ii*) Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ 0}, i = 1, 2, . . . , N,

Cn+1 = ∩N
i=1C

i
n+1,

iii) Find xn+1 ∈ {z ∈ Cn+1 : ‖u − z‖2 ≤ d2(u, Cn+1) + δn+1}, n = 1, 2, . . .

If limn→∞ δn = 0, then the sequence {xn} converges strongly to PSu, as n → ∞.

5 Numerical Test

We take E = L2([0, 1]) with the inner product

〈f, g〉 =
∫ 1

0
f (t)g(t)dt

and the norm

‖f ‖ =
(∫ 1

0
f 2(t)dt

)1/2

,

for all f, g ∈ L2([0, 1]).
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Table 1 Table of numerical results

Case A Case B

err ‖xn+1 − xn‖ n err ‖xn+1 − xn‖ n

Stop condition: ‖xn+1 − xn‖ < err, x1(t) = 1

1 + t

10−2 7.550769933e − 005 9 10−2 1.293121191e − 03 3

10−3 7.550769933e − 005 9 10−3 8.032248181e − 004 4

10−4 7.550769933e − 005 9 10−4 9.162919110e − 005 48

10−5 7.031827964e − 006 164 10−5 7.139067500e − 006 121

Now, let

Qi = {x ∈ L2([0, 1]) : 〈ai, x〉 = bi},
where ai(t) = t i−1, bi = 1

i+2 for all i = 1, 2, . . . , 10 and t ∈ [0, 1].
It is easy to check that x(t) = t2 ∈ S = ∩10

i=1Qi . We consider the problem of finding an
element x∗ ∈ S.

Now, by using Theorem 4.3, we consider the convergence of the sequence {xn} which is
generated by the following two cases:

Case A.

i) yi,n = PQi
xn, i = 1, 2, . . . , N,

ii) Choose in such that ‖yin,n − xn‖ = max
i=1,...,N

{‖yi,n − xn‖}, let yn = yin,n,

Cn+1 = {z ∈ Cn : 〈yn − z, JE(xn − yn)〉 ≥ 0},
iii) xn+1 = PCn+1x1, n = 1, 2, . . .
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Fig. 1 The behavior of xn(t) with the stop condition ‖xn+1 − xn‖ < 10−4
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Fig. 2 The behavior of xn(t) with the stop condition ‖xn+1 − xn‖ < 10−5

Case B.

i) yi,n = PQi
xn, i = 1, 2, . . . , N,

ii*) Ci
n+1 = {z ∈ Cn : 〈yi,n − z, JE(xn − yi,n)〉 ≥ 0}, i = 1, 2, . . . , N,

Cn+1 = ∩N
i=1C

i
n+1,

iii) xn+1 = PCn+1x1, n = 1, 2, . . .

We obtain Table 1 of numerical results.
The behaviors of the approximation solution xn(t) in both of the cases ‖xn+1 − xn‖ <

10−4 and ‖xn+1 − xn‖ < 10−5 are presented in Figs. 1 and 2.
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