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Abstract In this paper, via Newton polyhedra, we define and study symmetric matrix
polynomials which are nondegenerate at infinity. From this, we construct a class of (not
necessarily compact) semialgebraic sets in R

n such that for each set K in the class, we have
the following two statements: (i) the space of symmetric matrix polynomials, whose eigen-
values are bounded on K , is described in terms of the Newton polyhedron corresponding to
the generators of K (i.e., the matrix polynomials used to define K) and is generated by a
finite set of matrix monomials; and (ii) a matrix version of Schmüdgen’s Positivstellensätz
holds: every matrix polynomial, whose eigenvalues are “strictly” positive and bounded on
K , is contained in the preordering generated by the generators of K .
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1 Introduction

The question of representing real polynomials by sums of squares of polynomials is one
of the main topics in real algebraic geometry. Starting with Hilbert’s question of whether
every nonnegative real polynomial in several variables is a sum of squares of real rational
functions, many questions have arisen, and many interesting results. For more details, we
refer the reader to [2, 14, 26, 31] with the references therein.

Let K be a basic closed semialgebraic set in R
n defined by finitely many polynomial

inequalities {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0}, where each gi is a real polynomial. Pos-

itivstellensätze are results characterizing all polynomials, which are positive on K , in terms
of sums of squares and the polynomials gi used to describe K . Theorems about the exis-
tence of such representations have various applications, notably in problems of optimizing
polynomial functions on semialgebraic sets (see, for example, [9, 12–14]).

In case K is compact, Schmüdgen [33] has proved that any positive polynomial on K is
in the preordering generated by the gi’s, i.e., the set of finite sums of elements of the form
σeg

e1
1 · · · gem

m , where ei ∈ {0, 1} and each σe is a sum of squares of polynomials. Putinar
[27] has proved that, under a certain condition where the preordering can be replaced by
σ0 + σ1g1 + · · · + σmgm, where each σi is a sum of squares of polynomials.

If K is not compact, the above characterizations do not hold in general and can depend on
the choice of generators. In fact, Scheiderer [28] has shown that Schmüdgen’s Positivstel-
lensätz does not hold if K is not compact and dim K ≥ 3, or dim K = 2 and K contains
a two-dimensional cone. On the other hand, there exist non-compact semialgebraic sets K

of any dimension for which Schmüdgen’s Positivstellensätz (or even Putinar’s Positivstel-
lensätz) holds for polynomials, which are positive on K and satisfy certain extra conditions
(see [8, 15, 21, 24, 25, 28–30, 34]).

We also would like to note that both Schmüdgen’s and Putinar’s Positivstellensätz were
extended from the usual real polynomials to the real symmetric matrix polynomials or oper-
ator polynomials (see [3, 5, 10, 32]). Here and in the following, by a matrix polynomial, we
mean a polynomial whose coefficients are matrices of the same order. Equivalently, a matrix
polynomial is a matrix whose entries are all polynomials. The symmetricalness and posi-
tiveness of a matrix polynomial are defined point-wise. In particular, a positive semidefinite
real matrix polynomial is necessarily symmetric.

The aim of this paper is to extend the results obtained in [8] to matrix polynomials.
More precisely, via Newton polyhedra, we define and study (symmetric) matrix polynomi-
als, which are nondegenerate at infinity. From this, we construct a class of (not necessarily
compact) semialgebraic sets in R

n such that for each set K in the class, we have the follow-
ing two statements: (i) the space of symmetric matrix polynomials, whose eigenvalues are
bounded on K , is described in terms of the Newton polyhedron corresponding to the matrix
polynomials used to define K and is generated by a finite set of matrix monomials; and
(ii) a matrix version of Schmüdgen’s Positivstellensätz holds for matrix polynomials whose
eigenvalues are “strictly” positive and bounded on K .

Notation Throughout this paper, Z denotes the set of integer numbers, Z≥0 the set
of nonnegative integer numbers, and R

n the Euclidean space of dimension n. The
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corresponding inner product (resp., norm) in R
n is defined by 〈x, y〉 for any x, y ∈ R

n

(resp., ‖x‖ := √〈x, x〉 for any x ∈ R
n). We let R[x] denote the ring of real polynomials in

n indeterminates.
In what follows, we fix a positive integer number d. We will denote by Matd(R[x])

the ring of all d × d matrices with entries from R[x] (elements in this ring will be called
matrix polynomials) and by Symd(R[x]) the set of all symmetric matrix polynomials from
Matd(R[x]). The unit of Matd(R[x]) is the identity matrix Id .

Recall that a symmetric matrix A ∈ R
d×d is called positive semidefinite if 〈Av, v〉 ≥ 0

for all vectors v ∈ R
d . A is positive definite if it is positive semidefinite and invertible. For

symmetric matrices A and B of the same size, we write A � B (resp., A 	 B) to express
that A – B is positive semidefinite (resp., positive definite). Geometrically, A is positive
semidefinite if and only if all of its eigenvalues are nonnegative and A is positive definite if
and only if all of its eigenvalues are positive.

Given a symmetric matrix polynomial F ∈ Symd(R[x]) and a set K ⊂ R
n, we write

F � 0 (resp., F 	 0) on K if for all x ∈ K , the matrix F(x) is positive semidefinite (resp.,
the matrix F(x) is positive definite).

A subset M of Symd(R[x]) is said to be a quadratic module if Id ∈ M,M + M ⊂
M and AT MA ⊂ M for every A ∈ Matd(R[x]). The smallest quadratic module which
contains a given subset G of Symd(R[x]) will be denoted by MG . It consists of all finite
sums of elements of the form AT GA where G ∈ G ∪ {Id} and A ∈ Matd(R[x]). A subset
T of the set Symd(R[x]) is said to be a preordering if T is a quadratic module and the set
T ∩ R[x] · Id is closed under multiplication. The smallest preordering containing a given
set G ⊂ Symd(R[x]) will be denoted by TG .

2 Nondegeneracy of Matrix Polynomials

Let G := {G1, . . . , Gm} ⊂ Symd(R[x]). For each i = 1, . . . , m, we can write

Gi(x) =
∑

α∈Zn≥0

Ai,αxα

for some symmetric matrices Ai,α ∈ Symd(R). Then, we define

supp(G) :=
m⋃

i=1

{
α ∈ Z

n
≥0 | Ai,α = 0

}
.

The Newton polyhedron (at infinity) of G, denoted by �(G), is defined as the convex hull
in R

n of the set supp(G). The system G is said to be convenient if �(G) intersects each
coordinate axis in a point different from the origin 0 in R

n.
Given a nonzero vector q ∈ R

n, we define

�(q, �(G)) := min{〈q, α〉 : α ∈ �(G)},
�(q, �(G)) := {α ∈ �(G) : 〈q, α〉 = �(q, �(G))}.

We say that a subset � of �(G) is a face of �(G) if there exists a nonzero vector q ∈ R
n such

that � = �(q, �(G)). The dimension of a face � is defined as the minimum of the dimen-
sions of the affine subspaces containing �. The faces of �(G) of dimension 0 are called the
vertices of �(G). The Newton boundary (at infinity) of the system G, denoted by �∞(G), is
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defined as the union of all faces �(q, �(G)) for some q ∈ R
n with minj=1,...,n qj < 0. For

i = 1, . . ., m and � ∈ �∞(G), we denote by Gi,� the matrix polynomial
∑

α∈� Ai,αxα .
Let

ρ(x) :=
∑

α∈V (G)

|xα|,

where V (G) is the set of all vertices of �(G).

Remark 2.1 By the Tarski–Seidenberg theorem (see, for example, [1, 2]), it is easy to check
that ρ is a semialgebraic function on R

n. Furthermore, we can find a constant c > 0 such
that (see also [22, Remark 3.1])

c

⎛

⎜⎝
∑

α∈�(G)∩Zn
≥0

|xα|
⎞

⎟⎠ ≤ ρ(x) ≤
∑

α∈�(G)∩Zn
≥0

|xα| for all x ∈ R
n.

From now on for each A ∈ Symd(R), we denote by λ(A) the largest eigenvalue of A. It
is well known that

λ(A) = max{〈Av, v〉 | v ∈ R
n, ‖v‖ = 1}.

The following definition is inspired from the works of Gindikin [6, 7] and Mikhalov [17,
18].

Definition 2.1 We say that the system G := {G1, . . . , Gm} is nondegenerate (at infinity) if
and only if for any face � ∈ �∞(G),

max
i=1,...,m

λ(Gi,�(x)) > 0 for any x ∈ (R\{0})n.

Example 2.1 Let α1, . . . , αm be nonzero vectors in Z
n
≥0. Then, the system

{x2α1 · Id, . . . , x2αm · Id} ⊂ Symd(R)

is nondegenerate.

Lemma 2.1 There exists a constant c > 0 such that

max
i=1,...,m

λ(Gi(x)) ≤ cρ(x) for all x ∈ R
n.

Proof Take any x ∈ R
n and any i ∈ {1, . . . , m}. Let λ be an eigenvalue of Gi(x). By

definition, there exists a vector v ∈ R
n with ‖v‖ = 1 such that λ = 〈Gi(x)v, v〉. Write

Gi(x) = ∑
α Ai,αxα . Then,

|λ| = |〈Gi(x)v, v〉| ≤
∑

α

|〈Ai,αv, v〉| · |xα| ≤
∑

α

‖Ai,α‖ · |xα| ≤
(

max
α

‖Ai,α‖
)

·
∑

α

|xα|.

Since λ is an arbitrary eigenvalue of Gi(x), we get

max
i=1,...,m

λ(Gi(x)) ≤ max
i=1,...,m

[(
max

α
‖Ai,α‖

)
·
∑

α

|xα|
]

.

This, together with Remark 3, completes the proof.

We come now to the main result of this section.
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Theorem 2.1 The following two statements are equivalent:

(i) The system G := {G1, . . . , Gm} is nondegenerate;
(ii) There exist constants c > 0 and R > 0 such that

cρ(x) ≤ max
i=1,...,m

λ(Gi(x)) for all ‖x‖ ≥ R.

Proof (i) ⇒ (ii) By contradiction and using the Curve Selection Lemma at infinity ([19,
20]), we can find an analytic curve ϕ(s) = (ϕ1(s), . . . , ϕn(s)) for s ∈ (0, ε), such that

(a) ‖ϕ(s)‖ → +∞ as s → 0+; and
(b) ρ(ϕ(s)) � maxi=1,...,m λ(Gi(ϕ(s))) as s → 0+.

Let J := {j | ϕj ≡ 0} ⊂ {1, . . . , n}. By Condition (a), J = ∅. For j ∈ J,we can expand
the coordinate ϕj in terms of the parameter: say

ϕj (s) = x0
j sqj + higher-order terms in s,

where x0
j = 0 and qj ∈ Q. From Condition (a), we get minj∈J qj < 0.

Let RJ := {α = (α1, . . . , αn) ∈ R
n | αj = 0 for j ∈ J }. We first suppose that �(G) ∩

R
J = ∅. Then, for each α := (α1, . . . , αn) ∈ �(G), there exists an index j ∈ J such that

αj > 0, and so (ϕj (s))
αj ≡ 0. Hence,

ρ(ϕ(s)) =
∑

α∈V (G)

|ϕ(s)|α =
∑

α

⎛

⎝
∏

j∈J

|ϕj (s)|αj
∏

j ∈J

|ϕj (s)|αj

⎞

⎠ ≡ 0,

Gi(ϕ(s)) =
∑

α

Ai,αϕ(s)α =
∑

α

Ai,α

⎛

⎝
∏

j∈J

ϕj (s)
αj
∏

j ∈J

ϕj (s)
αj

⎞

⎠ ≡ 0,

which contradicts to (b). Therefore, �(G)∩R
J = ∅. Let � be the minimal value of the linear

function
∑

j∈J qjαj on �(G) ∩R
J , and let � be the (unique) maximal face1 of �(G) ∩R

J

where this function takes its minimal value. Then, � ∈ �∞(G) because minj∈J qj < 0.
Moreover, we can write

ρ(ϕ(s)) = ρ�(x0)s� + higher-order terms in s,

where x0 := (x0
1 , . . . , x0

n) and x0
j := 1 for j ∈ J . Notice that ρ�(x0) > 0. Hence,

ρ(ϕ(s)) � s� as s → 0+. (2.1)

Let i∗ ∈ {1, . . . , m} be an index such that

λ(Gi∗,�(x0)) = max
i=1,...,m

λ(Gi,�(x0)) > 0. (2.2)

By definition, there exists a vector v ∈ R
n with ‖v‖ = 1 such that

λ(Gi∗,�(x0)) = 〈Gi∗,�(x0)v, v〉.

1“maximal face” means with respect to the inclusion of faces.
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Hence, if we write Gi(x) =∑Ai,αxα , then we deduce successively

λ(Gi∗(ϕ(s))) ≥ 〈Gi∗(ϕ(s))v, v〉 =
∑

α

〈Ai∗,αv, v〉(ϕ(s))α

=
(
∑

α∈�

〈Ai∗,αv, v〉
)

s� + higher-order terms in s

= 〈Gi∗,�(x0)v, v〉s� + higher-order terms in s

= λ(Gi∗,�(x0))s� + higher-order terms in s.

Combining this with (2.1) and (2.2) and Condition (b), we get a contradiction.
(ii) ⇒ (i) By contradiction, suppose that there exists a face � ∈ �∞(G) and a point

x0 ∈ (R \ {0})n such that
max

i=1,...,m
λ(Gi,�(x0)) ≤ 0.

Let q := (q1, . . . , qn) be a nonzero vector in R
n,with minj=1,...,n qj < 0,such that � =

�(q, �(G)). We define the monomial curve ϕ : (0, 1) → R
n, s �→ (ϕ1(s), . . . , ϕn(s)),by

setting

ϕj (s) :=
{

x0
j sqj if qj = 0,

0 otherwise.

Then, ‖ϕ(s)‖ → +∞ as s → 0+. Moreover, we can write

ρ(ϕ(s)) = ρ�(x0)s� + higher-order terms in s,

where � := �(q, �(G)).
On the other hand, for i = 1, . . . , m, the functions

(0, 1) → R
n, s �→ λ(Gi(ϕ(s)),

are semialgebraic. By Monotonicity Lemma (see, for example, [1, 2]), these functions are
C1, and either constant or strictly monotone, for 0 < s � 1. Therefore, there exists an
index i∗ ∈ {1, . . . , m} such that

λ(Gi∗(ϕ(s))) = max
i=1,...,m

λ(Gi(ϕ(s))) for all 0 < s � 1.

Furthermore, if we write Gi(x) =∑α Ai,αxα , then we deduce successively

λ(Gi∗(ϕ(s))) = max‖v‖=1
〈Gi∗(ϕ(s))v, v〉 = max‖v‖=1

(
∑

α

〈Ai∗,αv, v〉(ϕ(s))α

)

= max
‖v‖=1

[(
∑

α∈�

〈Ai∗,αv, v〉(x0)α

)
s� + higher-order terms in s

]

≤ λ(Gi∗,�(x0))s� + higher-order terms in s.

Therefore, by the assumption (ii), we get

0 < cρ�(x0) ≤ λ(Gi∗,�(x0)) ≤ max
i=1,...,m

λ(Gi,�(x0)) ≤ 0,

which is impossible.

For any matrix A ∈ R
d×d , denote by r(A) the spectral radius of A, that is,

r(A) = max{|λ| | λ ∈ σ(A)},
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where σ(A) is the set of all eigenvalues of A. The following is an immediate application of
Theorem 2.1.

Corollary 2.1 Let G := {G1, . . . , Gm} ⊂ Symd(R[x]) be nondegenerate. Then, there exist
positive numbers c1, c2 and R such that

c1ρ(x) ≤ max
i=1,...,m

r(Gi(x)) ≤ c2ρ(x) for all ‖x‖ ≥ R.

Proof By Lemma 2.1 and Theorem 2.1, there exist positive numbers c1, R such that

c1ρ(x) ≤ max
i=1,...,m

λ(Gi(x)) for all ‖x‖ ≥ R.

Since λ(Gi(x)) ≤ r(Gi(x)) for every i = 1, 2, . . . , m, we get the first required inequality
in the statement.

On the other hand, similarly to the proof of Lemma 2.1, we can find a constant c2 > 0
such that

max
i=1,...,m

r(Gi(x)) ≤ c2ρ(x) for all x ∈ R
n.

The proof is complete.

3 Matrix Polynomials Having All Eigenvalues Bounded
on a Nondegenerate Semialgebraic Set

For a set K ⊂ R
n, we will denote by A(K) the set of matrix polynomials F ∈ Symd(R[x])

such that all eigenvalues of F are bounded on K, i.e.,

A(K) = {F ∈ Symd(R[x]) | ∃M > 0, M · Id ± F(x) � 0 ∀x ∈ K}.
A natural question is: how to check whether a symmetric matrix polynomial is in A(K)?
The answer is trivial when K is compact. The case of non-compact sets remains mainly
unsolved. In this section, we present a solution for semialgebraic sets defined by nondegen-
erate matrix polynomials.

To start with, notice that A(K) is not closed under multiplication because products of
symmetric matrices are not symmetric in general. Furthermore, the following observations
are clear.

Property 3.1 Let K,L be subsets of Rn. The following statements hold:

(i) If K ⊂ L, then A(L) ⊂ A(K);
(ii) A(K) = A(K);

(iii) A(K ∪ L) = A(K) ∩ A(L);
(iv) A(K) = Symd(R[x]) provided that K is bounded;
(v) Every root in Symd(R[x]) of a monic polynomial with coefficients in A(K) belongs
to A(K).

Here and in the following, K stands for the closure of K .
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Proof For (v), let F ∈ Symd(R[x]) be a root of a monic polynomial with coefficients in
A(K); that is,

FN +
N∑

i=1

AiF
N−i = 0

for some matrices Ai ∈ A(K). Let ci := supx∈K ‖Ai(x)‖ < +∞. For any x ∈ K , we have

‖FN(x)‖ =
∥∥∥∥∥

N∑

i=1

Ai(x)FN−i (x)

∥∥∥∥∥ ≤
N∑

i=1

‖Ai(x)‖‖F(x)‖N−i

≤
N∑

i=1

ci(max {‖F(x)‖, 1})N−i ≤
N∑

i=1

ci(max {‖F(x)‖, 1})N−1.

Hence,

‖F(x)‖ ≤
N∑

i=1

ci + 1 < ∞,

which implies that F ∈ A(K).

The next property states that a polynomial automorphism induces an isomorphism of
appropriate spaces.

Property 3.2 If � is a polynomial automorphism of Rn, then for any set K ⊂ R
n, we have

A(K) = �∗A(�(K)),

where �∗ is the isomorphism F �→ F ◦ � of Symd(R[x]).

Proof It suffices to note that a matrix polynomial F ∈ Symd(R[x]) belongs to A(�(K)) if
and only if F ◦ � belongs to A(K).

From now on, we let G := {G1, . . . , Gm} ⊂ Symd(R[x]) and consider the set

K := {x ∈ R
n | �i − Gi(x) � 0 for i = 1, . . . , m},

where �i ∈ Symd(R), i = 1, . . . , m. Since �i − Gi(x) � 0 can be presented as a system
of polynomial inequalities, K is a basic closed semialgebraic set. The crucial role in our
considerations is played by the following corollary, which follows from Theorem 2.1.

Corollary 3.1 If the system G := {G1, . . . , Gm} is nondegenerate, then there exists a
constant r > 0 such that

K ⊂ {x ∈ R
n | |xα| ≤ r for α ∈ V (G)}.

Proof By Theorem 2.1, there exist constants c > 0 and R > 0 such that

cρ(x) ≤ max
i=1,...,m

λ(Gi(x)) for all ‖x‖ ≥ R.

Hence, we have for all x ∈ K with ‖x‖ ≥ R,

ρ(x) ≤ 1

c
max

i=1,...,m
λ(Gi(x)) ≤ 1

c
max

i=1,...,m
λ(�i).



A Note on Nondegenerate Matrix Polynomials 769

Let

r := max

{
max‖x‖≤R

ρ(x),
1

c
max

i=1,...,m
λ(�i)

}
> 0.

Then, it is clear that

K ⊂ {x ∈ R
n | ρ(x) ≤ r} ⊂ {x ∈ R

n | |xα| ≤ r for α ∈ V (G)},
which completes the proof of the corollary.

In the rest of the paper, we will make the following assumptions: for all i = 1, . . . , m, it
holds that

(H1) Gi(0) = 0 (this can be achieved by replacing Gi by Gi − Gi(0)); and
(H2) the matrices �i ∈ Symd(R) are positive definite.

Let C(G) be the cone with vertex at the origin generated by the Newton polyhedron �(G)

of the system G, i.e.,

C(G) :=
⎧
⎨

⎩
∑

α∈V (G)

tαα | tα ≥ 0

⎫
⎬

⎭ .

The next result says that the space of symmetric matrix polynomials, whose eigenvalues are
bounded on K , can be described in terms of the Newton polyhedron corresponding to the
matrix polynomials used to define K .

Theorem 3.1 Assume that the system G = {G1, . . . , Gm} is nondegenerate. Let F ∈
Symd(R[x]), then the following statements are equivalent:

(i) supp(F ) ⊂ C(G);
(ii) F ∈ A(K), i.e., there exists a constant M > 0 such that

M · Id ± F(x) � 0 for all x ∈ K.

Proof We first remark from Lemma 2.1 and Theorem 2.1 that there exist positive constants
c1, c2, and R such that

c1ρ(x) ≤ max
i=1,...,m

λ(Gi(x)) ≤ c2ρ(x) for all ‖x‖ ≥ R. (3.1)

(i) ⇒ (ii) By definition, we have for all x ∈ K and all i ∈ {1, . . . , m},
λ(Gi(x)) ≤ λi,

where λi := λ(�i) is the largest eigenvalue of the matrix �i . It follows from (3.1) that
∑

α∈V (G)

|xα| = ρ(x) ≤ max
i=1,...,m

λi/c1 for all x ∈ K, ‖x‖ ≥ R.

Since supp(F ) ⊂ C(G), for each β ∈ supp(F ), we can find constants tα ≥ 0 such that
β =∑α∈V (G) tαα. Then,

|xβ |=|x
∑

α∈V (G) tαα|=
∏

α∈V (G)

|xα|tα ≤
∏

α∈V (G)

(
max

i=1,...,m
λi/c1

)tα

for all x ∈ K, ‖x‖≥R.
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It follows that
sup

β∈supp(F )

|xβ | ≤ c3 for all x ∈ K, ‖x‖ ≥ R

for some c3 > 0.
Now let us write F(x) =∑β Fβxβ for some symmetric matrices Fβ ∈ Symd(R). Take

any vector v ∈ R
n with ‖v‖ = 1. We have for all x ∈ K with ‖x‖ ≥ R,

|〈F(x)v, v〉| =
∣∣∣∣∣∣

∑

β

〈Fβv, v〉xβ

∣∣∣∣∣∣
≤
∑

β

|〈Fβv, v〉||xβ | ≤
⎛

⎝
∑

β

|〈Fβv, v〉|
⎞

⎠ c3.

Let

M := max
‖v‖=1

⎛

⎝
∑

β

|〈Fβv, v〉|
⎞

⎠ c3.

Then, we have

|〈F(x)v, v〉| ≤ M for all x ∈ K, ‖x‖ ≥ R and v ∈ R
n, ‖v‖ = 1.

This, together with the compactness of the ball {x ∈ R
n | ‖x‖ ≤ R}, proves (ii).

(ii) ⇒ (i) Suppose on the contrary that there exists β ∈ supp(F )\C(G). By the separation
theorem, there exists a nonzero vector q := (q1, . . . , qn) ∈ R

n such that

〈q, α〉 ≥ 0 > 〈q, β〉 for all α ∈ C(G). (3.2)

For simplicity, we put

� := �(q, �(F )), � := �(q, �(F )),

�′ := �(q, �(G)), �′ := �(q, �(G)).

Then, by (3.2), we have

� < 0 ≤ �′ and min
j=1,...,n

qj < 0.

In particular, by definition, �′ ∈ �∞(G).
On the other hand, the assumption that the matrices �i, i = 1, . . . , m, are positive

definite gives us a real number λ∗ > 0 such that

�i − λ∗ · Id 	 0 for all i = 1, . . . , m.

Furthermore, since Gi(0) = 0, i = 1, . . . , m, we have that 0 ∈ �(G) and so ρ�′(0) = 0.
Therefore, we can find a point x0 ∈ (R \ {0})n satisfying the following conditions:

ρ�′(x0) � 1

c2
λ∗ and F�(x0) ≡ 0. (3.3)

Consider the monomial curve

φ : (0, 1) → R
n, s �→

(
x0

1sq1 , . . . , x0
nsqn

)
.

We have ‖ϕ(s)‖ → +∞ as s → 0+ because minj=1,...,n qj < 0. Furthermore, a simple
calculation shows that

ρ(φ(s)) = ρ�′(x0)s�′ + higher-order terms in s.

Since �′ ≥ 0, it follows from the first inequality of (3.3) that

ρ(φ(s)) <
1

c2
λ∗ for all |s| � 1.
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Thanks to (3.1),

max
i=1,...,m

λ(Gi(φ(s))) < λ∗ for all |s| � 1.

Therefore, φ(s) ∈ K for |s| � 1.
On the other hand, the second condition of (3.3) gives us a vector v ∈ R

n, ‖v‖ = 1, such
that 〈F�(x0)v, v〉 = 0. Then, a simple calculation shows that

〈F(φ(s))v, v〉 = 〈F�(x0)v, v〉s� + higher-order terms in s.

It follows from the facts � < 0 and 〈F�(x0)v, v〉 = 0 that

lim
s→0+〈F(φ(s))v, v〉 = ∞,

which contradicts to the assumption that F ∈ A(K).

Corollary 3.2 Assume that the system G = {G1, . . . , Gm} is nondegenerate. Then, the
system G is convenient if and only if K is a compact set.

Proof Indeed, assume that the system G is convenient, i.e., the Newton polyhedron �(G)

intersects each coordinate axis at one point different from the origin 0 in R
n. By definition,

this is equivalent to the fact that C(G) = R
n
≥0. Let F(x) := (

∑n
j=1 x2

j ) · Id ∈ Symd(R[x]).
We have supp(F ) ⊂ C(G). By Theorem 3.1, F ∈ A(K). Consequently, K is a compact set.

Conversely, assume that the set K is compact but the system G is not convenient. By
definition, there exists a vector β ∈ R

n
≥0 \C(G). Then, by a similar argument as in the proof

of the implication (ii) ⇒ (i) in Theorem 2.1, we can construct a curve φ : (0, 1) → R
n such

that ‖ϕ(s)‖ → +∞ as s → 0+ and φ(s) ∈ K for all s sufficiently small, which contradicts
to the compactness of K .

As a direct consequence of Theorem 3.1, we get the following stability of A(K) (see
also [8, Lemma 3.1] and [11, Theorem 3.1]).

Corollary 3.3 Assume that the system G = {G1, . . . , Gm} is nondegenerate. Then, the
space of matrix polynomials which are bounded on the semialgebraic set

{x ∈ R
n | �i − Gi(x) � 0 for i = 1, . . . , m}

is independent on the positive define matrices �i for i = 1, . . . , m.

We say that the set A(K) ⊂ Symd(R[x]) is finitely generated if one can find a finite set
{ζ1, . . . , ζk} ⊂ A(K) such that for any matrix polynomial F ∈ A(K), there exists a matrix
polynomial G ∈ Symd(R[x]) such that F = G(ζ1, . . . , ζk).

Now, we can state a theorem on the structure of sets of matrix polynomials, whose
eigenvalues are bounded on nondegenerate semialgebraic sets in R

n. For related results, see
[11, Theorem 2.5], [16, Therorem 2.1], and [23].

Theorem 3.2 Assume that the system G = {G1, . . . , Gm} is nondegenerate. Then, the space
of matrix polynomials which are bounded on the semialgebraic set

{x ∈ R
n | �i − Gi(x) � 0 for i = 1, . . . , m}

is generated by the matrix monomials xα ·Id for α ∈ co({0}∪supp(G)), and hence is finitely
generated.
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Proof By Theorem 3.1, it suffices to show that there exists a finite set L ⊂ C(G) ∩ Z
n

satisfying the condition: for any β ∈ C(G) ∩ Z
n, there exist some constants tα ∈ Z≥0 for

α ∈ L such that β =∑α∈L tαα.
In fact, let k := dim C(G) ≤ n. Then, there exist cones C1, . . . , Cp and vectors

ωij ∈ Z
n
≥0 for i = 1, . . . , p, j = 1, . . . , k,such that:

– C(G) = ∪p

i=1Ci , dim Ci = k for i = 1, . . . , p;
– for each index i,the vectors ωi1, . . . , ωik are linearly independent and the greatest
common divisor of the coordinates of these vectors is equal to 1; and
– each cone Ci is generated by the vectors ωi1, . . . , ωik .

Next, we define the k-dimensional parallelepiped Pi to be the set of all α in R
n such that

α = c1ωi1 + · · · + ckωik

for some scalars cj with 0 ≤ cj ≤ 1. Then, it is easy to see, by a linear isomorphism, that
Ci and Pi , respectively, are identified to the cone R

k
≥0 and the cube [0, 1]k . Notice that

R
k
≥0 = {α + (t1, . . . , tk) | α ∈ [0, 1]k and tj ∈ Z≥0}.

Consequently, we have

Ci = {α + t1ωi1 + · · · + tkωik | α ∈ Pi and tj ∈ Z≥0}.
Hence, if we put Li := Pi ∩ Z

n, then

Ci ∩ Z
n = {α + t1ωi1 + · · · + tkωik | α ∈ Li and tj ∈ Z≥0}.

Clearly, the set L := ∪p

i=1Li has the desired properties.

Example 3.1 Let n = 2 and G = {±x · Id ,±xy · Id} ⊂ Symd(R[x, y]) and consider the
corresponding semialgebraic set

K = {(x, y) ∈ R
2 | Id ± x · Id � 0 and Id ± xy · Id � 0}.

By Theorem 3.2, it is easy to see that A(K) is generated by the matrix monomials x · Id and
xy · Id , i.e., A(K) = Symd(R[x, xy]). This example is inspired by [23, Example 3.10].

Example 3.2 Let d = 1 and n = 2. Take the Motzkin polynomial m(x, y) := 1+x2y2(x2+
y2 − 3) ∈ R[x, y] and consider the semialgebraic set

Kc := {(x, y) ∈ R
2 | c − m(x, y) ≥ 0},

where c is a real parameter. It is easy to check that the system G := {m−1} is nondegenerate
and m(0, 0) − 1 = 0. If c < 1, then Kc is a compact set, and hence A(Kc) = R[x, y]. If
c = 1, then the algebra A(Kc) does not admit a finite set of generators (see [11, Example
3.5] and [16, Example 3.2]). On the other hand, if c > 1, then we deduce from Theorem 3.2
that A(Kc) = R[xy, x2y, xy2] is finitely generated.

Example 3.3 Let d = n = 2 and consider Kc = {(x, y) |�c − G(x, y) � 0}, where c is a
real parameter,

G(x, y) =
(

x2y2 0
0 x2

)
and �c :=

(
1 0
0 c

)
.

By definition, the cone C(G) (with G := {G}) is the convex cone generated by the vectors
(1, 0) and (1, 1). Hence,

{F ∈ Sym2(R[x, y]) | supp(F ) ⊂ C(G)} = Sym2(R[x, xy]).
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The matrix �c has eigenvalues 1 and c. If c < 0,Kc = ∅ and so A(Kc) = Sym2(R[x, y]).
If c > 0, we can use Theorem 4.1 to get A(Kc) = Sym2(R[x, xy]). If c = 0, the set Kc is
the y-axis; hence, A(Kc) = Sym2(R[x, y]x + R).

Finally, we can see that A(K) is “absorbing” in the following sense.

Corollary 3.4 Suppose that G = {G1, . . . , Gm} is nondegenerate. Denoted by V the lin-
ear subspace of Rn spanned by the cone C(G). Then for any matrix polynomial F ∈
Symd(R[x]) with supp(F ) ⊂ V , there exists a vector β ∈ C(G) ∩ Z

n
≥0 such that

xβ · F ∈ A(K).

Proof Let F ∈ Symd(R[x]) be a matrix polynomial with supp(F ) ⊂ V . Assume that we
have proved the claim that: for each α ∈ V ∩Z

n
≥0, there exists β(α) ∈ C(G)∩Z

n
≥0 such that

α + β(α) ∈ C(G).

This, of course, implies that if we let β := ∑α∈supp(F ) β(α) ∈ C(G) ∩ Z
n
≥0, then α + β ∈

C(G) for all α ∈ supp(F ). By Theorem 3.1, xβ · F ∈ A(K).
So we are left with proving the claim. To this end, let α be an arbitrary vector in V∩Z

n
≥0.

Then, there exist numbers μi ∈ R and vectors αi ∈ C(G) ∩ Z
n
≥0 for i = 1, . . . , k, such that

α = μ1α
1 + · · · + μkα

k.

Take integers νi > 0 for i = 1, . . . , k, and let

γ := ν1α
1 + · · · + νkα

k ∈ C(G) ∩ Z
n
≥0.

Choose t ∈ Z≥0 large enough such that μi + tνi ≥ 0 for all i = 1, . . . k, and let β(α) := tγ .
Then, the vectors β(α) and α + β(α) belong to C(G) ∩ Z

n
≥0.

4 Positivstellensätze for Matrix Polynomials on Nondegenerate
Semialgebraic Sets

In this section, we establish a matrix version of Schmüdgen’s Positivstellensätz for matrix
polynomials whose eigenvalues are “strictly” positive and bounded on K . To do this, recall
that

K := {x ∈ R
n | �i − Gi(x) � 0 for i = 1, . . . , m}.

Definition 4.1 We say that the cone C(G) is unimodular if there exist n vectors
α1, . . . , αn ∈ C(G) ∩ Z

n
≥0 such that the following two conditions hold:

(a) det A = 1, where A := [α1, . . . , αn]; and
(b) C(G) is generated by α1, . . . , αn, i.e.,

C(G) =
⎧
⎨

⎩

n∑

j=1

tj α
j | tj ≥ 0

⎫
⎬

⎭ .
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Suppose that the cone C(G) is unimodular. Then, it is straightforward to show that for
any β ∈ C(G)∩ (Z≥0)

n, there are nonnegative integers t1, . . . , tn such that β =∑n
j=1 tj α

j .
As a consequence,

{F ∈ Symd(R[x]) | supp (F ) ⊂ C(G)} = Symd(R[xα1
, . . . , xαn ]).

Let us make a change of variables u := xA, that is uj = xαj
, j = 1, . . . , n, and u =

(u1, . . . , un). Then for any β ∈ C(G) ∩ Z
n
≥0, there is a representation

β =
n∑

j=1

tj α
j ,

for some nonnegative integers tj , j = 1, . . . , n; and so

xβ =
n∏

j=1

xtj αj =
n∏

j=1

(xαj

)tj =
n∏

j=1

(uj )
tj .

Consequently, for each i = 1, . . . , m, we can define a matrix polynomial G̃i ∈ Symd(R[u])
with the property that G̃i(x

A) = Gi(x) for all x ∈ R
n. Let

K̃ = {u ∈ R
n | �i − G̃i(u) � 0, i = 1, . . . , m}.

Lemma 4.1 Define the monomial mapping � : Rn → R
n by �(x) = xA. We have

(i) �(K) ⊂ K̃;
(ii) The restriction � : K ∩ (R \ {0})n −→ K̃ ∩ (R \ {0})n is one-to-one and onto. In
particular,

�(K ∩ (R \ {0})n) = �(K) ∩ (R \ {0})n = K̃ ∩ (R \ {0})n.

Proof Suppose that x ∈ K . Then G̃i(�(x)) = Gi(x), which implies (i).
If u ∈ (R \ {0})n, then x = uA−1

is again an element in (R \ {0})n and �(x) = u. Then
(ii) follows easily.

Recall that the preordering generated by the matrix polynomials �1 − G1, . . . , �m −
Gm, denoted by T{�1−G1,...,�m−Gm}, is defined to be the smallest quadratic module in
Symd(R[x]) which contains �1 − G1, . . . , �m − Gm and whose intersection with the
set R[x] · Id is closed under multiplication. By definition, every matrix polynomial in
T{�1−G1,...,�m−Gm} is positive semidefinite on K . The converse does not hold in general.
On the other hand, we have the following statement.

Theorem 4.1 Assume that the system G := {G1, . . . , Gm} is nondegenerate, the cone C(G)

is unimodular and that �(K) = K̃ . Let F ∈ A(K) be such that

inf
x∈K

λmin(F (x)) > 0,

where λmin(F (x)) is the smallest eigenvalue of F(x). Then,

F ∈ T{�1−G1,...,�m−Gm}.
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Proof Since G is nondegenerate, by Corollary 3.1, there exists a constant r > 0 such that

K ⊂ {x ∈ R
n | |xα| ≤ r for α ∈ V (G)}.

This, together with the assumptions that C(G) is unimodular and �(K) = K̃ , implies easily
that

K̃ := {u ∈ R
n |�i − G̃i(u) � 0, i = 1, . . . , m} ⊂ {u ∈ R

n | |uj | ≤ r̃ , j = 1, . . . , n}
for some r̃ > 0. Consequently, the set K̃ is compact.

On the other hand, by Theorem 3.1, we have supp(F ) ⊂ C(G) because of F ∈ A(K).
Since C(G) is unimodular, we can define a matrix polynomial F̃ ∈ Symd(R[u]) with the
property that F̃ ◦ �(x) = F(x) for all x ∈ R

n. We will show that F̃ 	 0 on K̃ . In fact, it
is clear that F̃ � 0 on K̃ because we have that F 	 0 on K and �(K) = K̃ . Assume that
there exists a point ã ∈ K̃ such that the smallest eigenvalue of F̃ (̃a) is equal to zero. There
are two cases to be considered.

Case 1 There exists a point a ∈ K such that ã = aA. By definition,

λmin(F (a)) = λmin(F̃ (̃a)) = 0,

which contradicts to the assumption.

Case 2 There is no point a ∈ K such that ã = aA. Then, by the hypothesis and Lemma
4.1, there exists a sequence {ak}k≥1 ⊂ K ∩ (R \ {0})n such that ãk := �(ak) = (ak)A ∈ K̃

for all k ≥ 1 and limk→∞ ãk = ã. Hence,

lim
k→∞ λmin(F (ak)) = lim

k→∞ λmin(F̃ ((ak)A)) = lim
k→∞ λmin(F̃ (̃ak)) = λmin(F̃ (̃a)) = 0,

which contradicts to the assumption.

Therefore, F̃ 	 0 on K̃ . By [5, Theorem 6], we get

F̃ ∈ T�1−G̃1,...,�m−G̃m
.

Notice from [4, Lemma 2] that

T{�1−G̃1,...,�m−G̃m} = M{�1−G̃1,...,�m−G̃m}∪(
∏

({�1−G̃1,...,�m−G̃m})′·Id ),

where
∏

({�1 − G̃1, . . . , �m − G̃m})′ is the set of all finite products of elements from

({�1 − G̃1, . . . , �m − G̃m})′ = {p̃T (�i − G̃i)p̃ | i = 1, . . . , m, and p̃ ∈ (R[u])d}.
By definition, F ∈ T{�1−G1,...,�m−Gm}.

Define the function θ : Rn → R by

θ(u) := min
i=1,...,m

λmin(�i − G̃i(u)),

where λmin(�i − G̃i(u)) is the smallest eigenvalue of the matrix �i − G̃i(u). Then, it is
easy to see that the function θ is continuous and satisfies

K̃ = {u ∈ R
n | θ(u) ≥ 0}.

Corollary 4.1 Assume that the system G = {G1, . . . , Gm} is nondegenerate, the cone C(G)

is unimodular and 0 is not a local maximum value of θ . Let F ∈ A(K) such that

inf
x∈K

λmin(F (x)) > 0,
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where λmin(F (x)) is the smallest eigenvalue of F(x). Then,

F ∈ T{�1−G1,...,�m−Gm}.

Proof By Theorem 4.1, it suffices to show that K̃ is equal to the closure of K̃ ∩ (R \ {0})n.
To this end, let u be an element in K̃ which does not belong to (R \ {0})n. Then, θ(u) ≥ 0.

We first assume that θ(u) > 0. By continuity, there exists a real number η > 0 such that

θ(v) > 0 for all v ∈ B(u, η),

where B(u, η) denotes the open ball centered at u with radius η. In particular, B(u, η) ⊂ K̃ .

Note that B(u, ε) ∩ (R \ {0})n = ∅ for all ε ∈ (0, η). Therefore, u ∈ K̃ ∩ (R \ {0})n.
We now assume that θ(u) = 0. Since 0 is not a local maximum value of θ , we can find a

sequence {uk} ⊂ R
n tending to u as k → ∞ such that θ(uk) > 0. By the previous argument,

uk belongs to the closure of K̃ ∩ (R \ {0})n, and so does u.

We illustrate here some examples where we can or cannot apply Corollary 4.1.

Example 4.1 Let d = n = 2 and c be a positive number, and consider the set

Kc := {(x, y) ∈ R
2 | cI2 − G(x, y) � 0},

where

G(x, y) =
(

2 3
3 5

)
x8y4 +

(
2 3
3 5

)
x8 +

(
0 −1
−1 −3

)
x4y4 +

(
2 5
5 11

)
x2y2.

Then, the support of G is {(8, 4), (8, 0), (4, 4), (2, 2)}. The cone C(G) is the convex cone
generated by (1, 0), (1, 1) and is equal to {(α+β, β) | α ≥ 0, β ≥ 0}, where G is a singleton
{G}. Hence, C(G) is unimodular. The set V (G) of vertices of the Newton polygon of G

consists four points {(8, 4), (8, 0), (4, 4), (2, 2)}. Making change of variables u = x, v =
xy, (i.e., �(x, y) = (x, xy)), we have

K̃c := {(u, v) ∈ R
2 | cI2 − G̃(u, v) � 0},

where

G̃(u, v) =
(

2 3
3 5

)
u4v4 +

(
2 3
3 5

)
u8 +

(
0 −1
−1 −3

)
v4 +

(
2 5
5 11

)
v2.

A direct calculation shows that K̃c is a subset of {(u, v) ∈ R
2 | u8 ≤ c, v2 ≤ c}, and hence,

is compact. Furthermore,

K̃c = �(Kc) ∪ {(0, v) | max{v4 − v2, −v4 + 3v2} ≤ c}.
If c = 2, K̃c = �(Kc) and in this case, we can apply Corollary 4.1. However, if c = 2, then
the function

v �→ max{v4 − v2,−v4 + 3v2},
attains its local minimum at the points v = 0, −√

2,
√

2 and its local minimal values are
0,2. Hence, 0 is a local maximal value of the function θ in Corollary 4.1, where

θ(u, v) = 2 − max{u4v4 + u8 + v4 − v2, u4v4 + u8 − v4 + 3v2}.
In addition, K̃2 contains and does not equal �(K2). Indeed, (0,

√
2) belongs to K̃2 while it

does not lie in �(K2). Hence, we can not apply Corollary 4.1 in this case.
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Example 4.2 Let K be a logarithmic polyhedron determined by

K := {x ∈ R
n | (r2

1 − x2α1
) · Id � 0, . . . , (r2

m − x2αm

) · Id � 0}
where ri > 0 and αi ∈ Z

n
≥0 for i = 1, . . . , m.

It is easy to see that the system G := {x2α1 · Id, . . . , x2αm · Id} is nondegenerate and its
Newton polyhedron has even vertices. Suppose that C(G) is unimodular, F ∈ Symd(R[x])
is bounded on K , and that

inf
x∈K

λmin(F (x)) > 0.

By Theorem 4.1, F belongs to the preordering generated by the matrix polynomials(
r2

1 − x2α1
)

· Id , . . . ,
(
r2
m − x2αm) · Id in Symd(R[x]). Moreover, by a similar argument

as in the proof of [8, Theorem 2.2]), we can show that F belongs to the quadratic module

generated by
(
r2

1 − x2α1
)

· Id , . . . ,
(
r2
m − x2αm) · Id in Symd(R[x]).

In the rest of this paper, for simplicity, we write T instead of T{�1−G1,...,�m−Gm}-the
preordering generated by �1 − G1, . . . , �m − Gm in Symd(R[x]). Set

T ∨ = {L : Symd(R[x]) → R |L is linear, L (Id) = 1,L (T ) ≥ 0},
T ∨∨ = {F ∈ Symd(R[x]) |L (F ) ≥ 0, ∀L ∈ T ∨},
T Sat = {F ∈ Symd(R[x]) | F(x) � 0, ∀x ∈ K}.

Clearly, T ⊂ T ∨∨. Furthermore, we have the following statement.

Corollary 4.2 Assume that the system G = {G1, . . . , Gm} is nondegenerate, the cone C(G)

is unimodular, and that K̃ = �(K). Then,

A(K) ∩ T Sat ⊂ T ∨∨.

Proof Let F ∈ A(K) ∩ T Sat and take any ε > 0. We have F + ε · Id ∈ A(K) and
λmin(F (x) + ε · Id) ≥ ε for all x ∈ K . By Theorem 4.1, F + ε · Id belongs to T . Hence for
all L ∈ T ∨,

L (F ) + ε = L (F + ε · Id) ≥ 0,

so by taking ε → 0, we get L (F ) ≥ 0. Therefore, F ∈ T ∨∨.

We conclude the paper by the following remark.

Remark 4.1 Let � : Rn → R
n be a polynomial isomorphism. Let K1,K2 be two semialge-

braic sets in R
n such that K1 = �(K2). If K2 is determined by a nondegenerate system of

matrix polynomials, then the results obtained in this paper hold also for K1.
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8. Hà, H.V., Ho, T.M.: Positive polynomials on nondegenerate basic semi-algebraic sets. Adv. Geom. 16(4),

497–510 (2016)
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