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Abstract Let r, s be positive numbers. We define a new class of operator (r, s)-convex
functions by the following inequality

f
([

λAr + (1 − λ)Br
]1/r

)
≤ [

λf (A)s + (1 − λ)f (B)s
]1/s

,

where A,B are positive definite matrices and for any λ ∈ [0, 1]. We prove the Jensen,
Hansen-Pedersen, and Rado type inequalities for such functions. Some equivalent condi-
tions for a function f to become operator (r, s)-convex are established.
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1 Introduction

Let Mn denote the space of n × n complex matrices. Let M+
n and M

sa
n denote the posi-

tive and the self-adjoint parts of Mn, respectively. For self-adjoint matrices (or Hermitian
matrices) A,B ∈ Mn the notation A ≤ B means that B − A ∈ M

+
n . The spectrum of a

matrix A ∈ Mn is denoted by σ(A). For a real-valued function f and a self-adjoint matrix
A ∈ Mn, the value f (A) is understood by means of the functional calculus.

Let us recall some important types of convex functions in convex analysis and optimiza-
tion. A positive-valued function f on some interval K ⊂ R is said to be:

– convex, if f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y);
– log-convex, if f (λx + (1 − λ)y) ≤ f (x)λf (y)1−λ;
– harmonic convex, if f (λx + (1 − λ)y) ≤ (λf (x)−1 + (1 − λ)f (y)−1)−1.

If inequalities are reversed, then we have the corresponding types of concave functions.
Fix a positive number r . Let K be some interval in R

+ (in this paper, an interval in R
+

may be open, closed or half-closed). Then (λxr + (1 − λ)yr)1/r ∈ K for all x, y ∈ K and
λ ∈ [0, 1].

In [7], the authors consider the notion of r-convex function as follows. Let r be a positive
real number and K be some interval in R

+. A function f : K → R
+ is said to be r-convex

(or belong to PC(K)) if

f
([

λxr + (1 − λ)yr
]1/r

)
≤ λf (x) + (1 − λ)f (y)

for all x, y ∈ K and λ ∈ (0, 1).
In [4], the authors consider the notion of s-convex function by the following condition:

f (λx + (1 − λ)y) ≤ [
λf (x)s + (1 − λ)f (y)s

]1/s
,

for all x, y ∈ K and λ ∈ (0, 1).
These notions of convexity are used to define the corresponding notions of operator

convexity, namely operator r-convex and operator s-convex. The aim of this paper is to
introduce the notion of operator (r, s)-convex functions, which generalize both notions
above. Namely, the notion of r-convexity in [7] is the same as (r, 1)-convexity and the
notion of s-convexity in [4] is the same as (1, s)-convexity.

Let us first formulate a general approach to the theory of means. A scalar mean M of
two positive numbers is a map from R

+ × R
+ to R

+ such that:

1) M(x, x) = x for every x ∈ R
+;

2) M(x, y) = M(y, x) for every x, y ∈ R
+;

3) If x < y, then x < M(x, y) < y;
4) If x < x0 and y < y0,then M(x, y) < M(x0, y0);
5) M(x, y) is continuous;
6) M(tx, ty) = tM(x, y) (t, x, y ∈ R

+).

Definition 1.1 Let K be an interval in R
+ and M, N be two scalar means on K . A non-

negative, continuous function f is called MN-convex on K if

f (M(x, y)) ≤ N(f (x), f (y)), (1.1)

for any x, y ∈ K . This definition covers all types of convexity listed above.
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Replacing numbers by matrices in the above inequalities, we have the notions of operator
convex functions. The definition of operator convex functions is as follows.

Definition 1.2 A continuous function f defined on an interval K ⊂ R
+ is said to be matrix

convex of order n if for any Hermitian matrices A and B of order n with spectra in K and
for any λ ∈ [0, 1],

f (λA + (1 − λ)B) ≤ λf (A) + (1 − λ)f (B). (1.2)

If f is matrix convex for any dimension of matrices, then it is called operator convex.

Operator convex functions are very important in matrix analysis and quantum informa-
tion theory. The class of operator log-convex functions was studied by Hiai and Ando [1]
and got fully characterized as operator decreasing functions.

Now, for a pair X = (A1, A2) of Hermitian matrices with spectra in K and a function f ,
we denote f (X) = (f (A1), f (A2)). For a pair of positive numbers W = (ω1, ω2) we set
W2 := ω1 + ω2 and define the weighted matrix r-power mean M [r](X,W) to be

M [r](X,W) :=
[

1

W2
(ω1A

r
1 + ω2A

r
2)

]1/r

.

Next, we would like to introduce the main class of convex functions in this work.

Definition 1.3 Let r, s be arbitrary numbers, and K be an interval in R
+. A continuous

function f : K → (0, ∞) is said to be operator (r, s)-convex if

f (M [r](X,W)) ≤ M [s](f (X),W), (1.3)

where X,W, f (X),M [r](X,W) are defined as above.
If the inequality (1.3) is reversed, f is called operator (r, s)-concave.

Remark 1.4 Notice that the operator r-convexity (or operator PC(K) convexity) introduced
in [7] is the same as the operator (p, h)-convexity in [3] with h being the identity function,
or as the operator (r, 1)-convexity in Definition 1.3 for s = 1.

The motivations of this work is the paper of Hiai and Audenaert [2] in which the authors
investigated conditions on p and q for the validity of the matrix inequality between the
matrix power means (

Ap + Bp

2

)1/p

≤
(

Aq + Bq

2

)1/q

.

They showed that this inequality holds if and only if p, q satisfy one of the following
conditions:

– p = q;
– 1 ≤ p < q;
– q < p ≤ −1;
– p ≤ −1, q ≥ 1;
– 1/2 ≤ p < 1 ≤ q;
– p ≤ −1 < q ≤ −1/2.

Based on Hiai and Audenaert’s results, one can describe all the power functions that are
operator (r, s)-convex on R

+. Indeed, fix a positive real number α and define the function
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f (x) = xα . Let r and s be two positive real numbers such that s ≥ 1 and αs
r

∈ [1, 2], the

function t
αs
r is operator convex, and t1/s is operator monotone. Then, we have

f (M [r]) = (M [r])α =
{[

1

W 2
(ω1A

r
1 + ω2A

r
2)

]1/r
}α

=
{[

1

W2
(ω1A

r
1 + ω2A

r
2)

]αs/r
}1/s

≤
[

1

W2
(ω1A

αs
1 + ω2A

αs
2 )

]1/s

=
(

1

W2

[
ω1f (A1)

s + ω2f (A2)
s
])1/s

= M [s](f (X),W).

Thus, the power function xα with sα
r

∈ [1, 2] is an operator (r, s)-convex function for s ≥ 1.
In the case s ≥ 1 and αs

r
≤ 1, the power function xα is operator (r, s)-concave.

Other examples of operator (r, s)-convex functions are given by F. Hiai as follows. For
s, r > 0 and for a function f : [0, ∞) → R

+, we denote fs,r (x) = [f (x1/r )]s . Then, by
replacing Ar, Br with A, B, the inequality (1.3) has the form

[
fs,r

(
A + B

2

)]1/s

≤
[

fs,r (A) + fs,r (B)

2

]1/s

. (1.4)

Therefore, if s ≥ 1, a sufficient condition for (1.4) to hold is that fs,r is operator convex.
For example, when fs,r (x) = x log x, then f (x) = r1/s(xr log x)1/s . Hence, (1.4) holds for
f (x) = r1/s(xr log x)1/s with r > 0 and s ≥ 1. On the other hand, if 0 < s ≤ 1, then the
operator convexity of fs,r is a necessary condition for (1.4) to hold. Also, for any s > 0, the
numerical convexity of fs,r is a necessary condition.

We have seen that the class of operator (r, s)-convex functions is rich enough and con-
tains many well-known classes of operator functions. In this paper, we study some basic
properties of operator (r, s)-convex functions. We also prove the Jensen, Hansen-Pedersen,
and Rado type inequalities for them. Some equivalent conditions for a function f to become
operator (r, s)-convex are also provided.

2 Some Basic Properties of Operator (r, s)-Convex Functions

Proposition 2.1 Let f be a continuous function on an interval K ⊂ R
+ and 1 ≤ s ≤ s ′.

Then

(i) If f is operator (r, s)-convex then f is also operator (r, s′)-convex;
(ii) If f is operator (r, s′)-concave then f is also operator (r, s)-concave.

Proof Let f be operator (r, s)-convex and s ≤ s′. Then, the function t s/s
′

is operator
concave. We have

M [s′] (f (X), W)

=
[

ω1

W2
f (A1)

s′ + ω2

W2
f (A2)

s′
]1/s′

=
([

ω1

W2
f (A1)

s′ + ω2

W2
f (A2)

s′
]s/s′)1/s

≥
[

ω1

W2
f (A1)

s + ω2

W2
f (A2)

s

]1/s

= M [s](f (X),W) ≥ f (M [r](X,W)).
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Thus, the function f is operator (r, s′)-convex. The second property can be proved similarly.

Remark 2.2 We notice the following relationship between operator r-convexity (or operator
PC(K) convexity) and (r, s)-convexity.

– If f is operator (r, s)-convex and s ∈ [1/2; 1], then f is operator r-convex. Indeed, since
t1/s is operator convex for 1/s ∈ [1; 2], we have

f
([

αAr + (1− α)Br
]1/r

)
≤ [

αf (A)s + (1− α)f (B)s
]1/s ≤ αf (A) + (1− α)f (B).

– If f is operator r-convex and s ≥ 1, then the function f is operator (r, s)-convex. We have

f
([

αAr + (1 − α)Br
]1/r

)
≤ αf (A) + (1 − α)f (B)

= α
[
f (A)s

]1/s + (1 − α)
[
f (B)s

]1/s

≤ [
αf (A)s + (1 − α)f (B)s

]1/s
.

Therefore, f is operator (r, s)-convex.

Thus, the operator (r, s)-convexity is stronger than operator r-convexity if s ∈ [1/2; 1],
and we have a converse statement if s ≥ 1.

Proposition 2.3 Let f, g be continuous on K and r, s > 0. Then, the following assertions
hold

(i) If f is operator (r, s)-convex and α > 0, so is αf ;
(ii) If f, g are operator (r, s)-convex and s ∈ [1/2, 1], then f + g is operator r-convex.

Proof (i) trivially follows from the definition of f . We provide a proof of (ii). Let f, g be
operator (r, s)-convex functions and s ∈ [1/2, 1]. Then, the function t1/s is operator convex.
We have

(f + g)(M [r](X,W))

= f (M [r](X,W)) + g(M [r](X,W))

= f

([
ω1

W2
Ar

1 + ω2

W2
Ar

2

]1/r
)

+ g

([
ω1

W2
Ar

1 + ω2

W2
Ar

2

]1/r
)

≤
([

ω1

W2
f (A1)

s + ω2

W2
f (A2)

s

])1/s

+
([

ω1

W2
g(A1)

s + ω2

W2
g(A2)

s

])1/s

≤ ω1

W2
f (A1) + ω2

W2
f (A2) + ω1

W2
g(A1) + ω2

W2
g(A2)

= ω1

W2
(f + g)(A1) + ω2

W2
(f + g)(A2).

Thus, (f + g) is operator r-convex.

Remark 2.4 If s does not belong to [1/2, 1], the function (f + g) may not be operator r-
convex even when f and g are operator r-convex. Indeed, for s = 2, the function t1/2 is
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operator concave. It is easy to see that f (x) = x
2r
3 and g(x) = x

5r
6 are operator (r, s)-

convex. At the same time, we have

(f + g)

([
ω1

W2
Ar

1 + ω2

W2
Ar

2

]1/r
)

= f

([
ω1

W2
Ar

1 + ω2

W2
Ar

2

]1/r
)

+ g

([
ω1

W2
Ar

1 + ω2

W2
Ar

2

]1/r
)

=
([

ω1

W2
Ar

1 + ω2

W2
Ar

2

]4/3
)1/s

+
([

ω1

W2
Ar

1 + ω2

W2
Ar

2

]5/3
)1/s

=
(

ω1

W2
Ar

1 + ω2

W2
Ar

2

)2/3

+
(

ω1

W2
Ar

1 + ω2

W2
Ar

2

)5/6

≥ ω1

W2
A

2r/3
1 + ω2

W2
A

2r/3
2 + ω1

W2
A

5r/6
1 + ω2

W2
A

5r/6
2

= ω1

W2
(f + g)(A1) + ω1

W2
(f + g)(A2).

Therefore, (f + g) is operator r-concave.

3 Jensen and Rado Type Inequalities

We shall fix the following notations, which will be used throughout this section.
Let X = (A1, . . . , An) be an n-tuple of Hermitian matrices with spectra in K . For

a function f , we denote f (X) = (f (A1), . . . , f (An)). For an n-tuple of positive num-
bers W := (ω1, ω2, . . . , ωn), we set Wn = ∑n

i=1 ωi . The weighted matrix r-power mean

M
[r]
n (X,W) is defined by

M [r]
n (X,W) :=

(
1

Wn

n∑
i=1

ωiA
r
i

)1/r

In the following theorem, we prove the Jensen type inequality for operator (r, s)-convex
functions.

Theorem 3.1 Let r, s be two arbitrary positive numbers such that s ≥ 1, and let n be a
natural number. If a function f is operator (r, s)-convex, then

f (M [r]
n (X,W)) ≤ M [s]

n (f (X),W). (3.1)

When f is operator (r, s)-concave, the inequality (3.1) is reversed.

Proof We prove the theorem by mathematical induction. With n = 2, the inequality holds
by Definition 1.3. Suppose that (3.1) holds for n − 1, i.e.,

f (M
[r]
n−1(X,W)) ≤ M

[s]
n−1(f (X),W).
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We prove (3.1) for n. We have

f
(
M [r]

n (X,W)
)

= f

⎛
⎝

[
1

Wn

n∑
i=1

ωiA
r
i

]1/r
⎞
⎠

= f

⎛
⎝

[
Wn−1

Wn

n−1∑
i=1

ωi

Wn−1
Ar

i + ωn

Wn

Ar
n

]1/r
⎞
⎠

≤
⎡
⎣Wn−1

Wn

f

⎛
⎝

[
n−1∑
i=1

ωi

Wn−1
Ar

i

]1/r
⎞
⎠

s

+ ωn

Wn

f (An)
s

⎤
⎦

1/s

≤
(

Wn−1

Wn

[
n−1∑
i=1

ωi

Wn−1
f (Ai)

s

]
+ ωn

Wn

f (An)
s

)1/s

=
[

ωi

Wn

n∑
i=1

f (Ai)
s

]1/s

= M [s]
n (f (X), W) .

The last inequality follows from the inductive assumption and the operator monotonicity
of the function x1/s .

Now, for positive numbers ai (i = 1, . . . , n), let us denote the arithmetic mean and the
geometric mean as follows:

An(a) = 1

n

n∑
i=1

ai, Gn(a) = n
√

a1a2 . . . an.

Recall that the Rado inequality has the following form:

n(An(a) − Gn(a)) ≥ (n − 1)(An−1(a) − Gn−1(a)).

In the following theorem, we prove the Rado type inequality for operator (r, s)-convex
functions.

Theorem 3.2 Let r and s be two positive numbers and f a continuous function on K . For
n ∈ N we denote

an = Wn

(
M [s]

n [f (X), W ]s − f (M [r]
n (X,W))s

)
. (3.2)

Then, the following assertions hold

(i) If f is operator (r, s)-convex then {an}∞n=1 is an increasing monotone sequence;
(ii) If f is operator (r, s)-concave then {an}∞n=1 is an decreasing monotone sequence.
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Proof We have

f
(
M [r]

n (X,W)
)s = f

⎛
⎝

[
1

Wn

n∑
i=1

ωiA
r
i

]1/r
⎞
⎠

s

= f

⎛
⎝

[
Wn−1

Wn

n−1∑
i=1

ωi

Wn−1
Ar

i + ωn

Wn

Ar
n

]1/r
⎞
⎠

s

≤ Wn−1

Wn

f

⎛
⎝

[
n−1∑
i=1

ωi

Wn−1
Ar

i

]1/r
⎞
⎠

s

+ ωn

Wn

f (An)
s .

Consequently,

Wnf
[
M [r]

n (X,W)
]s ≤ ωnf (An)

s + Wn−1f
[
M

[r]
n−1(X,W)

]s

.

Therefore,

an = Wn

(
1

Wn

n∑
i=1

ωif (Ai)
s − f

[
M [r]

n (X,W)
]s

)

=
n∑

i=1

ωif (Ai)
s − Wnf

[
M [r]

n (X,W)
]s

≥
n∑

i=1

ωif (Ai)
s − ωnf (An)

s − Wn−1f
[
M

[r]
n−1(X,W)

]s

=
n−1∑
i=1

ωif (Ai)
s − Wn−1f

[
M

[r]
n−1(X,W)

]s

= Wn−1

(
M

[s]
n−1 [f (X, W)]s − f

[
M

[r]
n−1(X,W)

]s) = an−1.

4 Some Equivalent Conditions to Operator (r, s)-Convexity

Denote by In and On the identity and zero elements of Mn, respectively.

Theorem 4.1 Let f : K → R
+ be an operator (r, s)-convex function. Then for any pair of

positive definite matrices A,B with spectra in K and for matrices C, D such that CC∗ +
DD∗ = In,

f ((CArC∗ + DBrD∗)1/r ) ≤ (Cf(A)sC∗ + Df(B)sD∗)1/s . (4.1)

Proof From the condition CC∗ + DD∗ = In it implies that we can find a unitary block
matrix

U :=
[

C D

X Y

]

when the entries X and Y are chosen properly. Then

U

[
Ar On

On Br

]
U∗ =

[
CArC∗ + DBrD∗ CArX∗ + DBrY ∗
XArC∗ + YBrD∗ XArX∗ + YBrY ∗

]
.
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It is easy to check that

1

2
V

[
A11 A12
A21 A22

]
V + 1

2

[
A11 A12
A21 A22

]
=

[
A11 On

On A22

]

for V =
[ −I On

On I

]
. This implies that the matrix

Z := 1

2
V U

[
Ar On

On Br

]
U∗V +1

2
U

[
Ar On

On Br

]
U∗ =

[
CArC∗+DBrD∗ On

On XArX∗+YBrY ∗
]

is block diagonal, where

[
A11 A12
A21 A22

]
= U

[
Ar On

On Br

]
U∗.

Consequently, Z11 = CArC∗ +DBrD∗ and f (Z
1/r

11 ) = f ((CArC∗ +DBrD∗)1/r ). On
account of the (r, s)-operator convexity of f , we have

f (Z1/r ) = f

((
1

2
V U

[
Ar On

On Br

]
U∗V + 1

2
U

[
Ar On

On Br

]
U∗

)1/r
)

≤
[

1

2
f

(
V U

[
A On

On B

]
U∗V

)s

+ 1

2
f

(
U

[
A On

On B

]
U∗

)s] 1
s

=
[

1

2
V Uf

([
A On

On B

])s

U∗V + 1

2
Uf

([
A On

On B

])s

U∗
] 1

s

=
[

Cf (A)sC∗ + Df (B)sD∗ On

On Xf (A)sX∗ + Yf (B)sY ∗
] 1

s

,

where 1
2V UU∗V + 1

2UU∗ = In. Therefore,

f (Z
1/r

11 ) = f
(
[CArC∗ + DBrD∗]1/r

)
≤ [

Cf (A)sC∗ + Df (B)sD∗] 1
s .

In the following theorem, we obtain several equivalent conditions for a function to
become operator (r, s)-convex. The last condition was adapted from Tikhonov’s definition
of operator convex functions [6].

Theorem 4.2 Let f be a non-negative function on the interval K such that f (0) = 0. Then
the following statements are equivalent:

(i) f is an operator (r, s)-convex function;
(ii) for any contraction ||V || ≤ 1 and for any positive semi-definite matrix A with spectrum
in K ,

f ((V ∗ArV )1/r ) ≤ (V ∗f (A)sV )1/s;
(iii) for any orthogonal projection Q and for any positive semi-definite matrix A with
σ(A) ⊂ K ,

f ((QArQ)1/r ) ≤ (Qf(A)sQ)1/s;
(iv) for any natural number k and for any family of positive operators {Ai}ki=1 in a finite

dimensional Hilbert space H such that
∑k

i=1αiAi = IH (the identity operator in H ) and
for arbitrary numbers xi ∈ K ,

f

⎛
⎝

[
k∑

i=1

αix
r
i Ai

]1/r
⎞
⎠ ≤

(
k∑

i=1

αif (xi)
sAi

)1/s

. (4.2)
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Proof The implication (ii) ⇒ (iii) is obvious. Let us prove the implication (i) ⇒ (ii).
Suppose that f is an operator (r, s)-convex function. Then by Theorem 4.2, we have

f (CArC∗ + DBrD∗)1/r ≤ [Cf (A)sC∗ + Df (B)sD∗]1/s,

where CC∗ + DD∗ = In. Since ||V || ≤ 1, we can choose W such that V V ∗ + WW ∗ = In.
Choosing B = On, we have that f (B) = f (On) = f (0)On = On. Hence,

f ((V ∗ArV )1/r ) = f ((V ∗ArV + W ∗BrW)1/r )

≤ [V ∗f (A)sV + W ∗f (B)sW ]1/s = [V ∗f (A∗)sV ]1/s .

(iii) ⇒ (i). Let A and B be self-adjoint matrices with spectra in K and 0 < λ < 1. Define

C :=
[

A On

On B

]
, U :=

[ √
λIn −√

1 − λIn√
1 − λIn

√
λIn

]
, Q :=

[
In On

On On

]
.

Then C = C∗ with σ(C) ⊂ K,and U is unitary, Q is an orthogonal projection and

U∗CrU =
[

λAr + (1 − λ)Br −√
λ − λ2Ar + √

λ − λ2Br

−√
λ − λ2Ar + √

λ − λ2Br (1 − λ)Ar + λBr

]

is Hermitian. Since

QU∗CrUQ =
[

λAr + (1 − λ)Br On

On On

]

and ||UP || ≤ 1, hence,

f

([
λAr + (1 − λ)Br On

On On

])1/r

= f ((QU∗CrUQ)1/r ) ≤ [
QU∗f (C)sUQ

]1/s

=
[ [λf (A)s + (1 − λ)f (B)s]1/s On

On On

]
.

Therefore, f (λAr + (1 − λ)Br)1/r ≤ [λf (A)s + (1 − λ)f (B)s]1/s .
(iv) ⇒ (i). Let X, Y be two arbitrary self-adjoint operators on H with spectra in K , and

α ∈ (0, 1). Let X = ∑n
i=1 λiPi and Y = ∑n

j=1 μjQj be the spectral decomposition of X

and Y , respectively. Then, we have

α

n∑
i=1

Pi + (1 − α)

n∑
j=1

Qj = IH .

On account of (4.2), we have

f
(
[αAr + (1 − α)Br ]1/r

)

= f

⎛
⎜⎝

⎡
⎣α

n∑
i=1

λr
i Pi + (1 − α)

n∑
j=1

μr
jQj

⎤
⎦

1/r
⎞
⎟⎠

≤
⎛
⎜⎝αf

⎡
⎣

(
n∑

i=1

λr
i

)1/r
⎤
⎦

s

Pi + (1 − α)f

⎡
⎢⎣

⎛
⎝

n∑
j=1

μr
j

⎞
⎠

1/r
⎤
⎥⎦

s

Qj

⎞
⎟⎠

1/s

=
⎡
⎣αf

(
n∑

i=1

λiPi

)s

+ (1 − α)f

⎛
⎝

n∑
j=1

μjQj

⎞
⎠

s⎤
⎦

1/s

≤ [
αf (A)s + (1 − α)f (B)s

]1/s
.
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(i) ⇒ (iv). By the Neumark theorem [5], there exists a Hilbert space H larger than H

and a family of mutually orthogonal projections Pi in H such that
∑k

i=1 Pi = IH and
αiAi = PP iP |H(i = 1, 2, . . . , k), where P is the projection from H onto H . Then, we
have

f

⎛
⎝

(
k∑

i=1

αix
r
i Ai

)1/r
⎞
⎠ = f

⎛
⎝

(
k∑

i=1

xr
i PP iP |H

)1/r
⎞
⎠ = f

⎛
⎝

[
P

k∑
i=1

xr
i PiP |H

]1/r
⎞
⎠

≤
⎛
⎝P

[
f

k∑
i=1

xiPi

]s

P |H
⎞
⎠

1/s

=
(

P

k∑
i=1

f (xi)
sPiP |H

)1/s

=
(

k∑
i=1

Pf(xi)
sPiP |H

)1/s

=
(

k∑
i=1

f (xi)
sPP iP |H

)1/s

=
(

k∑
i=1

αif (xi)
sAi

)1/s

.
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