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Abstract Under some appropriate conditions, we prove the existence and uniqueness of
periodic solutions to partial functional differential equations with infinite delay of the form
u̇ = A(t)u+g(t, ut ) on a Banach space X where A(t) is 1-periodic, and the nonlinear term
g(t, φ) is 1-periodic with respect to t for each fixed φ in fading memory phase spaces, and is
ϕ(t)-Lipschitz for ϕ belonging to an admissible function space. We then apply the attained
results to study the existence, uniqueness, and conditional stability of periodic solutions
to the above equation in the case that the family (A(t))t≥0 generates an evolution family
having an exponential dichotomy. We also prove the existence of a local stable manifold
near the periodic solution in that case.

Keywords Partial functional differential equations · Periodic solutions · Admissibility
of function spaces · Conditional stability · Local stable manifolds
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1 Introduction

Consider the abstract partial functional differential equation with infinite delay

u̇ = A(t)u + g(t, ut ), t ∈ R+, (1)
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where for each t ∈ R+, A(t) is a possibly unbounded operator on a Banach space
X such that the family (A(t))t≥0 generates an evolution family (U(t, s))t≥s≥0 on X,
and g : R+ × Cν → X is continuous and locally Lipschitz with Cν := {φ : φ ∈
C((−∞, 0], X) and lims→−∞ eνs‖φ(s)‖ = 0, ν > 0}; ut is the history function defined by
ut (θ) = u(t + θ) for θ ∈ (−∞, 0].

When A(t) and g(t, ϕ) are periodic (with the same period and respect to t) one tries to
prove the existence and uniqueness of a periodic solution (with the same period as that of
A(t) and g) to (1). Classical approaches for investigation of the existence of periodic solu-
tions are the Tikhonov’s fixed point method [22], Lyapunov functionals [24], as well as the
use of ultimate boundedness of solutions and the compactness of Poincaré map realized
through some compact embeddings (see [2, 13, 21–24] and the references therein). How-
ever, in some applications, e.g., to PDEs in unbounded (in all directions) domains or to
equations possessing unbounded solutions, the abovementioned compact embeddings are
not valid any longer, and it is not easy to show the existence of bounded solutions since
one has to carefully choose an appropriate initial vector (or condition) to guarantee the
boundedness of the solution emanating from that vector.

Recently, for the case of PDEs without delaywe have proposed in [11] a new approach to
handle such difficulties. Namely, we start with the linear equation u̇ = A(t)u+f (t), t ≥ 0
and use a Cesàro sum to prove the existence of a periodic solution through the existence of
bounded solution whose sup-norm can be controlled by the sup-norm of the input function
f . Then, we use the fixed point argument to prove the existence of periodic solutions for
the corresponding semi-linear problem. We refer to [9] for the use of an ergodic approach
for the case of Stokes and Navier-Stokes equations around rotating obstacles, and to [5] for
the general approach to the existence of periodic solutions to fluid flow problems.

In the present paper, we will consider the existence and uniqueness of periodic solutions
to partial functional differential equations (PFDE) with infinite delay and with a ϕ-Lipschitz
nonlinear term g, i.e., ‖g(t, φ1) − g(t, φ2)‖ � ϕ(t)‖φ1 − φ2‖ν for φ1, φ2 ∈ Cν where ϕ are
real and positive functions belonging to admissible function spaces. Some difficulties arise
when passing to the case of PFDE with infinite delay: Firstly, since the nonlinear delay g is
ϕ-Lipschitz, the standard method for construction of bounded solutions relevant for uniform
Lipschitz continuous functions is no longer valid. Secondly, the evolution family generated
by (A(t))t≥0 does not act on the same Banach space as that the initial functions belong to
(in fact, the former acts on X, and the latter belong to Cν). And lastly, since the delay is
infinite, the boundedness and stability of solutions in standard spaces are difficult to obtain.

To overcome such difficulties, we combine the methods and results in [11] with the use of
admissible spaces and appropriate choices of fading memory spaces to prove the existence
and uniqueness of the periodic solution to (1) without using the uniform boundedness and
smallness (in classical sense) of Lipschitz constants of the nonlinear terms. Instead, the
“smallness” is now understood as the sufficient smallness of supt≥0

∫ t+1
t

ϕ(τ )dτ .
It is worth noting that our framework fits perfectly the situation of exponentially

dichotomic linear parts, i.e., the case when the family (A(t))t≥0 generates an evolution fam-
ily (U(t, s))t≥s≥0 having an exponential dichotomy (see Definition 4 below), since in this
case we can choose the initial vector from that emanates a bounded solution. Moreover,
we can also prove the conditional stability of periodic solutions as well as the existence
of a local stable manifold around the periodic solution. Our main results are contained in
Theorems 1, 2, 3, and 4.
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We now recall some notions for later use. Firstly, as in [12], we denote

M = M(R+) :=
{

f ∈ L1,loc(R+) | sup
t≥0

∫ t+1

t

|f (τ)|dτ < ∞
}

(2)

endowed with the norm ‖f ‖M := supt≥0
∫ t+1
t

|f (τ)|dτ . Clearly, M is a Banach space and
it is an admissible Banach function space in the sense of [12, Definition 1.2].

For a given Banach space X, we define the space M of X-valued functions related to
M by

M := {f : R+ → X | ‖f (·)‖ ∈ M} (3)

endowed with the norm ‖f ‖M := ‖‖f (·)‖‖M. Clearly, M is a Banach space. Moreover,
we consider the following subset of M consisting of 1-periodic functions denoted by

P := {f ∈ M | f is 1-periodic} . (4)

For ϕ ∈ M and σ > 0, it can be seen (see [7, Proposition 2.6]) that the functionsΛ′
σ ϕ and

Λ′′
σ ϕ defined by Λ′

σ ϕ(t) = ∫ t

0 e−σ(t−s)ϕ(s)ds and Λ′′
σ ϕ(t) = ∫∞

t
e−σ(s−t)ϕ(s)ds, t ∈ R+,

belong to M.
Let now ϕ be a positive function belonging to P and denote by ‖ · ‖∞ the esssup-norm.

Then, by [12, (1.8)] we have

‖Λ′
σ ϕ‖∞ ≤ N1

1 − e−σ
‖ϕ‖M and ‖Λ′′

σ ϕ‖∞ ≤ N2

1 − e−σ
‖ϕ‖M. (5)

We also need the space Cb(R+, X) (and Cb(R, X)) of bounded, continuous functions with
values in X, defined on R+ (R, respectively), and endowed with the norms ‖v‖Cb(R+,X) :=
supt∈R+ ‖v(t)‖ (and ‖v‖Cb(R,X) := supt∈R ‖v(t)‖, respectively).

In this paper, we always fix a Banach space X having a separable predual Y (i.e., X = Y ′
for a separable Banach space Y ). We consider the nonhomogeneous linear problem for the
unknown function u(t)

{
du

dt
= A(t)u(t) + f (t) for t > 0,

u(0) = u0 ∈ X,
(6)

where the function f taking values in a Banach spaceX and the family of partial differential
operators (A(t))t≥0 is given such that the homogeneous Cauchy problem

{
du

dt
= A(t)u(t) for t > s ≥ 0,

u(s) = us ∈ X
(7)

is well-posed. By this, we mean that there exists an evolution family (U(t, s))t≥s≥0 such
that the solution of the Cauchy problem (7) is given by u(t) = U(t, s)u(s). For more
details on the notion of evolution families, conditions for the existence of such families,
and applications to partial differential equations, we refer the readers to Pazy [20] (see
also Nagel and Nickel [19] for a detailed discussion of well-posedness for non-autonomous
abstract Cauchy problems on the whole line R). We next give the precise concept of an
evolution family in the following definition.

Definition 1 A family of bounded linear operators (U(t, s))t≥s≥0 on a Banach space X is
a (strongly continuous, exponentially bounded) evolution family if

(i) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s ≥ 0,
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(ii) the map (t, s) 	→ U(t, s)x is continuous for every x ∈ X, where (t, s) ∈ {(t, s) ∈ R
2 :

t ≥ s ≥ 0},
(iii) there are constants K,α ≥ 0 such that ‖U(t, s)x‖ ≤ Keα(t−s)‖x‖ for all t ≥ s ≥ 0
and x ∈ X.

The existence of the evolution family (U(t, s))t≥s≥0 allows us to define a notion of
mild solutions as follows. By the mild solution to (6), we mean a function u satisfying the
following integral equation

u(t) = U(t, 0)u0 +
∫ t

0
U(t, τ )f (τ )dτ for all t ≥ 0. (8)

We refer the reader to Pazy [20] for more detailed treatments on the relations between
classical and mild solutions of evolution equations of the form (6).

We now state an assumption that will be used in the rest of the paper.

Assumption 1 We assume that A(t) is 1-periodic, i.e., A(t + 1) = A(t) for all t ∈ R+.
Then (U(t, s))t≥s≥0 becomes 1-periodic in the sense that

U(t + 1, s + 1) = U(t, s) for all t ≥ s ≥ 0. (9)

We also assume that the space Y considered as a subspace of Y ′′ (through the canonical
embedding) is invariant under the operator U ′(1, 0) which is the dual of U(1, 0).

2 Main Results

We now state and prove our three main results: The first result is on the existence and
uniqueness of a periodic mild solution to the partial functional differential equation in fading
memory phase spaces (Theorem 1 below). The second result is related to the existence and
conditional stability of the periodic solution in the case that the linear part generates an
evolution family having an exponential dichotomy (Theorems 2 and 3), and the last result
is on the existence of a local stable manifold around the periodic solution (Theorem 4).

2.1 Periodic Solutions to Semi-Linear Problems in Fading Memory Spaces

Firstly, we recall some notions of fading memory space and introduce the notion of local
ϕ-Lipschitz functions in the following definitions. Denote by C((−∞, 0], X) the space of
all continuous functions from (−∞, 0] into X. For a continuous function v : R → X, the
history function vt ∈ C((−∞, 0], X) is defined by vt (θ) = v(t + θ) for all θ ∈ (−∞, 0].

Definition 2 Consider a Banach space X as above. Then, a fading memory space is a
Banach space (Γ ; ‖ · ‖Γ ) consisting of functions from (−∞, 0] to X that satisfies the fol-
lowing axioms (see [6, 13]):
A1) There exist a positive constant H and locally bounded nonnegative continuous func-
tions K(·) and M(·) on [0, ∞) with the property that if u : (−∞, a) → X is continuous
and for some σ < a, uσ ∈ Γ , then for all t ∈ [σ, a), we have

(i) ut ∈ Γ ,
(ii) ut is continuous in t (with respect to ‖ · ‖Γ ),
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(iii) H‖u(t)‖ ≤ ‖ut‖Γ ≤ K(t − σ) supσ≤s≤t ‖u(s)‖ + M(t − σ)‖uσ ‖Γ .

A2) If {φk}, φk ∈ Γ , converges to φ uniformly on any compact set in (−∞, 0] and if {φk}
is a Cauchy sequence in Γ , then φ ∈ Γ and φk → φ in Γ, k → ∞.

Example 1 (See [13, Chapter 5]) The above axioms are satisfied by the space

Cν :=
{

φ : φ ∈ C((−∞, 0], X) and lim
s→−∞

‖φ(s)‖
e−νs

= 0

}

where ν > 0 (10)

endowed with the norm ‖φ‖ν := sup−∞<s≤0
‖φ(s)‖
e−νs . Moreover, in this case, we can take

K(t) = 1,M(t) = e−νt for all t ≥ 0 in axiom A1) (iii) of Definition 2 of fading memory
spaces.

Remark 1 Let now x(·) be a function defined and continuous on R with values in X such
that x(·)|R+ ∈ Cb(R+, X) and xt ∈ Cν for all t ≥ 0. Then, we have

‖xt‖ν = sup
θ≤0

eνθ‖x(t + θ)‖ = e−νt sup
θ≤t

eνθ‖x(θ)‖

≤ e−νt max

{

sup
θ≤0

eνθ‖x(θ)‖, sup
0≤θ≤t

eνθ‖x(θ)‖
}

≤ max

{

‖x0‖ν, sup
0≤θ≤t

‖x(θ)‖
}

.

In the case that x(·) is 1-periodic, we have
‖x0‖ν = sup

θ≤0

‖x(θ‖
e−νθ

≤ sup
0≤s≤1

‖x(s)‖ = sup
s≥0

‖x(s)‖ = sup
s∈R

‖x(s)‖,

and therefore,
‖xt‖ν ≤ sup

s∈R+
‖x(s)‖ ≤ ‖x(·)‖Cb(R,X) for all t ≥ 0.

Definition 3 (Local ϕ-Lipschitz functions) Let E be an admissible Banach function space
and ϕ be a positive function belonging to E and Bρ be the ball with radius ρ in Cν , i.e,
Bρ := {φ ∈ Cν : ‖φ‖ν ≤ ρ}. A function g : [0, ∞) × Bρ → X is said to belong to the
class (L, ϕ, ρ) for some positive constants L, ρ if g satisfies

(i) ‖g(t, 0)‖ ≤ Lϕ(t) for a.e. t ∈ R+,

(ii) ‖g(t, φ1) − g(t, φ2)‖ ≤ ϕ(t)‖φ1 − φ2‖ν for a.e. t ∈ R+ and all φ1, φ2 ∈ Bρ .

For a Banach space X with a separable predual Y as in the previous section, we now
consider the following partial functional differential equation

{
du

dt
= A(t)u(t) + g(t, ut ), t ≥ 0,

u0 = φ ∈ Cν,
(11)

where the linear operators A(t), t ≥ 0 act on X and satisfy Assumption 1, and the nonlinear
term g : [0, +∞) × Cν → X satisfies

(1) g belongs to the class (L, ϕ, ρ) for some L, ρ > 0 and 0 < ϕ ∈ P,

(2) the map t 	→ g(t, vt ) is 1-periodic
for each 1-periodic function v ∈ Cb(R, X).

(12)
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Furthermore, by themild solution to (11) we mean the function u satisfying the following
equation {

u(t) = U(t, 0)u(0) + ∫ t

0U(t, τ )g(τ, uτ )dτ for all t ≥ 0,
u0 = φ ∈ Cν .

(13)

We then come to our first result on the existence and uniqueness of the periodic mild
solution to (11).

Theorem 1 Assume that there exists a constant M such that for each f ∈ M there is a mild
solution u of (6) satisfying u ∈ Cb(R+, X) and

‖u‖Cb(R+,X) ≤ M‖f ‖M,

and that the evolution family U(t, s)t≥s≥0 satisfies

lim
t→∞ ‖U(t, 0)x‖ = 0 for x ∈ X such that U(t, 0)x is bounded in R+.

Let g satisfy the conditions in (12). If γ := ‖ϕ‖M is small enough, then (11) has one and
only one 1-periodic mild solution û in Cb(R, X).

Proof Consider the following closed set B1
ρ ⊂ Cb(R, X) defined by

B1
ρ := {v ∈ Cb(R, X) : v is 1-periodic, and ‖v‖Cb(R,X) � ρ

}
. (14)

Note that for v ∈ B1
ρ , since v is 1-periodic, from Remark 1 we have that vt ∈ Cν and

‖vt‖ν ≤ ‖v‖Cb(R,X) ≤ ρ.

We next define the transformation Φ as follows: Consider the equation for given v ∈
Cb(R, X) with u being the solution

u(t) = U(t, 0)u(0) +
∫ t

0
U(t, τ )g(τ, vτ )dτ for all t ≥ 0. (15)

Then, for v ∈ B1
ρ we set

Φ(v)(t) :=
{

u(t) for t ≥ 0,
ũ(t) for t < 0.

(16)

where u ∈ Cb(R+, X) is the unique 1-periodic solution to (15) (the existence and unique-
ness of such an u is guaranteed by [12, Theorem 2.3]), and ũ(t), t < 0, is the 1-periodic
extension of u on the interval (−∞, 0).

We will prove that if γ is small enough, then the transformation Φ acts from B1
ρ into

itself and is a contraction. To do this, fixing any v ∈ B1
ρ , then since g satisfy the conditions

in (12) we have

‖g(τ, vτ )‖M = sup
t≥0

∫ t+1

t

‖g(τ, vτ )‖dτ

≤ (ρ + L) sup
t≥0

∫ t+1

t

|ϕ(τ)|dτ = (ρ + L)γ. (17)

Applying [12, Theorem 2.3] to the right-hand side g(τ, vτ ) instead of f (τ) (in the formula
of mild solution) we obtain that for v ∈ B1

ρ there exists a unique 1-periodic solution u to
(15) satisfying

‖Φ(v)‖Cb(R,X) = ‖u‖Cb(R+,X) � (M + 1)Keα‖g(τ, vτ )‖M
� (M + 1)K(ρ + L)γ eα. (18)
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Therefore, if γ is small enough, then the map Φ acts from B1
ρ into itself.

Now, by formula (15) we have the following representation of Φ

Φ(v)(t) =
{

U(t, 0)u(0) + ∫ t

0U(t, τ )g(τ, vτ )dτ for t ≥ 0,
ũ(t) for t < 0,

(19)

where, as above, the function ũ(t) is the 1-periodic extension to interval (−∞, 0) of the
periodic function

u(t) = U(t, 0)u(0) +
∫ t

0
U(t, τ )g(τ, vτ )dτ for t ≥ 0.

Furthermore, for v, w ∈ B1
ρ and u1 = Φ(v), u2 = Φ(w) by the representation (19), we

obtain that u = u1 − u2 = Φ(v) − Φ(w) is the unique 1-periodic mild solution to the
equation

{
u(t) = U(t, 0)u(0) + ∫ t

0U(t, τ )(g(τ, vτ ) − g(τ,wτ ))dτ for t ≥ 0,
u(t) = ũ(t) = ũ1(t) − ũ2(t) for t < 0.

Since u(t), t ≥ 0, is 1-periodic, and for t < 0 the function ũ(t) is an 1-periodic extension
of u to interval (−∞, 0), we have that

‖Φ(v) − Φ(w)‖Cb(R,X) = sup
t∈R

‖u(t)‖ = sup
t≥0

‖u(t)‖.

Thus, from [12, Theorem 2.3] and the fact that g belongs to the class (L, ϕ, ρ) we arrive at

‖u(t)‖ � (M + 1)Keα sup
t≥0

∫ t+1

t

‖g(τ, vτ ) − g(τ,wτ )‖dτ

� (M + 1)Keα sup
t≥0

∫ t+1

t

‖g(τ, vτ ) − g(τ,wτ )‖dτ (20)

� 2(M + 1)Keα sup
t≥0

∫ t+1

t

|ϕ(τ)|‖vτ − wτ‖νdτ.

Hence, since v and w are 1-periodic functions, from Remark 1, we have

‖vt − wt‖ν ≤ ‖v − w‖Cb(R,X) for all t ≥ 0.

Thus,
‖Φ(v) − Φ(w)‖Cb(R,X) � 2(M + 1)Keα‖ϕ‖M‖v − w‖Cb(R,X).

Thus, if γ := ‖ϕ‖M is small enough, then Φ : B1
ρ → B1

ρ is a contraction. Therefore,

for such a γ , there exists a unique fixed point û in B1
ρ of Φ, and by the definition of Φ, this

function û is the unique 1-periodic mild solution to (11).

2.2 Periodic Solutions in the Case of Dichotomic Evolution Families

In this subsection, we will consider (8) and (13) in the case that the evolution family
(U(t, s))t≥s≥0 has an exponential dichotomy. In this case, the existence of bounded solu-
tions to (8) (i.e., bounded mild solutions to (6)) is convenient to prove. Therefore, the
existence and uniqueness of periodic solutions to (8) and hence to (13) easily follow. More-
over, using the cone inequality in [3, Theorem I.9.3], we will show the conditional stability
of such periodic solutions. To do so, we start with the cone inequality, the definitions of
exponential dichotomy, and stability of an evolution family.

Definition 4 Let U := (U(t, s))t≥s≥0 be an evolution family on a Banach space X.
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(1) The evolution family U is said to have an exponential dichotomy on [0, ∞) if there exist
bounded linear projections P(t), t ≥ 0, on X and positive constants N, ν such that
(a) U(t, s)P (s) = P(t)U(t, s), t ≥ s ≥ 0,
(b) the restriction U(t, s)| : KerP(s) → KerP(t), t ≥ s ≥ 0, is an isomorphism, and we
denote its inverse by U(s, t)| := (U(t, s)|)−1, 0 ≤ s ≤ t ,
(c) ‖U(t, s)x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ P(s)X, t ≥ s ≥ 0,
(d) ‖U(s, t)|x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ KerP(t), t ≥ s ≥ 0.

The projections P(t), t ≥ 0, are called the dichotomy projections, and the constants
N, ν - the dichotomy constants.

(2) The evolution family U is called exponentially stable if it has an exponential dichotomy
with the dichotomy projections P(t) = Id for all t ≥ 0. In other words, U is exponentially
stable if there exist positive constants N and ν such that

‖U(t, s)‖ ≤ Ne−ν(t−s) for all t ≥ s ≥ 0. (21)

We remark that properties (a)–(d) of dichotomy projections P(t) already imply that

1. H := supt≥0 ‖P(t)‖ < ∞,
2. t 	→ P(t) is strongly continuous

(see [17, Lemma 4.2]). We refer the reader to [7] for characterizations of exponential
dichotomies of evolution families in general admissible spaces.

If (U(t, s))t≥s≥0 has an exponential dichotomy with dichotomy projections (P (t))t≥0
and constants N, ν > 0, then we can define the Green’s function on a half-line as follows:

G(t, τ ) :=
{

P(t)U(t, τ ) for t > τ ≥ 0,
−U(t, τ )|(I − P(τ)) for 0 ≤ t < τ.

(22)

Also, G(t, τ ) satisfies the estimate

‖G(t, τ )‖ ≤ (1 + H)Ne−ν|t−τ | for t �= τ ≥ 0. (23)

Using the projections (P (t))t≥0 on X, we can define the family of operators P̃ (t), t ≥ 0
on Cν as follows:

P̃ (t) : Cν → Cν, (P̃ (t)φ)(θ) = U(t − θ, t)P (t)φ(0) for all θ ∈ (−∞, 0]. (24)

Then, (P̃ (t))2 = P̃ (t), and therefore the operators P̃ (t), t ≥ 0, are projections on Cν .
Moreover, Im P̃ (t) = {φ ∈ Cν : φ(θ) = U(t − θ, t)v0 for all θ ∈ (−∞, 0] for some
v0 ∈ ImP(t)}.

The following lemma gives the form of bounded solutions of (8) and (13).

Lemma 1 Let the evolution family (U(t, s))t≥s≥0 have an exponential dichotomy with the
corresponding dichotomy projections (P (t))t≥0 and dichotomy constants N, ν > 0. Let
f ∈ M, and let g satisfy conditions given in (12). Then, the following assertions hold true.

(a) Let v ∈ Cb(R+, X) be the solution to (8). Then, v can be rewritten in the form

v(t) = U(t, 0)ζ +
∫ ∞

0
G(t, τ )f (τ )dτ for some ζ ∈ X0 := P(0)X, (25)

where G(t, τ ) is the Green’s function defined by equality (22).
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(b) Let u ∈ C(R, X) be a solution to (13) and given φ ∈ Cν such that max{‖φ‖ν,

supt∈R+ ‖u(t)‖} ≤ ρ for a fixed ρ > 0. Then, for t ≥ 0 this function u(t) can be rewritten
in the form

{
u(t) = U(t, 0)η + ∫∞

0 G(t, τ )g(τ, uτ )dτ,

u0 = φ ∈ Cν
(26)

for some η ∈ X0 where G and X0 are determined as in (a).

Proof (a) See [8, Lemma 4.4]. (b) See [10, Lemma 3.4].

Remark 2 By straightforward computations, we can prove that the converses of statements
(a) and (b) are also true, i.e., a solution of (26) satisfies (8) for t ≥ 0, and that of (25)
satisfies (13) for t ≥ 0.

We next prove the existence of bounded solutions to (8) and (13) (i.e., bounded mild
solutions to (6) and (11)) and hence that of periodic solutions in the following theorem.

Theorem 2 Consider (8) and (13). Let the evolution family (U(t, s))t≥s≥0 satisfy (9) and
have an exponential dichotomy with the dichotomy projections P(t), t ≥ 0, and constants
N, ν. Let f ∈ M be 1-periodic and suppose that g satisfies the conditions in (12) with given
positive constants ρ, L and function ϕ ∈ P. Then, the following assertions hold true.

(a) Equation (8) has a unique 1-periodic solution in Cb(R+, X).
(b) If ‖ϕ‖M is sufficiently small, then (13) has a unique 1-periodic solution in Cb(R, X).

Proof (a) For a given f ∈ M by taking ζ = 0 ∈ X0 in (25), we see that (8) has a bounded
solution

u(t) =
∫ ∞

0
G(t, τ )f (τ )dτ, (27)

and this solution can be estimated using the inequalities (23) and (5) by

‖u‖Cb
� (1 + H)N

∫ ∞

0
e−ν|t−τ |‖f (τ)‖dτ

≤ (1 + H)N(N1 + N2)

1 − e−ν
‖f ‖M for all t ≥ 0.

From [12, Theorem 2.3] it follows that for the 1-periodic function f ∈ M, there exists an
1-periodic solution û of (8) satisfying

‖û‖Cb
�
(

(1 + H)N(N1 + N2)

1 − e−ν
+ 1

)

Keα‖f ‖M. (28)

The uniqueness of the 1-periodic solution follows from the fact that for two 1-periodic
and continuous (hence bounded on R+) solutions û and v̂ (with the corresponding initial
values ζ, η ∈ X0), we obtain by using the form for bounded solutions (25) that ‖û(t)−
v̂(t)‖ = ‖U(t, 0)(ζ −η)‖ ≤ Ne−νt‖ζ −η‖ → 0 as t → ∞ since η, ζ ∈ X0. This, together
with the periodicity, implies û(t) = v̂(t) for all t ≥ 0, finishing the proof of (a).
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(b) By assertion (a), for each 1-periodic input function f , the linear problem (8)
has a unique 1-periodic solution û ∈ Cb(R+, X) satisfying inequality (28). Therefore,
Assertion (b) then follows from Theorem 1.

We now prove the conditional stability of periodic solutions to (13). To do this, for x ∈
X, φ̂ ∈ Cν,and v̂ ∈ Cb(R, X) denote Ba(x) := {y ∈ X : ‖x − y‖ ≤ a, x ∈ X},
Ba(φ̂) := {φ ∈ Cν : ‖φ − φ̂‖ν ≤ a}, and

Ba(v̂) :=
{

v ∈ C(R, X) : vt , v̂t ∈ Cν;max{‖v0 − v̂0‖ν, sup
t∈R+

‖v(t) − v̂(t)‖} ≤ a, t ≥ 0

}

respectively. Let Bρ(0)(Bρ(0)) be the ball containing û(ût , t ≥ 0) as in assertion (b) of
Theorem 2.

Suppose further that there exists a positive function ϕ̃ ∈ P such that:

‖g(t, φ1) − g(t, φ2)‖ ≤ ϕ̃(t)‖φ1 − φ2‖ν for all φ1, φ2 ∈ B2ρ(0), and t ≥ 0. (29)

Theorem 3 Keep the assumptions of Theorem 2, and let û be the 1-periodic solution of
(13) obtained in assertion (b) of Theorem 2. Let g satisfy conditions given in (12) and (29),
respectively. If ‖ϕ̃‖M is small enough, then to each ζ ∈ Cν with ‖ζ − û0‖ν ≤ ρ/2 and
P(0)ζ(0) ∈ B ρ

2N
(P (0)û(0)) ∩ P(0)X there corresponds one and only one solution u(·) of

(13) onR satisfying the conditions u0 = ζ and u ∈ Bρ(û). Moreover, the following estimate
is valid for u(t) and û(t):

‖ut − ût‖ν ≤ Cμρe−μt for t ≥ 0, (30)

for some positive constants Cμ and μ independent of u, û, and ρ.

Proof Putting w = u − û, then u is a solution to (13) in Bρ(û) with u0 = ζ if and only if
w is the solution in Bρ(0) of the equation

w(t) =
{

U(t, 0)(ζ(0) − û(0)) + ∫ t

0U(t, τ )
[
g(τ,wτ + ûτ ) − g(τ, ûτ )

]
dτ for t ≥ 0,

ζ(t) − û(t) for t ≤ 0.
(31)

We now prove that (31) has a unique solution in Bρ(0). To do this, putting g̃(t, wt ) =
g(t, wt + ût ) − g(t, ût ) we obtain that g̃(t, 0) = 0 and

‖g̃(t, wt ) − g̃(t, vt )‖ ≤ ϕ̃(t)‖wt − vt‖ν, t ≥ 0, w, v ∈ Bρ(0).

Setting ξ = P(0)ζ(0) − P(0)û(0) we prove that the transformation K defined by

(Kw)(t) =
{

U(t, 0)ξ + ∫∞
0 G(t, τ )g̃(τ, wτ )dτ for t ≥ 0,

ζ(t) − û(t) for t ≤ 0

acts from Bρ(0) into itself and is a contraction. In fact, we have

‖(Kw)(t)‖ ≤
{

Ne−νt‖ξ‖ + (1 + H)N
∫∞
0 e−ν|t−τ |‖wτ‖ν ϕ̃(τ )dτ for t � 0,

e−νt‖ζ − û0‖ν for t ≤ 0

≤
{

e−νt ρ
2 + (1 + H)Nρ

∫∞
0 e−ν|t−τ |ϕ̃(τ )dτ for t � 0,

e−νt ρ
2 for t ≤ 0.

Since t + θ ∈ R for fixed t ∈ [0, ∞) and θ ∈ (−∞, 0], we obtain
‖(Kw)(t + θ)‖ ≤

{
e−ν(t+θ) ρ

2 + N(1 + H)ρ
∫∞
0 e−ν|t+θ−τ |ϕ̃(τ )dτ for t + θ � 0,

e−ν(t+θ) ρ
2 for t + θ ≤ 0.
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Therefore,

‖Kw‖ν ≤ ρ

2
+ (1 + H)Nρ(N1 + N2)‖ϕ̃‖M

1 − e−ν
.

Thus, if ‖ϕ̃‖M is small enough, then the transformation K acts from Bρ(0) into Bρ(0).
Now, for x, z ∈ Bρ(0), we estimate

‖(Kx)(t) − (Kz)(t)‖ ≤
∫ ∞

0
‖G(t, τ )‖(g̃(τ, xτ ) − g̃(τ, zτ ))‖dτ

≤ (1 + H)N

∫ ∞

0
e−ν|t−τ |ϕ̃(τ )‖xτ − zτ‖νdτ, t � 0.

From Remark 1 and ‖(Kx)(t) − (Kz)(t)‖ = 0 for all t ≤ 0, we have

‖(Kx) − (Kz)‖ν ≤ (1 + H)N(N1 + N2)‖ϕ̃‖M
1 − e−ν

sup
t≥0

‖xt − zt‖ν .

Therefore, if ‖ϕ̃‖M is small enough, then the transformation K : Bρ(0) → Bρ(0) is a
contraction. Thus, there exists a unique w ∈ Bρ(0) such that Kw = w. By the definition of
K , Lemma 1, and Remark 2, we have that w is the unique solution in Bρ(0) of (31). Note
that by Lemma 1 the above solution w of (31) can be written as

w(t) =
{

U(t, 0)ξ + ∫∞
0 G(t, τ )g̃(τ, wτ )dτ for t ≥ 0,

ζ(t) − û(t) for t ≤ 0.
(32)

Returning to the solution u of (13) by replacing w by u − û then, there exists a unique
u ∈ Bρ(û) of (13) with u0 = ζ .

Finally, we prove the estimate (30). To do this, putting as above ξ := P(0)u(0) −
P(0)û(0), w = u − û with u ∈ Bρ(û), g̃(t, wt ) = g(t, wt + ût ) − g(t, ût ), we can use the
formula (32) to write

w(t) =
{

U(t, 0)ξ + ∫∞
0 G(t, τ )g̃(τ, wτ )dτ for t ≥ 0,

u(t) − û(t) for t ≤ 0.

Using the facts that ‖ξ‖ ≤ ρ
2N and ‖u0 − û0‖ν ≤ ρ

2 , it follows that

‖w(t)‖ ≤
{

e−νt ρ
2 + N(1 + H)

∫∞
0 e−ν|t−τ |ϕ̃(τ )‖wτ‖νdτ for t � 0,

e−νt ρ
2 for t < 0.

Since t + θ ∈ R for fixed t ∈ [0, ∞) and θ ∈ (−∞, 0], we obtain

‖w(t + θ)‖ ≤
{

e−ν(t+θ) ρ
2 + N(1 + H)

∫∞
0 e−ν|t+θ−τ |ϕ̃(τ )‖wτ‖νdτ for t + θ � 0,

e−ν(t+θ) ρ
2 for t + θ < 0.

Therefore,

eνθ‖w(t + θ)‖ ≤ ρ

2
e−νt + (1 + H)N

∫ ∞

0
e−ν|t−τ |ϕ̃(τ )‖wτ‖νdτ for t � 0.

Put φ(t) = ‖wt‖ν . Then, supt�0 φ(t) < ∞ and

φ(t) ≤ ρ

2
e−νt + (1 + H)N

∫ ∞

0
e−ν|t−τ |ϕ̃(τ )φ(τ )dτ for t � 0. (33)

We will use the cone-inequality theorem [3, Theorem I.9.3] applying to the Banach space
W := L∞(R+) which is the space of real-valued functions defined and essentially bounded
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on R+ (endowed with the esssup-norm denoted by ‖ · ‖∞) with the cone K being the set of
all (a.e.) nonnegative functions. We then consider the linear operator B defined for u ∈ W

by

(Bu)(t) = (1 + H)N

∫ ∞

0
e−ν|t−τ |ϕ̃(τ )u(τ )dτ for t � 0.

By inequalities (5), we have

sup
t�0

(Bu)(t) = sup
t�0

(1 + H)N

∫ ∞

0
e−ν|t−τ |ϕ̃(τ )u(τ )dτ

≤ (1 + H)N

1 − e−ν
(N1 + N2)‖ϕ̃‖M‖u‖∞.

Therefore, B ∈ L(W) and ‖B‖ ≤ (1+H)N
1−e−ν (N1 + N2)‖ϕ̃‖M < 1. Obviously, B leaves the

cone K invariant. The inequality (33) can now be rewritten as

φ ≤ Bφ + z for z(t) = ρ

2
e−νt , t � 0.

Hence, by the cone-inequality theorem [3, Theorem I.9.3], we obtain φ ≤ ψ , where ψ is a
solution in W of the equation ψ = Bψ + z which can be rewritten as

ψ(t) = ρ

2
e−νt + (1 + H)N

∫ ∞

0
e−ν|t−τ |ϕ̃(τ )ψ(τ)dτ for t � 0. (34)

We now estimate ψ . To that purpose, for

0 < μ < ν + ln(1 − (1 + H)N(N1 + N2)‖ϕ̃‖M),

we set h(t) = eμtψ(t) for t � 0. Then, by (34), we obtain that

h(t) = ρ

2
e−(ν−μ)t + (1 + H)N

∫ ∞

0
e−ν|t−τ |+μ(t−τ)ϕ̃(τ )h(τ )dτ for t � 0. (35)

We next consider the linear operator D defined for u ∈ W by

(Du)(t) = (1 + H)N

∫ ∞

0
e−ν|t−τ |+μ(t−τ)ϕ̃(τ )u(τ )dτ for t � 0.

By inequalities (5), we have

sup
t�0

(Du)(t) = sup
t�0

(1 + H)N

∫ ∞

0
e−ν|t−τ |+μ(t−τ)ϕ̃(τ )u(τ )dτ

≤ sup
t�0

(1 + H)N

∫ ∞

0
e−(ν−μ)|t−τ |ϕ̃(τ )u(τ )dτ

≤ (1 + H)N

1 − e−(ν−μ)
(N1 + N2)‖ϕ̃‖M‖u‖∞.

Therefore, D ∈ L(W) and ‖D‖ ≤ (1+H)N

1−e−(ν−μ) (N1 + N2)‖ϕ̃‖M.
Equation (35) can now be rewritten as

h = Dh + z̃ for z̃(t) = ρ

2
e−(ν−μ)t , t � 0.

Since μ < ν + ln(1 − (1 + H)N(N1 + N2)‖ϕ̃‖M), we obtain that

‖D‖ ≤ (1 + H)N

1 − e−(ν−μ)
(N1 + N2)‖ϕ̃‖M < 1.
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Therefore, the equation h = Dh + z̃ is uniquely solvable in L∞(W), and its solution is
h = (I − D)−1z̃. Hence, we obtain that

‖h‖∞ = ‖(I − D)−1z̃‖∞ ≤ ‖(I − D)−1‖‖z̃‖∞ ≤ ‖z̃‖∞
1 − ‖D‖

≤ ρ

2
(
1 − (1+H)N

1−e−(ν−μ) (N1 + N2)‖ϕ̃‖M
) .

Therefore,

‖h‖∞ ≤ Cμρ for Cμ := 1

2
(
1 − (1+H)N

1−e−(ν−μ) (N1 + N2)‖ϕ̃‖M
) .

This yields

h(t) ≤ Cμρ for t � 0.

Hence, ψ(t) = e−μth(t) ≤ Cμρe−μt . Since ‖wt‖ν = φ(t) ≤ ψ(t), we obtain that

‖wt‖ν ≤ Cμρe−μt .

Returning to the solution u of (13) by replacing w by u − û, we have

‖ut − ût‖ν ≤ Cμρe−μt ,

finishing the proof of the theorem.

Remark 3 The assertion of the above theorem shows us the conditional stability of the
periodic solution û in the sense that for any other solution u such that P(0)u(0) ∈
B ρ

2N
(P (0)û(0)) ∩P(0)X and u being in a small ball Bρ(û) we have ‖ut − ût‖ν → 0

exponentially as t → ∞ (see inequality (30)).

For an exponentially stable evolution family (see Definition 4 (2)), we have the following
corollary which is a direct consequence of Theorem 3.

Corollary 1 Keep the assumptions of Theorem 2, and let û be the periodic solution of (13)
obtained in assertion (b) of Theorem 2. Further, let the evolution family (U(t, s))t≥s≥0 be
exponentially stable. Then, the periodic solution û is exponentially stable in the sense that
for any other solution u ∈ C(R, X) of (13) such that ut ∈ Cν, t ≥ 0 and ‖u0 − û0‖ν is
small enough, we have

‖ut − ût‖ν ≤ Ce−μt‖u0 − û0‖ν for all t ≥ 0, (36)

for some positive constants C and μ independent of u and û.

Proof We just apply Theorem 3 for P(t) = Id for all t ≥ 0 to obtain the assertion of the
corollary.

2.3 Local Stable Manifold Around the Periodic Solution

In this subsection, under the same hypotheses as in the previous subsection, we will prove
the existence of a local stable manifold for (13) around its periodic solution. We first recall
the definition of a local stable manifold for (13) around its periodic solution.
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Definition 5 Given a continuous and 1-periodic solution û to (13). A set S ⊂ R+ × Cν

is said to be a stable manifold for the (13) around û if for every t ∈ R+ the phase space
Cν splits into a direct sum Cν = X̃0(t) ⊕ X̃1(t) with corresponding projections P̃ (t) (i.e.,
X̃0(t) = Im P̃ (t) and X̃1(t) = Ker P̃ (t)) such that

sup
t≥0

‖P̃ (t)‖ < ∞,

and if there exist positive constants ρ, ρ0, ρ1 and a family of Lipschitz continuous mappings

ht : Bρ0(ût ) ∩ X̃0(t) → Bρ1(ût ) ∩ X̃1(t), t ∈ R+

with the Lipschitz constants being independent of t such that

(i) S = {(t, ψ + ht (ψ)) ∈ R+ × (X̃0(t) ⊕ X̃1(t)) | t ∈ R+, ψ ∈ Bρ0(ût ) ∩ X̃0(t)}, and we
denote St := {ψ + ht (ψ) | (t, ψ + ht (ψ)) ∈ S}, t ≥ 0,

(ii) St is homeomorphic to Bρ0(ût )∩X̃0(t) := {ψ ∈ X̃0(t) : ‖ψ − ût‖ν � ρ0} for all t ≥ 0,

(iii) to eachψ ∈ St0 there corresponds one and only one solution u(t) of (13) onR satisfying
conditions ut0 = ψ and supt≥t0

‖ut‖ν ≤ ρ.

Note that, if we identify X̃0(t) ⊕ X̃1(t) with X̃0(t) × X̃1(t), then we can write St =
graph(ht ) where graph(ht ) denotes the graph of the mapping ht .

We now state and prove our last result on the existence of a stable manifold for solutions
to (13) around its periodic solution.

Theorem 4 Let the assumptions of Theorems 2 and 3 hold with the corresponding positive
functions ϕ and ϕ̃. Let û be the 1-periodic solution of (13) obtained in Theorem 2 thanks
to the sufficient smallness of ‖ϕ‖M. If ‖ϕ̃‖M is sufficiently small, then there exists a local
stable manifold S near the solution û. Moreover, every solution u(t) on the manifold S is
exponentially attracted to û(t) in the sense that, there exist positive constants μ and Cμ

independent of t0 ≥ 0 such that

‖ut − ût‖ν ≤ Cμe−μ(t−t0)‖P(t0)(u(t0) − P(t0)û(t0))‖ for all t ≥ t0. (37)

Proof Putting w = u − û, then u is a solution to (13) in Bρ(û) with u0 = ζ if and only if
w is the solution in Bρ(0) of the equation

w(t) = U(t, 0)w(0) +
∫ t

0
U(t, τ )

[
F(τ)(wτ ) + g(τ,wτ + ûτ ) − g(τ, ûτ )

]
dτ for t ≥ 0.

(38)
Putting now g̃(t, wt ) = g(t, wt + ût ) − g(t, ût ), we obtain that g̃(t, 0) = 0 and

‖g̃(t, wt ) − g̃(t, vt )‖ ≤ ϕ̃(t)‖wt − vt‖ν, t ≥ 0, w, v ∈ Bρ(0).

Equation (38) can be written as

w(t) = U(t, 0)w(0) +
∫ t

0
U(t, τ )g̃(τ, wτ )dτ for t ≥ 0. (39)

Since U(t, s)t≥s≥0 has an exponential dichotomy, for each t ≥ 0, the phase space Cν

splits into the direct sum Cν = X̃0(t) ⊕ X̃1(t), where X̃0(t) = Im P̃ (t) and X̃1(t) =
Ker P̃ (t), and the projections P̃ (t), t ≥ 0, are defined as in equality (24). Clearly,
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supt≥0 ‖P̃ (t)‖ < ∞. We now construct a stable manifold S = {(t,St )}t≥0 for the solutions
to (13). To do this, we determine the surface St for t ≥ 0 by the formula

St :=
{
φ + Φt(φ) : φ ∈ B ρ

2N
(0) ∩ X0(t)

}
⊂ Cν,

where the operator Φt0 is defined for each t0 ≥ 0 by

Φt0(φ)(θ) =
∫ ∞

t0

G(t0 − θ, τ )g(τ,wτ )dτ for θ ≤ 0,

where w(·) is the unique solution of (39) on Bρ(0) satisfying P̃ (t0)wt0 = φ. On the other
hand, by the definition of the Green function G we have that Φt0(φ) ∈KerP̃ (t0).

We next estimate ‖Φt0(φ)‖ν by

‖Φt0(φ)‖ ≤ N(1 + H)

∫ ∞

t0

e−ν|t0−θ−τ |ϕ̃(τ )‖wτ‖νdτ.

Therefore,

‖Φt0(φ)‖ν ≤ (1 + H)N

1 − e−ν
(N1 + N2)ρ‖ϕ̃‖M.

Hence, if ‖ϕ̃‖M is small enough, then the operatorΦt0 acts from B ρ
2N

(0)∩X̃0(t0) to B ρ
2
(0)∩

X̃1(t0). We then prove that Φt0 is Lipschitz continuous with Lipschitz constant independent
of t0. Indeed, for φ1 and φ2 belonging to B ρ

2N
(0) ∩ X̃0(t0), we have

‖Φt0(φ1)(θ) − Φt0(φ2)(θ)‖
≤ N(1 + H)

∫ ∞

t0

e−ν|t0−θ−τ |ϕ̃(τ )‖wτ − vτ‖νdτ (40)

≤ N(1 + H) sup
τ≥t0

‖wτ − vτ‖ν

∫ ∞

t0

e−ν|t0−τ |eν|θ |ϕ̃(τ )dτ.

Therefore,

‖Φt0(φ1) − Φt0(φ2)‖ν ≤ N(1 + H) sup
τ≥t0

‖wτ − vτ‖ν

∫ ∞

t0

e−ν|t0−τ |ϕ̃(τ )dτ

≤ (1 + H)N

1 − e−ν
(N1 + N2)‖ϕ̃‖M sup

τ≥t0

‖wτ − vτ‖ν . (41)

Moreover, by the Lyapunov-Perron equation for w(·) and v(·) (see (26)) and putting k :=
(1+H)N
1−e−ν (N1 + N2)‖ϕ̃‖M, we have

sup
τ≥t0

‖wτ − vτ‖ν ≤ N‖φ1 − φ2‖ν + k sup
τ≥t0

‖wτ − vτ‖ν,

it follows that
sup
τ≥t0

‖wτ − vτ‖ν ≤ N

1 − k
‖φ1 − φ2‖ν .

Substituting this inequality into (40), we obtain

‖Φt0(φ1) − Φt0(φ2)‖ν ≤ Nk

1 − k
‖φ1 − φ2‖ν,

yielding that Φt0 is Lipschitz continuous with the Lipschitz constant
Nk
1−k

independent of t0.
Therefore, putting ρ0 := ρ

2N , ρ1 := ρ
2 , we obtain that the above family of mappings Φt0 is

Lipschitz continuous with the Lipschitz constant Nk
1−k

independent of t0.

To show that St0 is homeomorphic to Bρ0(0) ∩ X̃0(t0), we define the transformation
D : Bρ0(0) ∩ X̃0(t0) → St0 by Dφ := φ + Φt0(φ) for all φ ∈ Bρ0(0) ∩ X̃0(t0). Then,
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applying the implicit function theorem for Lipschitz continuous mappings (see [18, Lemma
2.7]) we see that, if the Lipschitz constant Nk

1−k
< 1 then D is a homeomorphism. Therefore,

the condition (ii) in Definition 5 is satisfied. The condition (iii) of Definition 5 now follows
from Theorem 3. Finally, the inequality (37) in Theorem 4 follows from inequality (30) in
Theorem 3.

Returning to the solution u of (13) by replacing w by u− û, we obtain that this manifold
S is the local stable manifold for (13) near the solution û.

We finally illustrate our results by the following example.

2.4 An Example

We consider the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w(x, t)

∂t
=a(t)

[
∂2w(x, t)

∂x2
+ δw(x, t)

]

+ ψ(t)

(∫ 0

−∞
m(t + s)sinw(x, t + s)ds + h(x, t)

)

,

for 0 < x < π, t ≥ 0,
w(0, t) = w(π, t) = 0 for t ≥ 0,
w(x, θ) = φ(θ)(x) for 0 < x < π, θ ∈ (−∞, 0], φ ∈ Cv.

(42)

Here, δ ∈ R and δ �= n2 for all n ∈ N; the function a(t) ∈ L1,loc(R+) is 1-periodic and
satisfies the condition 0 < γ0 ≤ a(t) ≤ γ1 for fixed γ0, γ1; the function h : [0, π ]×R+ →
R+ is continuous on [0, π ] × R+ and 1-periodic with respect to t ; the function m : R+ →
R+ is continuous and 1-periodic with respect to t , and

∫ 0
−∞ m(t + θ)e−νθ dθ is integrable

on (−∞, 0] and
M = sup

−∞<θ≤0

∫ 0

−∞
m(t + θ)e−νθ dθ.

We next put X := L2[0, π ], C := C(−∞, 0], X), and let A : X ⊃ D(A) → X be
defined by Ay = y′′ + δy, with the domain

D(A) = {y ∈ X : y andy′ are absolutely continuous,y′ ∈ X, y(0) = y(π) = 0}.
It can be seen (see [4]) that A is the generator of an analytic semi-group (T(t))t≥0. Since
σ(A) = {−n2 + δ : n = 1, 2, 3, . . . } applying the spectral mapping theorem for analytic
semi-groups, we get

σ(T(t)) =etσ (A) = {et(−n2+δ) : n = 1, 2, 3, . . . }
and hence σ(T(t)) ∩ Γ = ∅ for all t > 0,

(43)

where Γ := {λ ∈ C : |λ| = 1}.
Putting now A(t) := a(t)A, then A(t) is 1-periodic, and the family (A(t))t≥0 generates

an 1-periodic (in the sense of Assumption 1) evolution family U(t, s)t≥s≥0 which is defined
by the formula U(t, s) = T(

∫ t

s
a(τ )dτ).

By (43), the analytic semi-group (T(t))t≥0 is hyperbolic (or has an exponential
dichotomy) with the projection P satisfying

1. ‖T(t)x‖ ≤ Ne−βt‖x‖ for x ∈ PX, t ≥ 0.
2. ‖T(−t)|x‖ = ‖(T(t)|)−1x‖ ≤ Ne−βt‖x‖ for x ∈ KerP, t ≥ 0,where the invertible
operator T(t)| is the restriction of T (t) to KerP , and N , β are positive constants.
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Using the hyperbolicity of (T(t))t≥0, it is straightforward to check that the evolution family
U(t, s)t≥s≥0 has an exponential dichotomy with the projection P(t) = P for all t ≥ 0 and
the dichotomy constants N and ν := βγ0 by the following estimates:

‖U(t, s)x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ PX, t ≥ s ≥ 0,

‖U(s, t)|x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ KerP, t ≥ s ≥ 0.

We then define the function g : R+ × Cv → X by

g(t, wt (·, θ)) := ψ(t)

(∫ 0

−∞
m(t + θ) sinw(x, t + θ)dθ + h(x, t)

)

for wt ∈ Cv,

where the real function ψ(t) is defined for a fixed constant c > 0 by

ψ(t) =
⎧
⎨

⎩
t − n if t ∈

[
2n + 1

2
− 1

2c
,
2n + 1

2
+ 1

2c

]

for n = 0, 1, 2, . . . ,

0 otherwise.
(44)

Equation (42) can now be rewritten as
{

d

dt
u(·, t) = A(t)u(·, t) + g(t, ut (·, θ)),

u0(·, θ) = φ(·, θ) ∈ C
where h(·, t) is 1-periodic, it follows that g(t, φ) is 1-periodic with respect to t for
each function φ ∈ Ba . Moreover, ‖g(t, 0)‖ = ψ(t)‖h(·, t)‖ ≤ γψ(t) for γ :=
supt∈[0,π](

∫ π

0 |h(x, t)|2dx)1/2, and we have

‖g(t, ut (θ, x)) − g(t, vt (θ, x))‖

=
⎛

⎝
∫ π

0

∣
∣
∣
∣
∣
ψ(t)

∫ 0

−∞
m(t + θ)(sin ut (θ, x) − sin vt (θ, x))dθ

∣
∣
∣
∣
∣

2

dx

⎞

⎠

1
2

≤ ψ(t)

∫ 0

−∞
m(t + θ)

(∫ π

0
|ut (θ, x) − vt (θ, x)|2 dx

) 1
2

dθ

≤ ψ(t)

∫ 0

−∞
m(t + θ)e−νθ dθ‖ut − vt‖ν for all ut , vt ∈ Ba.

Therefore,

sup
t≥0

∫ t+1

t

|ψ(τ)|dτ ≤ 2 sup
n∈N

∫ 2n+1
2 + 1

2n+c

2n+1
2 − 1

2n+c

(t − n)dt = 1

2c
.

Hence, ψ ∈ M(R+) and ‖ψ‖M ≤ 1
2c−1 in spite of the fact that the values of ψ can be very

large.
Therefore, g satisfies the hypotheses of Theorems 2 and 3 with ρ = a, L := γ

M
, ϕ(t) =

Mψ(t) and ϕ̃(t) = 2Mψ(t). By Theorems 2 and 3, if c is large enough (consequently,
‖ϕ‖M and ‖ϕ̃‖M are small enough), then (42) has one and only one 1-periodic mild solution
û ∈ Bρ(0) and this solution û is conditionally stable in the sense of Remark 3. Moreover, by
Theorem 4, there exists a local stable manifold for mild solutions to (42) near the periodic
solution û.
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