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Abstract
We prove in the case of cosmological models for the Einstein-Vlasov-scalar field system
with Gowdy symmetry, that the solutions exist globally in the past. The sources of the
equations are generated by a distribution function and a scalar field, subject to the Vlasov
and the wave equations respectively. The result is generalized for the case of T 2 symmetry.
Using previous results, we deduce geodesic completeness.
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1 Introduction

The question of global existence solutions of Einstein equations with matter or not is very
important in general relativity. Here, for long, the practice has been to study existence
of solutions under symmetry assumptions. Spacetimes with Gowdy or T 2 symmetry have
received much attention by different authors for many years, see [1, 3, 8, 11, 15] and the
references therein.
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In this paper, we prove past global existence, with respect to a geometrically defined time,
for Einstein equations coupled to the Vlasov and non-linear wave equations. In the surface
symmetry case with the Vlasov and linear scalar field, we have shown in [12] (without any
restriction on the data) and [13] global existence in the past time direction. The symmetry
assumption here is the Gowdy and T 2 one, and thereby we extend respectively Andréasson’s
result in [1] and Smulevici’s one in [11] for the Vlasov case. Andréasson’s result was the first
result to provide a global foliation in the contracting and expanding direction of a spacetime
containing both matter and gravitational waves. In that paper, Andréasson generalized in the
two time directions (contracting and expanding) the Moncrief result for the vacuum case.
His method of proof is inspired by a result in [3] for vacuum spacetimes admitting a T 2

isometry group acting on T 3 space-like surfaces. Gowdy spacetimes are a special case of
these spacetimes. Andréasson proves that T 3 ×R spacetimes with Gowdy symmetry admit
global foliations by conformal coordinates in the contracting direction.

We extend the result in [1] by introducing a scalar field. It can be seen as a step towards
certain questions of physical interest. In recent years, cosmological models with accelerated
expansion have become a very active research topic in response to astronomical observa-
tions [10]. The easiest way to obtain models with accelerated expansion is to introduce a
positive cosmological constant (see [2] and the references therein). A more sophisticated
and generalized way is to introduce a scalar field with non-vanishing potential. This is our
case.

There are three types of time coordinates which have been studied in the inhomogeneous
Einstein-Vlasov system case: constant mean curvature, areal, and conformal. A constant
mean curvature time coordinate t is one where each hypersurface of constant time has con-
stant mean curvature and on each hypersurface of this kind the value of t is the mean
curvature of that slice. In the case of areal coordinates, the time coordinate is a function of
the area of the surfaces of symmetry. In some papers of the relevant literature, it is taken to
be proportional to the area. In the case of conformal coordinates, the metric is conformally
flat on the manifold Q which is the quotient of spacetime by the symmetry group. Q is a
two-dimensional Lorentzian manifold.

Now consider the past maximal globally hyperbolic development of data on an initial
hypersurface with Gowdy or T 2 symmetry (which includes plane symmetry). Using con-
formal coordinates and geometrical arguments as in [1, 3], we prove that along any past
inextendible timelike curve, the time coordinate R = t , which is the area of the symme-
try orbits, tends to a constant value R0 = 0, independent of the choice of the curve. This
was also proved in the case of T 2-symmetric spacetimes with only the Vlasov matter by
Weaver in [15] with results generalized later in some direction by Smulevici in [11]. Con-
formal coordinates have advantages for the simplification of estimations of solutions. By a
long chain of geometrical arguments as in [3], one deduces the global foliations in the past
time direction of the spacetime by areal coordinates system.

Now, we recall the formulation of the Einstein-Vlasov-scalar field system. The spacetime
is a four-dimensional manifold M , with local coordinates (xλ) = (t, xi) on which x0 = t

denotes the time and (xi) the space coordinates. Greek indices always run from 0 to 3, and
Latin ones from 1 to 3. On M , a Lorentzian metric g is given with signature (−,+, +, +).
We consider a self-gravitating collisionless gas and restrict ourselves to the case where all
particles have the same rest mass m ≥ 0, and move forward in time. We denote by (pλ) the
momenta of the particles. The conservation of the quantity gλβpλpβ requires that the phase
space of the particle is the seven-dimensional submanifold

PM = {gλβpλpβ = −m2; p0 > 0}
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of T M which is coordinatized by (t, xi , pi). The energy-momentum tensor is given by

Tλβ = −
∫
R3

fpλpβ | g |1/2 dp1dp2dp3

p0
+ ∇λφ∇βφ −

[
1

2
∇νφ∇νφ + V (φ)

]
gλβ (1.1)

where the distribution function of the particles is a non-negative real-valued function
denoted by f and defined on PM , pλ = gλβpβ , |g| denotes the modulus of determinant of
the metric g, a scalar field φ is a real-valued C∞ function on M, and V ∈ C∞(R+) is a
function such that V (0) = V0 > 0, V ′(0) = 0 and V ′′(0) > 0 (see [9]).

The Einstein field equations

Rλβ − 1

2
Rgλβ = 8πTλβ (1.2)

should be coupled to the Vlasov equation (matter equation for f ) and to the wave equation
(matter equation for φ), which are respectively

∂tf + pi

p0
∂xi f − 1

p0
�i

βγ pβpγ ∂pi f = 0 (1.3)

∇λ∇λφ − V ′(φ) = 0. (1.4)

As a consequence, the energy-momentum tensor is divergence-free since the Bianchi iden-
tities imply that ∇λGλβ = 0 where Gλβ = Rλβ − 1

2Rgλβ and the contribution of f to the
energy-momentum tensor is divergence-free [4].

The outline of the paper follows in the large that of [1]. In Section 2, we present the
equations in Gowdy symmetry with conformal coordinates. The main theorem is formulated
in Section 3. The proof of the theorem is based on a series of estimations using a light-cone
argument. These are important to obtain bounds on the field components, the matter terms,
and their derivatives. In Section 4, we extend the previous results for the T 2 -symmetry case.

2 The Gowdy Case

We refer to [1, 7], or [8] for details on the notion of Gowdy symmetry. There are several
choices of spacetime manifolds compatible with Gowdy symmetry. Here, we restrict our
attention to the T 3 case. Spacetimes admitting a T 2 isometry group acting on T 3 space-like
surfaces are more general than the Gowdy spacetimes: both families admit two commuting
killing vectors, but in the Gowdy case the additional condition is that the twists are zero. The
dynamics of the matter is governed by the Vlasov and the non-linear wave equations. The
Vlasov equation models a collisionless system of particles which follow the geodesics of
spacetime. We now consider a solution of the Einstein-Vlasov-scalar field system where all
unknowns are invariant under this symmetry. We write the system in conformal coordinates.
The circumstances under which coordinates of this type exist are discussed in [2] and the
references therein. In such coordinates, the metric g takes the form

ds2 = −e2(μ−U)dt2 + e2(μ−U)dθ2 + e2U(dx + Ady)2 + R2e−2Udy2, (2.1)

where μ, U , R, and A are unknown real functions of t and θ variables. R is periodic in
θ with period 1. Here, the timelike coordinate t locally labels spatial hypersurfaces of the
spacetime. The scalar field is a function of t and θ . Using the results of [1], the complete
Einstein-Vlasov-scalar field system can be written in the following form:
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The Einstein-matter constraint equations:

U2
t + U2

θ + e4U

4R2

(
A2

t + A2
θ

)
+ Rθθ

R
− μtRt

R
− μθRθ

R
= −e2(μ−U)ρ, (2.2)

2UtUθ + e4U

2R2
AtAθ − Rtθ

R
− μtRθ

R
− μθRt

R
= e2(μ−U)J1. (2.3)

The Einstein-matter evolution equations:

Utt − Uθθ = UθRθ

R
− UtRt

R
+ e4U

2R2

(
A2

t −A2
θ

)
+ 1

2
e2(μ−U)(ρ−P1+P2−P3), (2.4)

Att − Aθθ = AtRt

R
− AθRθ

R
+ 4 (AθUθ − AtUt ) + 2Re2μ−4US23, (2.5)

Rtt − Rθθ = Re2(μ−U)(ρ − P1), (2.6)

μtt −μθθ =U2
θ −U2

t + e4U

4R2
(A2

t −A2
θ )−e2(μ−U)P3− A2

R2
e2(μ+U)P2− 2A

R
e2μS23 (2.7)

φtt − φθθ = −Rt

R
φt + Rθ

R
φθ − e2(μ−U)V ′(φ). (2.8)

The Vlasov equation:

∂f

∂t
+ v1

v0

∂f

∂θ
−

[
(μθ − Uθ)v

0 + (μt − Ut)v
1 − e2UAθ

R

v2v3

v0

+ Uθ

v0
((v3)2 − (v2)2) − Rθ

R

(v3)2

v0

]
∂f

∂v1
−

[
Uθ

v1v2

v0
+ Utv

2
]

∂f

∂v2

−
[(

Rt

R
−Ut

)
v3−

(
Uθ − Rθ

R

)
v1v3

v0
+ e2Uv2

R

(
At +Aθ

v1

v0

)]
∂f

∂v3
= 0. (2.9)

Since all the particles have proper mass m, the variables vα are related to the canonical
momentum variables pα by the relations

v0 = eμ−Up0, v1 = eμ−Up1, v2 = eUp2 + AeUp3, v3 = Re−Up3,

so that
v0 =

√
m2 + (v1)2 + (v2)2 + (v3)2.

Remark 2.1 If m > 0 then p0 > 0 and v0 > 0.
Case m = 0: let I be the maximal existence interval of solution s �−→ (xα(s), pα(s)) of
the geodesic equations

dxα

ds
= pα; dpα

ds
= −�α

βλp
βpλ. (2.10)

Take s0 ∈ I such that p0
0 = √

g00(s0, θ(s0))

√
gij (s0, θ(s0))p

i
0p

j

0 > 0. Then since

p̃ = (p1, p2, p3) �→ p0 =
√

g00(s0, θ(s0))

√
gij (s0, θ(s0))pipj

is continuous on p̃0 = (p1
0, p

2
0, p

3
0), we can find a neighborhood W of p̃0 such that

(p̃ ∈ W) ⇒
(

p0 >
p0
0

2
> 0

)
.

Finally, either m > 0 or m = 0, we have p0 > 0, i.e., v0 > 0.
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The matter terms are then defined by

ρ(t, θ) = −g00T00(t, θ) =
∫
R3

f (t, θ, v)v0dv + 1

2
e−2(μ−U)(φ2

t + φ2
θ ) + V (φ),

J1(t, θ) = −g11T01(t, θ) =
∫
R3

f (t, θ, v)v1dv − e−2(μ−U)φtφθ ,

P1(t, θ) = g11T11(t, θ) =
∫
R3

f (t, θ, v)
(v1)2

v0
dv + 1

2
e−2(μ−U)(φ2

t + φ2
θ ) − V (φ),

P2(t, θ) = e−2UT22(t, θ) =
∫
R3

f (t, θ, v)
(v2)2

v0
dv + 1

2
e−2(μ−U)(φ2

t − φ2
θ ) − V (φ),

P3(t, θ) =
∫
R3

f (t, θ, v)
(v3)2

v0
dv + 1

2
e−2(μ−U)(φ2

t − φ2
θ ) − V (φ),

S23(t, θ) =
∫
R3

f (t, θ, v)
v2v3

v0
dv,

and

T33(t, θ) = A2e2UP2 + R2e−2UP3 + 2ARS23.

We prescribe initial data at time t = t0 > 0:

f (t0, θ, v) = f0(θ, v), μ(t0, θ) = μ0(θ), μt (t0, θ) = μ1(θ),

R(t0, θ) = R0(θ), Rt (t0, θ) = R1(θ), U(t0, θ) = U0(θ), Ut (t0, θ) = U1(θ),

A(t0, θ) = A0(θ), At (t0, θ) = A1(θ), φ(t0, θ) = φ0(θ), φt (t0, θ) = φ1(θ)

3 TheMain Theorem

We begin this important section by specifying the regularity properties and the local in time
existence result which we require.

Definition 3.1 Let I ⊂]0, ∞[ be an interval and (t, θ) ∈ I × R.
a) f ∈ C∞(I × R

2) is regular if f (t, θ + 1, v) = f (t, θ, v) for (t, θ, v) ∈ I × R
2, f ≥ 0

and suppf (t, θ, .) is compact uniformly in θ and locally uniformly in t .
b) μ (or R, U , A) ∈ C2(I × R) is regular, if μ(t, θ + 1) = μ(t, θ).
c) ρ (or Pk , J ) ∈ C1(I × R) (k = 1, 2, 3) is regular, if ρ(t, θ + 1) = ρ(t, θ).
d) φ ∈ C2(I × R) is regular, if φ(t, θ + 1) = φ(t, θ).

Theorem 3.2 Given initial data for (1.1)–(1.4), there is a maximal globally hyperbolic
development (M, g, f, φ) of the data which is unique up to isometry.

The proof is as in [5, 6]. This important result (which is a local existence in time solution
for an associated hyperbolic system) will be used in this paper. However, it does not yield
any conclusion concerning global existence in time directions. Our attention is concentrated
only on the existence of global solutions in the past time direction for any initial data. This
is an extension of Choquet’s result for the hyperbolic system.

Remark 3.3 (M, g, f, φ) is unique up to isometry means that if (M ′, g′, f ′, φ′) is another
maximal globally hyperbolic development, then there is a diffeomorphism ϕ : M → M ′
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such that ϕ∗g′ = g, ϕ∗f ′ = f , ϕ∗φ′ = φ and ϕ ◦ i = i′, where i and i′ are the embeddings
of T 3 into M and M ′ respectively.

Theorem 3.4 Let (T 3, μ0, μ1, A0, A1, U0, U1, f0, φ0, φ1) be regular initial data that sat-
isfy the constraints (2.2)–(2.3) where the metric is coordinatized as in (2.1). Let (g, f, φ)

be the local regular solution that corresponds to the initial data and ]T , t0] be the maximal
interval of existence. There exists a globally hyperbolic spacetime (M, g, f, φ) such that

(i) M = [0, t0[×T 3,
(ii) (g, f, φ) satisfies the Einstein-Vlasov-scalar field system in areal coordinates,
(iii) (M, g, f, φ) is isometrically diffeomorphic to the maximal globally hyperbolic devel-
opment of the initial data (T 3, μ0, μ1, A0, A1, U0, U1, f0, φ0, φ1).

In order to extend the local existence in time to the global existence, it is sufficient to
obtain uniform bounds on the field components, the distribution function, the scalar field,
and all their derivatives on a finite time interval [t1, t2) on which the local solution exists.
This means that the past maximal development of initial data in terms of conformal coor-
dinates has t → −∞ as long as R stays bounded away from zero, and using geometrical
arguments as in [1], we have a proof of the theorem.

Let us introduce the null vector fields ∂τ := 1√
2
(∂t − ∂θ ), ∂ξ := 1√

2
(∂t + ∂θ ). Then

Fτ := 1√
2
(Ft − Fθ) and Fξ := 1√

2
(Ft + Fθ ) for any function F of variables t and θ .

Step 1 Monotonicity of R and bounds on its first derivatives.

After some calculation, the constraints (2.2) and (2.3) give respectively

√
2∂θRξ = −Re2(μ−U)(ρ − J1) − 2RU2

ξ − e4U

2R
A2

ξ + 2μξRξ , (3.1)

√
2∂θRτ = Re2(μ−U)(ρ + J1) + 2RU2

τ + e4U

2R
A2

τ − 2μτRτ . (3.2)

Since |J1| ≤ ρ and R > 0, it follows from (3.1) and (3.2) that

∂θRξ <
√
2μξRξ , (3.3)

∂θRτ > −√
2μτRτ . (3.4)

If Rξ (t, θ) = 0 for some t ∈]t1, t0] and θ ∈ R, then by the periodicity ofR with respect to θ

and Gronwall’s lemma applied on (3.3), 0 = Rξ (t, θ +1) < Rξ (t, θ)exp(
∫ θ+1
θ

√
2μξ ) = 0,

a contradiction. Thus, Rξ �= 0 on ]t1, t0] × S1.
Similarly, (3.4) yields the same assertion for Rτ . This implies that the quantities Rξ , Rτ

have each a definite sign. It follows that the quantity gαβ∂xαR∂xβ R = g00R2
t + g11R2

θ =
− 1

2e
2(μ−U)RξRτ does not change sign (it is strictly positive or strictly negative). Since R

is periodic and continuous in θ , there must exist points where Rθ = 0, hence the quantity
above is negative everywhere (g00R2

t < 0). Thus, ∇R is timelike. This means that Rt is non
zero everywhere. Our choice of time corresponds to contracting T 2 orbits so that Rt > 0
and |Rθ | < Rt .

Next, we show that Rt and |Rθ | are bounded into the past. Using (2.6) and the fact that
ρ ≥ p1,

∂τRξ = R

2
e2(μ−U)(ρ − P1) ≥ 0 (3.5)
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and

∂ξRτ = R

2
e2(μ−U)(ρ − P1) ≥ 0. (3.6)

It follows that if we start at any point (t0, θ0) on the initial surface, we obtain

d

ds
Rξ (s, θ + t − s) = ∂tRξ − ∂θRξ = √

2∂τRξ (s, r + t − s) ≥ 0.

After integration on [t, t0],
Rξ (t, θ) ≤ Rξ (t0, θ + t − t0).

Similarly,

Rτ (t, θ) ≤ Rτ (t0, θ − t + t0).

These yield
√
2Rt(t, θ) ≤ Rξ (t0, θ + t − t0) + Rτ (t0, θ − t + t0) ≤ sup

θ∈S1
(Rξ + Rτ )(t0, θ).

We conclude that Rt is bounded into the past and |Rθ | is also bounded. Consequently, R is
uniformly bounded to the past of the initial surface.

Step 2 Bounds on U , A, μ, φ, and their first derivatives.

We use the light-cone argument and Gronwall’s lemma in this step. The functions
involved in this case are quadratic and defined by

X = 1

2
R(U2

t + U2
θ ) + e4U

8R
(A2

t + A2
θ ) + 1

2
R(φ2

t + φ2
θ ) + φ2, (3.7)

Y = RUtUθ + e4U

4R
AtAθ + Rφtφθ . (3.8)

Using (2.4), (2.5), and (2.8) we find

∂τ (X + Y ) = −1

2
Rξ

(
U2

t − U2
θ + e4U

4R2
(−A2

t + A2
θ )

)
+

(
Rτ

2
− Rt√

2

)
φ2

t

+
(

Rτ

2
+ Rθ√

2

)
φ2

θ + 2φφτ − R√
2
(φt + φθ )e

2(μ−U)V ′(φ) (3.9)

+R

2
Uξe

2(μ−U)(ρ − P1 + P2 − P3) + e2U

2R
Aξe

2(μ−U)S23,

and

∂ξ (X − Y ) = −1

2
Rτ

(
U2

t − U2
θ + e4U

4R2
(−A2

t + A2
θ )

)
+

(
Rξ

R
− Rt√

2

)
φ2

t

+
(

Rξ

R
− Rθ√

2

)
φ2

θ + 2φφξ − R√
2
(φt − φθ )e

2(μ−U)V ′(φ) (3.10)

+R

2
Uτ e

2(μ−U)(ρ − P1 + P2 − P3) + e2U

2R
Aτe

2(μ−U)S23.
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Integrating each of the above equations along null paths starting at (t1, θ) and ending at the
initial t0−surface, and adding the results we obtain

X(t1, θ) = 1

2
(X + Y )(t0, θ − (t0 − t1)) + 1

2
(X − Y )(t0, θ + (t0 − t1))

−1

2

∫ t0

t1

[K1(s, θ − (s − t1)) + K2(s, θ + (s − t1))] ds (3.11)

−1

2

∫ t0

t1

[
(UξT1)(s, θ − (s − t1)) + (UτT1)(s, θ + (s − t1))

]
ds

−1

2

∫ t0

t1

[(
e2U

2R
AξT2

)
(s, θ − (s − t1)) +

(
e2U

2R
AτT2

)
(s, θ + (s − t1))

]
ds,

where

K1 = −1

2
Rτ

(
U2

t − U2
θ + e4U

R2

(
−A2

t + A2
θ

)
− φ2

t − φ2
θ

)

− Rt√
2
φ2

t + Rθ√
2
φ2

θ + 2φφτ − R√
2
(φt + φθ )e

2(μ−U)V ′(φ),

K2 = −1

2
Rξ

(
U2

t − U2
θ + e4U

R2

(
−A2

t + A2
θ

)
− φ2

t − φ2
θ

)

− Rt√
2
φ2

t − Rθ√
2
φ2

θ + 2φφξ − R√
2
(φt − φθ )e

2(μ−U)V ′(φ),

T1 = R

2
e2(μ−U)(ρ − P1 + P2 − P3),

T2 = e2(μ−U)S23.

From the expression of the matter terms and the fact that V (φ) > 0, we deduce that

ρ − P1 − P2 − P3 =
∫
R3

1

v0
f dv − e−2(μ−U)(φ2

t − φ2
θ ) + 4V (φ),

i.e.,
P1 + P2 + P3 ≤ ρ + e−2(μ−U)φ2

t

and
P2 + P3 ≤ ρ − P1 + e−2(μ−U)(φ2

t − φ2
θ ) − 4V (φ).

In another way
2|S23| ≤ P2 + P3 − e−2(μ−U)(φ2

t − φ2
θ ) + 2V (φ),

therefore

|T2| = e2(μ−U)|S23| ≤ 1

2
e2(μ−U)(ρ − P1). (3.12)

Since ρ −P1 −P2 +P3 ≥ 0 (i.e., P2 −P3 ≤ ρ −P1) and ρ −P1 +P2 −P3 ≥ 0, we deduce
that

0 ≤ ρ − P1 + P2 − P3 ≤ 2(ρ − P1)

and
T1 ≤ Re2(μ−U)(ρ − P1). (3.13)

In another way for k = 2, 3,

e2(μ−U)Pk ≤ e2(μ−U)(ρ − P1) + 1

2
φ2

t . (3.14)
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Without loss of generality, choosing V (φ) such that V (φ) = V0exp(φ2), we obtain

|φξ e
2(μ−U)V ′(φ)| = 2|φξφ|e2(μ−U)V (φ) ≤ 1

2
(φ2

ξ + φ2)e2(μ−U)(ρ − P1)

and

|φτ e
2(μ−U)V ′(φ)| = 2|φτφ|e2(μ−U)V (φ) ≤ 1

2
(φ2

τ + φ2)e2(μ−U)(ρ − P1).

For any t ∈ (t1, t0), Eqs. (3.5) and (3.6) give respectively after integration

Rξ (t0, θ + t0−t) − Rξ (t, θ) = 1

2

∫ t0

t

[Re2(μ−U)(ρ − P1)](s, θ + s − t)ds, (3.15)

Rτ (t0, θ−t0 + t) − Rτ (t, θ) = 1

2

∫ t0

t

[Re2(μ−U)(ρ − P1)](s, θ−s + t)ds. (3.16)

It follows from Step 1 that the right hand sides of the two equalities (3.15), (3.16) are
uniformly bounded. Consequently, on (t1, t0), we obtain from (3.12), (3.13) the uniform
bound of ∫ t0

t

T1(s, θ ± (s − t))ds;
∫ t0

t

|T2|(s, θ ± (s − t))ds

and (for some constant C) the estimations∫ t0

t

[
1

2
(φ2

ξ + φ2)Re2(μ−U)(ρ − P1)

]
(s, θ + s − t)ds ≤ C sup

[t1,t0]
X(t, θ), (3.17)

∫ t0

t

[
1

2
(φ2

τ + φ2)Re2(μ−U)(ρ − P1)

]
(s, θ − s + t)ds ≤ C sup

[t1,t0]
X(t, θ). (3.18)

We can deduce that

∫ t0

t1

|Uξ |T1(s, θ − s + t1)ds ≤
∫ t0

t1

2

√
X

R
T1(s, θ − s + t1)ds ≤ C sup

[t1,t0]

√
X(t, θ), (3.19)

∫ t0

t1

|Uτ |T1(s, θ + s − t1)ds ≤
∫ t0

t1

2

√
X

R
T1(s, θ + s − t1)ds ≤ C sup

[t1,t0]

√
X(t, θ), (3.20)

∫ t0

t1

e2U

2R
|Aξ ||T2|(s, θ − s+ t1)ds ≤

∫ t0

t1

2

√
X

R
|T2|(s, θ−s + t1)ds ≤C sup

[t1,t0]

√
X(t, θ),(3.21)

∫ t0

t1

e2U

2R
|Aτ ||T2|(s, θ + s− t1)ds ≤

∫ t0

t1

2

√
X

R
|T2|(s, θ+s−t1)ds ≤C sup

[t1,t0]

√
X(t, θ), (3.22)

∫ t0

t1

|K1|(s, θ − s + t1)ds ≤ C

∫ t0

t1

X(s, θ)ds + C sup
[t1,t0]

√
X(t, θ), (3.23)

∫ t0

t1

|K2|(s, θ + s − t1)ds ≤ C

∫ t0

t1

X(s, θ)ds + C sup
[t1,t0]

√
X(t, θ). (3.24)

So the identity (3.11) now implies

sup
θ

X(t, θ) ≤ 4 sup
θ

X(t0, θ) + C sup
[t1,t0]×S1

√
X(t, θ)

+C sup
[t1,t0]×S1

X(t, θ) + C

∫ t0

t1

sup
θ

X(s, θ)ds.
(3.25)
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Using Gronwall’s lemma, we conclude as in Step 2 of [1] that sup
θ

X(s, θ) is uniformly

bounded on (t1, t0), leading to bounds on U , A, φ, V (φ), and their first derivatives. The
bounds on μ and its first derivatives are obtained in a similar way since (2.7) can be written
as

∂τμξ = U2
θ − U2

t + e4U

4R2
(A2

t − A2
θ ) − e2(μ−U)

(
P3 + A2

R2
e4UP2 + 2A

R
e2US23

)
(3.26)

or equivalently

∂ξμτ = U2
θ − U2

t + e4U

4R2
(A2

t − A2
θ ) − e2(μ−U)

(
P3 + A2

R2
e4UP2 + 2A

R
e2US23

)
. (3.27)

Using inequalities (3.12), (3.14) and the fact that the integral along null paths for the quan-
tity Re2μ−2U(ρ − P1) is bounded to the past of the initial surface, we conclude that the
integrals along the null paths for the matter terms in the right hand sides of (3.26)–(3.27) are
bounded since A, U , φ, and their first derivatives are bounded. We obtain that |μξ | and |μτ |
are bounded, and therefore μt =

√
2
2 (μτ + μξ ), μθ =

√
2
2 (−μτ + μξ ), and μ are bounded.

Step 3 Bound on the support of the momentum.

A solution f to the Vlasov equation is given by

f (t, θ, v) = f0(�(t0, t, θ, v), V (t0, t, θ, v)),

where � and V are solutions to the characteristic system

d�

ds
= V 1

V 0
,

dV 1

ds
= −(μθ − Uθ)V

0−(μt −Ut)V
1+ Uθ

(V 2)2

V 0
−

(
Uθ − Rθ

R

)
(V 3)2

V 0
+ Aθ

R
e2U

V 2V 3

V 0
,

dV 2

ds
= −UtV

2 − Uθ

V 1V 2

V 0
,

dV 3

ds
= −

(
Rt

R
− Ut

)
V 3 +

(
Uθ − Rθ

R

)
V 1V 3

V 0
− e2U

R

(
At + Aθ

V 1

V 0

)
V 2,

with �(t, t, x, v) = θ and V (t, t, x, v) = v. Since ||f ||∞ ≤ ||f0||∞, the control of

Q(t) := sup
{
| v | : ∃(s, θ) ∈ [t, t0) × S1 : f (t, θ, v) �= 0

}

and previous steps give bounds on the matter quantities ρ, Pk , (k = 1, 2, 3) and S23. The
distribution function has compact support on the initial surface and therefore V k(t0), k =
1, 2, 3 is bounded. Since |V k| ≤ V 0, k = 1, 2, 3, the Gronwall lemma applied to the
characteristic system gives uniform bounds on |V k(t)| and it follows that Q(t) is uniformly
bounded on (t1, t0].

Step 4 Bounds on the second-order derivatives of R and φ.

From previous steps, the field components and all their first derivatives are bounded, and
the matter quantities are all bounded. We deduce respectively from (2.2), (2.3), and (2.6)
the uniform bound of Rθθ , Rtθ , and Rtt as long as R stays bounded away from zero.
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Let B = ∂θ (Rφτ ) and D = ∂θ (Rφξ ), then

φtθ =
√
2

2R
(B + D) − Rθ

R
φt (3.28)

and

φθθ =
√
2

2R
(−B + D) − Rθ

R
φt . (3.29)

After some calculations and using (3.28), (3.29),

Bξ = 1

2

[(
Rθθ − R2

θ

R

)
φt +

(
RtRθ

R
− Rtθ

)
φθ + Rξ

R
B − Rτ

R
D

]

−
[(

μθ − Uθ + Rθ

2

)
V ′(φ) + 1

2
φθV

′′(φ)

]
e2μ−2U (3.30)

and

Dτ = −1

2

[(
Rθθ − R2

θ

R

)
φt +

(
RtRθ

R
− Rtθ

)
φθ + Rξ

R
B − Rτ

R
D

]

−
[(

μθ − Uθ + Rθ

2

)
V ′(φ) + 1

2
φθV

′′(φ)

]
e2μ−2U . (3.31)

Integrating (3.30)–(3.31) along null paths starting at (t1, θ) and ending at the initial
t0−surface, we obtain

B(t1, θ) = B(t0, θ+t1−t0)+ 1

2

∫ t0

t1

(
a−b + Rξ

R
B− Rτ

R
D

)
(t1, θ + s−t1)ds (3.32)

D(t1, θ) = D(t0, θ−t1+t0)+ 1

2

∫ t0

t1

(
−a−b − Rξ

R
B+ Rτ

R
D

)
(t1, θ−s+t1)ds. (3.33)

We take the supremum in θ of the absolute values of each equation and add the results to
obtain

K(t) ≤ K(t0) +
∫ t0

t

[
sup
θ∈S1

|(a + b)(s, θ)| + sup
θ∈S1

( |Rξ | + |Rτ |
R

)
(s, θ)K(s)

]
ds, (3.34)

where K(t) = sup
θ∈S1

(|B| + |D|)(t, θ) and

a(t, θ) =
(

Rθθ − R2
θ

R

)
φt +

(
RtRθ

R
− Rtθ

)
φθ ,

b(t, θ) =
[
(μθ − Uθ + Rθ

2
)V ′(φ) + 1

2
φθV

′′(φ)

]
e2μ−2U .

We deduce from (3.34) the Gronwall lemma and previous steps that K(t) is bounded since
R stays bounded away from zero. This proves from (3.28)–(3.29) that φtθ , φθθ are uniformly
bounded. The uniformly bound of φtt follows from the evolution equation (2.8).

Step 5 Bounds on the first-order derivatives of matter quantities and second-order deriva-
tives of the field components.

Since the second-order derivatives of R and φ are bounded, one follows the techniques
developed in [1] (Step 4) to bound first-order derivatives of f and second-order derivatives
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of U , A, and μ. There is a minor change on the term kθ = ∂θ (ρ − P1 + P2 − P3) where
∂θV (φ) appears and is bounded by previous steps.

Step 6 Bounds on higher order derivatives and completion of the proof.

The method described above can be used for obtaining bounds on higher derivatives as
well. Hence, we have uniform bounds on the functions R, U , A, μ, f , φ, and all their
derivatives on the interval (t, t0] if R stays bounded away from zero. This implies that
the solution extends to t → −∞ in conformal coordinates. The proof of the theorem is
complete using the geometrical arguments developed in [1, 3].

4 The T2 Symmetry Case

We consider now a solution of the Einstein-Vlasov-scalar field system where all unknowns
are invariant under the T 2-symmetry with the twists different from zero (cf. [11, 15]). In
conformal coordinates, the metric g takes the form

ds2 = −e2(μ−U)dt2+e2(μ−U)dθ2+e2U [dx+Ady+(G+AH)dθ]2+R2e−2U(dy+Hdθ)2;
(4.1)

where μ, U , R, A, H, and G are unknown real functions of t and θ variables, periodic in θ

with period 1.
Using the results of [15] or [11], the complete Einstein-Vlasov-scalar field system (1.2)–

(1.4) can be written in the following form:
The Einstein-matter constraint equations:

U2
t + U2

θ + e4U

4R2 (A
2
t + A2

θ ) + Rθθ

R
− μtRt

R
− μθRθ

R

= − e−2(μ−2U)

4 �2 − e−2μ

4 H 2
t − e2(μ−U)ρ,

(4.2)

2UtUθ + e4U

2R2
AtAθ − Rtθ

R
− μtRθ

R
− μθRt

R
= e2(μ−U)J1. (4.3)

The Einstein-matter evolution equations:

Utt − Uθθ = UθRθ

R
− UtRt

R
+ e4U

2R2 (A
2
t − A2

θ )

+ e−2(μ−2U)

2 �2 + 1
2e

2(−μ+2U)(ρ − P1 + P2 − P3),
(4.4)

Att − Aθθ = AtRt

R
− AθRθ

R
+4(AθUθ −AtUt ) + 2Re2μ−4US23+R2e−2μ�Ht , (4.5)

Rtt − Rθθ = Re2(μ−U)(ρ − P1) + e−2(μ−2U)

2
R�2 + e−2μ

2
R3H 2

t , (4.6)

μtt − μθθ = U2
θ − U2

t + e4U

4R2 (A
2
t − A2

θ ) − e2(μ−U)P3 − A2

R2 e
2(μ+U)P2

− 2A
R

e2μS23 − e−2(μ−2U)

4 R�2 − 3e−2μ

4 R2H 2
t .

(4.7)

φtt − φθθ = E(t, θ)φt + F(t, θ)φθ − e2(μ−U)V ′(φ). (4.8)

The auxiliary equations:

∂θ (Re−2(μ−2U)�) = −2ReμJ2 (4.9)

∂t (Re−2(μ−2U)�) = 2ReμS12 (4.10)

∂θ (R
3e−2μHt ) + Re−2(μ−2U)Aθ� = −2R2eμ−2UJ3 (4.11)

∂t (R
3e−2μHt ) + Re−2(μ−2U)At� = 2R2eμ−2US13. (4.12)
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The Vlasov equation:

∂f

∂t
+ v1

v0

∂f

∂θ
−

[
(μθ − Uθ)v

0 + (μt − Ut)v
1 − e2UAθ

R

v2v3

v0
+ Uθ

v0
((v3)2 + (v2)2)

−Rθ

R

(v3)2

v0
+ e−μ(e2μ�v2 + RHtv

3)

]
∂f

∂v1
−

[
Uθ

v1v2

v0
+ Utv

2
]

∂f

∂v2

+
[(

Rt

R
− Ut

)
v3 +

(
Uθ − Rθ

R

)
v1v3

v0
+ e2Uv2

R

(
At + Aθ

v1

v0

)]
∂f

∂v3
= 0, (4.13)

where � = Gt + AHt ,

Jk =
∫
R3

f (t, θ, v)vkdv, k ∈ {2, 3},

Sij =
∫
R3

f (t, θ, v)
vivj

v0
dv, i, j ∈ {1, 2, 3}; i �= j,

E(t, θ) = −Rt

R
+ (R2HtH + RtHtH)e−2μ

+(2UtG
2 + 2AGHUt + GGt + AtHG + AHtG)e−2μ+4U ,

and

F(t, θ) = Rθ

R
+ (R2HθH − RRθH

2 + 2RθH
2 − 5R2H 2Uθ)e

−2μ

+(G2Uθ + AAθH
2 + GGθ + 4AUθHG − 2AHUθ + AHθG

+AGθH + AθHG + A2HHθ + A2H 2Uθ)e
−2μ+4U .

Step 7 Monotonicity of R and bounds on its first derivatives

Using the constraint (4.2) and (4.3), the extra non-negative term e−2μ+4U

4 R�2 +
R2e−2μ

4 RH 2
t adds to the right hand side of each relation (3.1) and (3.2). The same method

as in Step 1 follows.

Step 8 Bounds on U , A, μ, and their first derivatives.

Define

X = 1

2
R(U2

t + U2
θ ) + e4U

4R2
(A2

t + A2
θ ); Y = RUtUθ + e4U

4R
AtAθ .

Following Step 2, relations (3.9) and (3.10) are respectively replaced by

∂τ (X + Y ) = −1

2
Rξ

(
U2

t − U2
θ + e4U

4R2
(−A2

t + A2
θ )

)
+ e2U

2R
AξR

2e2(μ+U)�Ht

−R

2
Uξ

(
e−2μ+4U�2 + e2(μ−U)(ρ − P1 + P2 − P3)

)
+ Aξe

2μS23.

and

∂ξ (X − Y ) = −1

2
Rτ

(
U2

t − U2
θ + e4U

4R2
(−A2

t + A2
θ )

)
+ e2U

2R
AτR

2e2(μ+U)�Ht

−R

2
Uτ

(
e−2μ+4U�2 + e2(μ−U)(ρ − P1 + P2 − P3)

)
+ Aτe

2μS23.
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After integration and summation, we obtain relation (3.11) with

K1 = −1

2
Rτ

(
U2

t − U2
θ + e4U

R2
(−A2

t + A2
θ )

)
,

K2 = −1

2
Rξ

(
U2

t − U2
θ + e4U

R2
(−A2

t + A2
θ )

)
,

T1 = R

2
e2(μ−U)(ρ − P1 + P2 − P3) + R

2
e−2μ+4U�2,

T2 = e2(μ−U)S23 + R2e2(μ−U)�Ht ;
and

T1 ≤ Re2(μ−U)(ρ − P1) + R

2
e−2μ+4U�2,

|T2| ≤ 1

2
e2(μ−U)(ρ − P1) + R2

2
e2(μ−U)(�2 + H 2

t ).

Consequently, relations (3.15) and (3.16) are respectively replaced by

Rξ (t0, θ + t0 − t) − Rξ (t, θ) = 1
2

∫ t0
t

[Re2(μ−U)(ρ − P1)

+Re−2μ

2 (e4U�2 + R2H 2
t )](s, θ + t0 − s)ds,

(4.14)

Rτ (t0, θ − t0 + t) − Rτ (t, θ) = 1
2

∫ t0
t

[Re2(μ−U)(ρ − P1)

+Re−2μ

2 (e4U�2 + R2H 2
t )](s, θ − t0 + s)ds.

(4.15)

This permits as in Step 2 to obtain bounds on A, U, and their first derivatives. The bounds
of μ and its first derivatives follow from relations (3.26) or (3.27) replaced by

∂τμξ = U2
θ − U2

t + e4U

4R2 (A
2
t − A2

θ ) − e−2μ+4U

4 R�2 − 3R2e−2μ

4 H 2
t

−e2(μ−U)P3 − A2

R2 e
2(μ+U)P2 − 2A

R
e2μS23,

(4.16)

∂ξμτ = U2
θ − U2

t + e4U

4R2 (A
2
t − A2

θ ) − e−2μ+4U

4 R�2 − 3R2e−2μ

4 H 2
t

−e2(μ−U)P3 − A2

R2 e
2(μ+U)P2 − 2A

R
e2μS23.

(4.17)

Under the assumption |φt | ≤ |φθ |, we deduce that

e2(μ−U)Pk ≤ e2(μ−U)(ρ−P1)+ 1

2
e2(−μ+U)(φ2

t −φ2
θ )−3V (φ) ≤ e2(μ−U)(ρ−P1) (4.18)

Using inequalities (3.12), (4.18) and the fact that the right hand sides of (4.14), (4.15) are
bounded (Step 7), we conclude that the integral along null paths for the matter terms in the
right hand sides of (4.16), (4.17) are bounded since A, U , At , Aθ , Ut , Uθ are bounded. We
obtain that |μξ | and |μτ | are bounded and therefore μt and μθ are bounded.

Step 9 Bounds on G, H , their derivatives, and the support of the momentum.

Consider the characteristic system associated to the Vlasov equation (4.13). It is analo-
gous to the one in Step 3, except the term −e−μ(e2μ�V 2 + RHtV

3) which is added in the

second hand of the second equation dV 1

ds
of the system. Since |V k| < V 0, k = 1, 2, 3, the

integration and Gronwall’s lemma applied respectively to the third and fourth equations of
this system give with previous Steps (7 and 8) uniform bounds of |V k(t)|, k = 2, 3 on (t, t0).
So, we can conclude that Sup{|V 2|+|V 3|+1 : ∃(s, r, v1) ∈ [0, t]×R+×R with f (s, r, v) �=
0} is also uniformly bounded. Now, define Q1(t) = Sup{|V 1| + 1 : ∃(s, r, v2, v3) ∈
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[0, t]×R+×R
2 with f (s, r, v) �= 0}. Now integrate the second equation of the characteristic

system and use Steps 7 and 8 and the fact that |V k| < V 0, |V k| < C to obtain

Q1(t) ≤ Q1(t0) + C

∫ t0

t1

[Q1(s) + sup
θ

|�|(s, θ) + sup
θ

|Ht |(s, θ)]ds. (4.19)

Add and subtract respectively auxiliary equations (4.9)–(4.10) to obtain

∂ξ (Re−2(μ−2U)�) = 2Reμ(S12 − J2),

∂τ (Re−2(μ−2U)�) = 2Reμ(S12 + J2).

Integrating along null paths and previous steps give

sup
θ

|�|(t, θ) ≤ sup
θ

|�|(t0, θ) + C

∫ t0

t1

[1 + Q1(s)]ds. (4.20)

Analogously, (4.11)–(4.12) give

sup
θ

|Ht |(t, θ) ≤ sup
θ

|Ht |(t0, θ) + C

∫ t0

t1

[1 + Q1(s) + sup
θ

|�|(s, θ)]ds. (4.21)

Adding (4.19)–(4.21) and applying Gronwall’s lemma give uniform bounds on Ht , �, and
Q1(t). Then H , Gt , and G are bounded. From (4.11), we deduce bounds on Htθ and then
on Hθ . Consequently, (4.9) gives bounds on Gtθ and then on Gθ . We deduce respectively
from (4.12) and (4.10) the bounds on Htt and Gtt . Since Q1(t) and V k are bounded, the
integral terms of the matter quantities are also bounded.

Step 10 Bounds on φ and its first derivatives.

Define

M = 1

2
R(φ2

t + φ2
θ ) + R

2
φ2; N = Rφtφθ .

After some calculation and using (4.8), we obtain

∂τ (M + N) = Rτ

R
(M + N) − Rφξ (Eφt + Fφθ + e2(μ−U)V ′(φ)) + Rφτφ,

∂ξ (M − N) = Rξ

R
(M − N) − Rφτ (Eφt + Fφθ + e2(μ−U)V ′(φ)) + Rφξφ.

Integrating these along null paths and adding results give

M(t1, θ) = 1
2 (M + N)(t0, θ − (t0 − t1)) + 1

2 (M − N)(t0, θ + (t0 − t1))

+ ∫ t0
t1

[
Rφξ (Eφt +Fφθ )(s, θ−(s−t1))+Rφτ (Eφt +Fφθ )(s, θ + (s−t1))

]
ds

+ ∫ t0
t1

[(Rφξ e
2(μ−U)V ′(φ) − Rφτφ)(s, θ − (s − t1))

+(Rφτ e
2(μ−U)V ′(φ) − Rφξφ)(s, θ − (s − t1))]ds.

Following previous Steps 7, 8, and 9, we have

sup
θ

M(t, θ) ≤ sup
θ

M(t0, θ) + C

∫ t0

t1

sup
θ

M(s, θ)ds. (4.22)

We deduce by Gronwall’s lemma the uniform bounded of sup
θ

M(t, θ) which leads to the

bounds of φ, φt , φθ , and V (φ).

Step 11 Following Steps 4, 5, and 6, ones obtains with minor changes, bounds on the
first-order derivatives of matter quantities, second and higher order derivatives of field
components and matter quantities.
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We conclude this section by the following theorem:

Theorem 4.1 Let (T 3, μ0, μ1, A0, A1, U0, U1,G0,G1, H0, H1, f0, φ0, φ1) be regular ini-
tial data that satisfy the constraint equations (4.2)–(4.3) where the metric is coordinatized
as in (4.1). Let (g, f, φ) be the local regular solution that corresponds to the initial data and
]T , t0] be the maximal interval of existence. There exists a globally hyperbolic spacetime
(M, g, f, φ) such that

(i) M = [0, t0[×T 3,
(ii) (g, f, φ) satisfies the Einstein-Vlasov-scalar field system in areal coordinates,
(iii) (M, g, f, φ) is isometrically diffeomorphic to the maximal globally hyperbolic deve-
lopment of the initial data (T 3, μ0, μ1, A0, A1, U0, U1,G0,G1, H0, H1, f0, φ0, φ1).

5 Geodesic Completeness

Consider a solution s �−→ (xα(s), pα(s)) of the trajectory equations (2.10) which exists on
the maximal interval I =]s−, s+[. Since particles are future pointing, we have dt

ds
= p0 > 0.

We can then parameterize the trajectory by the time coordinate t ∈ I and obtain the system:

dxi

dt
= pi

p0
; dpi

dt
= −�i

βγ

pβpγ

p0
, i = 1, 2, 3.

Since suppf is compact, the right hand side of the previous system is linearly bounded
in pi with respect to the two directions of time (see [14] for the future direction). Thus,
t (s±) = ±∞. Now, due to the inequality dt

ds
= p0 ≤ C, one obtains by integration

∫ s

0
dt ≤ C

∫ s

0
ds′ i.e., t (s) − t (0) ≤ Cs.

Thus, s± = ±∞, and I = R. We conclude that geodesics are complete for the Einstein-
Vlasov-scalar field system with Gowdy or T 2 symmetry.
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Inst. Fourier 21(3), 181–201 (1971)
6. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Comm.

Math. Phys. 14, 329–335 (1969)
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