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Abstract
We introduce the concept of robust equilibrium in a multi-criteria transportation network
and obtain a formula to compute the radius of robustness together with an algorithm to find
robust equilibrium flows.
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1 Preliminaries

We consider a transportation network G = [N, A,W ] that consists of a set of nodes N , a
set of n directed arcs or links A = {a1, . . . , an} and a set W of r origin-destination (OD
for short) pairs of nodes w = (x, x′) with x, x′ ∈ N such that there is a path from x to
x′. We shall make use of some notations from [14]. Namely, for w ∈ W , Pw is the set of
available paths from the origin x to the destination x′; P = {p1, . . . , pm} = ∪w∈W Pw is
the set of all available paths of the network; dw > 0 is the demand of the traffic flow from
x to x′. The traffic load in the network is often presented either by arc flows za, a ∈ A, or
by path flows yp, p ∈ P . Given a path flow, the arc flow can be obtained by the formula
za = ∑

p∈P ypδap, where δap has value 1 if path p contains arc a and 0 otherwise. In
this paper we shall deal with traffic load presented by path flows only. A path flow y :=
(y1, . . . , ym)T (notation “T ” is for transposition) is said to be feasible if its components are
all nonnegative, that is, y � 0, and satisfy the conservation flow equation

∑

p∈Pw

yp = dw for all w ∈ W .
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The set of all feasible path flows is denoted K . We assume that on each path p, a cost
function cp is given and depends on the flow y = (yp)p∈P on the entire network. The cost
functions cp take values in a finite dimensional space R

� with � � 1 and are utilized by
travelers to evaluate the routes and make their choice. The case � = 1 is classic and well
studied. Multi-criteria models deal with � � 2. In many practical situations, � = 2, which
corresponds to two criteria: travel time and travel cost. We assume also that travelers have a
complete information on the network and make their choice according to the vector version
of Wardrop’s principle: no traveler chooses a path p if he finds another path p′ connecting
the same origin destination such that cp(y) − cp′(y) ≥ 0, which means cp(y) − cp′(y) � 0
and cp(y) �= cp′(y). This assignment of the network is known as a vector user equilibrium.
Thus, at a vector user equilibrium no traveler having chosen route p can reduce at least one
of his cost components without increasing other cost components by individually switching
to another route p′ �= p. Mathematically, the problem of multi-criteria traffic assignment is
formulated as follows:

Find a feasible path flow ȳ ∈ K , called a vector user equilibrium (or equilibrium for
short), such that for every OD pair w ∈ W and for every couple of paths p, p′ ∈ Pw one
has implication

cp(ȳ) − cp′(ȳ) ≥ 0 =⇒ ȳp = 0.

The traffic assignment problem with multiple cost functions has been a subject of intensive
study for almost 50 years (see Quandt [21] and Schneider [26], Dafermos [5], and Dial [6]
for pioneer works and Chen et al. [3], Chen and Yen [4], Goh and Yang [9], Li and Chen
[10], Lin [11], Luc [12], Luc, Rocca and Papalia [13], Nagurney [15], Nagurney and Dong
[16], Tan, Yang and Guo [27], Tian and Xu [28], Wang and Ehrgott [29] and some others
(see [15–25]) for recent developments). The interested readers are referred to [23] for a
detailed discussion on studies of vector equilibria.

In a parametric model it is assumed that the vector cost functions ha depend not only
on the arc flow z := (za)a∈A but also on a parameter ξ from some parameter set U

and the demands dw are also functions of a parameter. The vector cost function along a
path p is then a function of the path flow y and the parameter ξ accordingly: cp(y, ξ) =∑

a∈A ha(z, ξ)δap. The vector user equilibrium flows, it they exist, are functions of the
parameter too. One of the most important issues of the traffic assignment problem is to
know how the vector equilibrium flows change when parameters in the cost functions and
in the demands change. This issue has been thoroughly treated in the case of single criterion
models ([18] and many references given therein), but as far as we know, there are very few
works devoted to the multi-criteria case (see [8] for multi-criteria stochastic models).

In stochastic traffic assignment models, the parametric costs cp(y, ξ) are often given in
the form cp(y, ξ) = cp(y) + ξp, where cp(y) is the measured cost and ξp is an additive
random error termwith a probabilistic description. In the present paper, we consider a family
C as an uncertainty set of cost functions. Sometimes, it is parametrically given in the form
{c(., ξ) := (cp(., ξ))p∈P : ξ ∈ U}. It may represent a set of perturbed costs or a set of
approximations of the real costs. We shall focus on a particular question of whether it is
possible to construct a flow that is equilibrium for any realization of uncertainty in the set C.
This question is important in traffic network management when the costs are approximately
given, or when the decision makers wish to modify, within a given tolerance, the travel costs
(for instance, to increase toll rate, to raise or to lower speed limits) without affecting the
traffic load on the whole system. As we shall see later, it is closely related to the concept
of robust solutions of optimization problems under uncertainty. Here, we give a simple
example to show that both positive and negative answers to our question are possible.
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Example 1 Consider a network problem with one pair of origin-destination nodes w =
(x, x′), two criteria: travel time and travel cost, two available paths: Pw = {p1, p2} with
the travel demand dw = 30. Assume that the uncertainty sets of travel time and travel cost
functions on the paths p1 and p2 are respectively given as follows

c1(y, ξ1) =
(

y1 + 2y2 − ξ1
6y1 + 2y2

)

, c2(y, ξ2) =
(

y1 + 6y2
10 + 6y1 + 8(y2 − ξ2)

)

with ξ1 ∈ [0, 1] and ξ2 ∈ [−1, 1]. Direct computation shows that y = (30, 0)T is a vector
equilibrium for any realization of ξ ∈ [0, 1] × [−1, 1].

If we are given another uncertainty sets, for instance,

c1(y, ξ1) =
(

y1 + 2y2 − ξ1
6y1 + 2y2

)

, c2(y, ξ2) =
(

y1 + 6y2
6y1 + 8(y2 − ξ2)

)

with ξ1 ∈ [0, 1] and ξ2 ∈ [−1, 1], then no flow exists which is equilibrium for all
realizations of ξ ∈ [0, 1] × [−1, 1].

Throughout this paper, we assume that the demands dw,w ∈ W are fixed and C is a
given uncertainty set in which components cp of c ∈ C are continuous vector functions from
K to R

� with � � 1. We equip C with the max-norm: ‖c‖ = maxp∈P,y∈K ‖cp(y)‖ where
‖cp(y)‖ is the usual norm in R

� and make use of the following notations:

• Given Q ⊆ R
�, the set Min(Q), called the set of minimal elements of Q, consists of

vectors q ∈ Q such that there is no q ′ ∈ Q satisfying q ≤ q ′.
• d[a, Q] is the Euclidean distance from a point a ∈ R

� to Q.
• T (Q, a) is the contingent cone of Q at a ∈ Q: v ∈ T (Q, a) if and only if there are a
sequence of elements aν in Q and a sequence of positive numbers tν convergent to ∞ such
that tνaν converges to v.
• T 0(Q, a) is the cone of admissible directions of Q at a: v ∈ T 0(Q, a) if and only if there
is some δ > 0 such that a + tv ∈ Q for all t ∈ [0, δ].
• Cw is the set of all functions cp′ ∈ C, p′ ∈ Pw for an OD pair w ∈ W .
• B(a, r) is the ball of radius r centered at a in a normed space that contains a.

We shall introduce the concept of robust equilibrium and establish a relationship with
the concept of robustness of uncertainty optimization. Properties of robust equilibria will be
proven and an algorithm to compute robust equilibria will be presented with its convergence.
Some numerical examples are given to illustrate our algorithm. By our knowledge, this topic
is new and there exist no study on it even for single criterion models.

2 Robust Equilibrium

For every element c ∈ C we denote (G, c) the network G equipped with the cost function c.

Definition 1 Let y be a feasible path flow. We say that y is a robust vector equilibrium if it
is a vector equilibrium of the network (G, c) for every realization c in C. Given an instance
c̄ ∈ C we say that ȳ is a local robust vector equilibrium of (G, c̄) if there is some δ > 0
such that it is an equilibrium of (G, c) for every realization c in C with ‖c − c̄‖ � δ.

We have already known from the example given in the preceding section that an uncer-
tainty model of traffic networks may have a robust equilibrium and may have no robust
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equilibrium, depending on the nature of the uncertainty set. When a robust equilibrium
exists, it is also local robust for any realization of uncertainty in the set C. For a local robust
vector equilibrium ȳ of (G, c̄), the radius of robustness at ȳ, denoted RC(ȳ), is the supre-
mum of δ > 0 such that ȳ is equilibrium of (G, c) for every c ∈ C with ‖c − c̄‖ � δ. It is
clear that a local robust vector equilibrium ȳ of (G, c̄) is robust if and only if the uncertainty
set C is contained in the ball of radius RC(ȳ) centered at c̄. To link the concept of robust
equilibrium of networks under uncertainty and the concept of optimal solution in robust
optimization we define a real-valued function φ on K by

φ(y, c) :=
∑

p∈Pw,w∈W

ypd[cp(y),Min(Cw(y))].

When C is parametrically given, that is C = {c(., ξ) : ξ ∈ U}, we shall write φ(y, ξ) instead
of φ(y, c). For instance, under the first uncertainty set in Example 1, we have

φ(y, ξ) = y2

√

(120 − 4y1 + ξ1)2 + (190 − 6y1 − 8ξ2)2, (1)

for every y = (y1, y2) ∈ K and (ξ1, ξ2) ∈ [0, 1]×[−1, 1], and under the second uncertainty
set the function φ(y, ξ) takes the form

φ(y, ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

y2
√

(4y2 + ξ1)2 + (6y2 − 8ξ2)2 if either ξ1 > 0, y2 � 4ξ2/3,
or 0 < y2 � 4ξ2/3,

240ξ2 if y2 = 0, ξ1 = 0, ξ2 > 0,
0 othewise.

(2)

Here is a characterization of robust equilibrium via the function φ.

Proposition 1 Let ȳ be a feasible flow. The following statements are equivalent.

(i) ȳ is a robust equilibrium;
(ii) For every c ∈ C, p ∈ P and w ∈ W one has implication

cp(y) �∈ Min(Cw(y)) =⇒ yp = 0;
(iii) ȳ is an optimal solution of the problem

minimize max
c∈C φ(y, c)

subject to y ∈ K (3)

and the optimal value is equal to zero.

Proof The equivalence between (i) and (ii) is immediate from the definition of robust equi-
librium. We prove implication (ii) ⇒ (iii). By definition, φ(y, c) � 0 for all y ∈ K and
c ∈ C. If ȳ satisfies (ii), then φ(ȳ, c) = 0 for all c ∈ C. Consequently, ȳ solves (3) and
the optimal value is equal to zero. Conversely, if (iii) is satisfied, then maxc∈C φ(ȳ, c) = 0.
Again, because φ(ȳ, c) � 0, we deduce φ(ȳ, c) = 0 for all c ∈ C. Notice that all the terms in
the expression of φ(ȳ, c) are nonnegative. Therefore, ȳpd[cp(ȳ),Min(Cw(ȳ))] = 0 which
implies ȳp = 0 when cp(ȳ) �∈ Min(Cw(ȳ)) for every c ∈ C, p ∈ P and w ∈ W as
requested.

A local version of Proposition 1 is given below.

Proposition 2 Let ȳ be a feasible flow and let c̄ ∈ C. The following statements are
equivalent.
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(i) ȳ is a local robust equilibrium of (G, c̄);
(ii) There is δ > 0 such that for every c ∈ C ∩ B(c̄, δ), p ∈ P and w ∈ W one has
implication

cp(y) �∈ Min((Cw ∩ B(c̄, δ))(y)) =⇒ yp = 0;
(iii) There is δ > 0 such that ȳ is an optimal solution of the problem

minimize max
c∈C∩B(c̄,δ)

φ(y, c)

subject to y ∈ K (4)

and the optimal value is equal to zero.

Proof Apply the argument of the proof of Proposition 1.

The objective function maxc∈C φ(y, c) of (3) represents the worst case scenario among
all possible realizations φ(y, c), c ∈ C. The optimization problem (3) is recognized as the
robust counterpart of parametric problems of minimizing φ(y, c) over K for c ∈ C (see [2]).
We deduce that every robust equilibrium is a robust optimal solution of (3). The converse,
however, is not always true, that is, a robust optimal solution of (3) is not necessarily a
robust equilibrium if the optimal value is not equal to zero. In Example 1, when φ given
by (1), the feasible flow ȳ = (30, 0)T is a robust optimal solution of (3) and the optimal
value is equal to zero. It is a robust equilibrium of the network under the first uncertainty
set. When φ is given by (2), direct calculation shows that (3) admits an optimal solution,
but its optimal value is strictly positive; hence, the network under the second uncertainty set
has no robust equilibrium as we have already observed.

When C is parametrically given, problem (3) becomes a minimax problem. Although the
objective function φ(y, ξ) is neither convex nor concave, it enjoys some useful properties.
In fact, given ξ , the function φ(., ξ) is continuous (or locally Lipschitz/differentiable) on an
open and dense subset of K as soon as the function c(y, ξ) is continuous (or locally Lip-
schitz/differentiable) on K (see [14, Theorem 4.1]). Many existing methods for minimax
problems then can be applied to solve (3) (see, for instance, [1, 7, 20, 25]), in particular
when the set U is finite. When U is not finite, say U is a compact set in a finite dimensional
Euclidean space, because of difficulties related to the implementation of global optimiza-
tion algorithms in finding global optimal solutions of badly structured problems, it is more
reasonable to work with local robust equilibria. We shall now concentrate on local robust
equilibria only.

Theorem 1 Let C = (Cp)p∈P be the uncertainty set of G. Let c̄ ∈ C be given and let
y ∈ K be an equilibrium of (G, c̄). If y is a local robust equilibrium of (G, c̄), then for
every w ∈ W,p, p′ ∈ Pw with c̄p(ȳ) = c̄p′(ȳ) and yp > 0, one has

(
T 0(Cp, c̄p)(ȳ) − R

�+
)

∩
(
T 0(Cp′ , c̄p′)(ȳ) + R

�+ \ {0}
)

= ∅. (5)

Conversely, if for every w ∈ W,p ∈ Pw with c̄p(ȳ) = c̄p′(ȳ) and yp > 0, one has
(
T (Cp(ȳ), c̄p(ȳ)) − R

�+
)

∩
(
T (Cp′(ȳ), c̄p′(ȳ)) + R

�+
)

= {0}, (6)

then ȳ is a local robust equilibrium of (G, c̄).
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Proof We prove the first part of the theorem by contradiction. Suppose there are nonzero
vectors r1, r2 ∈ R

�+ with r2 �= 0 and some functions u ∈ T 0(Cp, c̄p), v ∈ T 0(Cp′ , c̄p′) such
that u(ȳ)− r1 = v(ȳ)+ r2. By definition, there is some t0 > 0 such that for every t ∈ [0, t0]
one has c̄p + tu ∈ Cp and c̄p′ + tv ∈ Cp′ . Choose t ∈ (0, t0) such that t < R(ȳ)/(‖u‖+‖v‖)
and define a vector cost function c := (cs)s∈P on K by

cs =
⎧
⎨

⎩

c̄s if s �∈ {p, p′}
c̄p + tu if s = p

c̄p′ + tv if s = p′.

We have c ∈ C and ‖c − c̄‖ ≤ ‖tu‖ + ‖tv‖ < R(ȳ). On the other hand, cp(ȳ) − cp′(ȳ) =
t (u(ȳ) − v(ȳ)) = t (r1 + r2) ≥ 0. This contradicts the hypothesis that ȳp > 0 and ȳ is an
equilibrium of (G, c).

Conversely, suppose that ȳ is not a local robust equilibrium of (G, c̄). There exists a
sequence of functions cν of C converging to c̄, OD pairs wν ∈ W and paths pν, p

′
ν ∈ Pwν

such that

cν
pν

(ȳ) ≥ cν
p′

ν
(ȳ) and ȳpν > 0. (7)

Since the number of OD pairs and the number of paths are finite, without loss of generality,
we may assume that wν = w for some w ∈ W , pν = p and p′

ν = p′ for some p, p′ ∈
Pw and for all ν � 1. In particular, ȳp > 0. Observe further that the sequence {cν

p(ȳ)}
converges to c̄p(ȳ) and the sequence {cν

p′(ȳ)} converges to c̄p′(ȳ)) as ν tends to infinity.
Therefore, c̄p(ȳ) � c̄p′(ȳ). Because ȳ is equilibrium for (G, c̄) and ȳp > 0, we obtain
equality c̄p(ȳ)) = c̄p′(ȳ). Then, inequality (7) gives

cν
p(ȳ) − c̄p(ȳ) ≥ cν

p′(ȳ) − c̄p′(ȳ) for all ν � 1. (8)

Set tν := ‖cν
p(ȳ) − c̄p(ȳ)‖ and sν := ‖cν

p′(ȳ) − c̄p′(ȳ)‖. By working with subsequences
if necessary, we may assume either (a) tν > 0, sν = 0 for all ν � 1 and the sequence
{(cν

p(ȳ) − c̄p(ȳ))/tν} converges to some unit norm vector u; or (b) sν > 0, tν = 0 for all
ν � 1 and the sequence {(cν

p′(ȳ)− c̄p′(ȳ))/sν} converges to some unit norm vector v; or (c)
both sν and tν are strictly positive for all ν � 1, the sequence {sν/tν} (or {tν/sν}) converges
to some α � 0 and both sequences {(cν

p(ȳ)−c̄p(ȳ))/tν} and {(cν
p′(ȳ)−c̄p′(ȳ))/sν} converge

to unit norm vectors u and v, respectively. Note that in all cases u ∈ T (Cp(ȳ), c̄p(ȳ)) and
v ∈ T (Cp′(ȳ), c̄p′(ȳ)). In the case (a), we have cν

p(ȳ) − c̄p(ȳ) ≥ 0. Therefore, u ≥ 0 and

belongs to T (Cp′(ȳ), c̄p′(ȳ)) + R
�+ as well. This contradicts (6). In the case (b), we have

cν
p′(ȳ)− c̄p′(ȳ) ≤ 0, which implies v ≤ 0. Clearly, v ∈ T (Cp(ȳ), c̄p(ȳ))−R

�+, which again
contradicts (6). In the case (c), if {tν/sν} converges to α � 0, then we deduce from (8) that

αu = lim
ν→∞

tν

sν

cν
p(ȳ) − c̄p(ȳ)

tν
� lim

ν→∞
cν
p′(ȳ) − c̄p′(ȳ)

sν
= v. (9)

Similarly, if {sν/tν} converges to α � 0, then

u = lim
ν→∞

cν
p(ȳ) − c̄p(ȳ)

tν
� lim

ν→∞
sν

tν

cν
p′(ȳ) − c̄p′(ȳ)

sν
= αv. (10)

By expressing v = αu + (v − αu) with v − αu � 0 from (9) and u = αv + (u − αv) with
u−αv � 0 from (10) we have either v ∈ T (Cp(ȳ), c̄p(ȳ))−R

�+ or u ∈ T (Cp′(ȳ), c̄p′(ȳ))+
R

�+, respectively. By remembering u ∈ T (Cp(ȳ), c̄p(ȳ)) and v ∈ T (Cp′(ȳ), c̄p′(ȳ)), we
obtain a contradiction with (6). The proof is complete.
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The gap between the necessary condition and the sufficient condition for local robust-
ness in the preceding theorem is expressed in the cones involved in (5) and (6). The cones
in (5) consist of the values of admissible direction functions computed in the space of func-
tions, while the cones in (6) are contingent cones computed in the space R�. It is clear that
T 0(Cp, c̄p)(ȳ) ⊆ T 0(Cp(ȳ), c̄p(ȳ)) and equality is not true in general. This observation is
also valid for the contingent cone. Moreover, (5) can clearly be simplified to

T 0(Cp, c̄p)(ȳ) ∩
(
T 0(Cp′ , c̄p′)(ȳ) + R

�+ \ {0}
)

= ∅. (11)

Let us now consider some closely related conditions:
(
T 0(Cp(ȳ), c̄p(ȳ)) − R

�+
)

∩
(
T 0(Cp′(ȳ), c̄p′(ȳ)) + R

�+ \ {0}
)

= ∅, (12)
(
T (Cp, c̄p)(ȳ)) − R

�+
)

∩
(
T (Cp′ , c̄p′)(ȳ) + R

�+ \ {0}
)

= ∅, (13)
(
T 0(Cp, c̄p)(ȳ)) − R

�+
)

∩
(
T 0(Cp′ , c̄p′)(ȳ) + R

�+
)

= {0}, (14)

T (Cp(ȳ), c̄p(ȳ)) ∩
(
T (Cp′(ȳ), c̄p′(ȳ) + R

�+
)

= {0}. (15)

As we have already said (5) is equivalent with (11). It is also clear that each of (12) and
(13) implies (5), while (6) implies (13), (14), and (15). Next, we give two examples to show
that (5) cannot be substituted by (12) (Example 2) and (6) cannot be substituted by (15)
(Example 3).

Example 2 Let G be a network consisting of a single OD pair and two routes p and p′
connecting this pair and the demand d = 20. Let the uncertainty set C be a set of vector
functions with values in R2 and composed of the functions c̄ and ct , t ∈ [0, 1] given below:

c̄ =
((

10
10

)

,

(
10
10

))

, ct =
((

30 + (2t − 1)y1
10 + 20t + (1 − t)y2

)

,

(
30 + (t/2 − 1)y1

10 + 10t + (1 − t/2)y2

))

,

where y1 is a flow on p and y2 is a flow on p′. The first and the second vector components
of c̄ and ct indicate the costs on p and p′, respectively. Clearly, the flow ȳ = (20, 0)T is a
robust equilibrium. However,

T 0(Cp(ȳ), c̄p(ȳ)) =
{

t

(
40
20

)

: t � 0

}

, T 0(Cp′(ȳ), c̄p′(ȳ)) =
{

t

(
10
10

)

: t � 0

}

.

Hence, T 0(Cp(ȳ), c̄p(ȳ))∩ (
T 0(Cp′(ȳ), c̄p′(ȳ)) + R

�+ \ {0}) �= ∅. In this example, we have
T 0(Cp, c̄p)(ȳ) = T 0(Cp′ , c̄p′)(ȳ) = {0} and so (5) holds true.

Example 3 We consider the network described in Example 2 with the uncertainty set C
composed of the functions c̄ and ct , t ∈ [0, 1] given below:

c̄ =
((

10
10

)

,

(
10
10

))

,

ct =
((

10 + √
t + (t − √

t)y1/20
10 + t + (

√
t − t)y2/20

)

,

(
10 + t + (t2 − t)y1/20
10 + t2 + (t − t2)y2/20

))

,

where, as before, y1 is a flow on p, y2 is a flow on p′, and the first and the second vector
components of c̄ and ct indicate the costs on p and p′, respectively. We choose the flow
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ȳ = (20, 0)T . Clearly, it is an equilibrium of (G, c̄). It is not a local robust equilibrium
because for any t ∈ (0, 1), we have

ct
p(ȳ) =

(
10 + t

10 + t

)

>

(
10 + t2

10 + t2

)

= cp′(ȳ).

Despite this,

T (Cp, c̄p)(y) = T (Cp′ , c̄p′)(y) =
{

s

(
1 − y1/20

y2/20

)

: s � 0

}

,

which implies T (Cp, c̄p)(ȳ) = T (Cp′ , c̄p′)(ȳ) = {0} and shows that (15) holds.

3 Strict Equilibrium

Among local robust equilibria, there may exist some that remain local robust even when the
uncertainty set moves around a given element. We wish to give some details on them. First,
we derive a necessary and sufficient condition for such equilibria from Theorem 1.

Lemma 1 Let c̄ = (c̄p)p∈P be a given function where c̄p : K → R
� are continuous,

and let ȳ ∈ K be an equilibrium of (G, c̄). Then, ȳ is a local robust equilibrium for any
uncertainty set C containing c̄ if and only if for every w ∈ W,p ∈ Pw with ȳp > 0 one has
c̄p(ȳ) �= c̄p′(ȳ) for all p′ ∈ Pw, p′ �= p.

Proof The “if” part is immediate from Theorem 1. For the “only if” part, it suffices to
choose an uncertainty set that contains c̄ in its interior. Then, the intersection in the left-hand
side of (5) is nonempty, by which there is no p′ ∈ Pw, p′ �= p such that c̄p(ȳ) = c̄p′(ȳ).

Definition 2 A feasible flow ȳ is said to be a strict equilibrium of (G, c̄) if there is some
ε > 0 such that it is an equilibrium of (G, c) for every continuous vector cost function c

such that ‖c − c̄‖ � ε.

When a strict equilibrium y ∈ K of (G, c̄) is given, we denote by r(ȳ) the supremum of
ε such that ȳ is equilibrium of (G, c) with ‖c− c̄‖ � ε. This r(ȳ) gives us a lower bound for
the radius of robustness at ȳ, that is, r(ȳ) � RC(ȳ) for any uncertainty set C containing c̄.
Now, we wish to construct an optimization problem that allows us to find a strict equilibrium
of the network when a vector cost function c̄ from the uncertainty set is given. To this end,
denote

Iw(y) := {
i ∈ {1, . . . , m} : pi ∈ Pw, c̄pi

(y) ∈ Min(C̄w(y))
}

for every y ∈ K and define a real-valued function ρ on K to be

ρ(y) :=
∑

p∈Pw,w∈W

yp

⎛

⎝d[c̄p(y),Min(C̄w(y))] +
∑

i∈Iw(y),pi �=p

χ{0}(‖c̄p(y) − c̄pi
(y)‖)

⎞

⎠ ,

where χ{0} is the characteristic function of {0}, that is χ{0}(t) = 0 if t �= 0 and χ{0}(t) = 1
if t = 0.
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Corollary 1 Let y ∈ K be a feasible flow. Then, y is a strict equilibrium of (G, c̄) if and
only if it is an optimal solution of the following optimization problem

and the optimal value of this problem is equal to 0.

Proof Assume y ∈ K is a strict equilibrium. In particular, it is an equilibrium. Therefore,
if ȳp > 0 and p ∈ Pw , one has c̄p(ȳ) ∈ Min(C̄w(ȳ)) and so d[c̄p(ȳ),Min(C̄w(ȳ))] =
0. Moreover, in view of Lemma 1, c̄p(ȳ) �= c̄pi

(ȳ) for pi ∈ Pw \ {p}, which implies∑
i∈Iw(ȳ),pi �=p χ{0}(‖c̄p(ȳ) −c̄pi

(ȳ)‖) = 0. We deduce that ρ(ȳ) = 0. Because ρ takes
nonnegative values only, ȳ is an optimal solution of (P ′

1).
Conversely, if ρ(ȳ) = 0, then for every w ∈ W,p ∈ P , we have

ȳp

⎛

⎝d[c̄p(ȳ),Min(C̄w(ȳ))] +
∑

i∈Iw(ȳ),pi �=p

χ{0}(‖c̄p(ȳ) − c̄pi
(ȳ)‖)

⎞

⎠ = 0

because all the terms in the expression of ρ(ȳ) are nonnegative. Consequently, when ȳp > 0,
the terms d[c̄p(ȳ),Min(C̄w(ȳ))] and χ{0}(‖c̄p(ȳ) − c̄pi

(ȳ)‖), pi ∈ Iw(ȳ) are all equal to
0. We deduce that cp(ȳ) ∈ Min(C̄w(ȳ)) proving that ȳ is equilibrium, and c̄p(ȳ) �= c̄pi

(ȳ)

for pi ∈ Iw(ȳ), pi �= p. It is clear that for p′ ∈ Pw and p′ �∈ Iw(ȳ) one also has c̄p(ȳ) �=
c̄p′(ȳ). In view of Lemma 1, y is a strict equilibrium.

We know that given a continuous vector cost function c̄, the network (G, c̄) does have
equilibria, but it may have no robust or local robust equilibrium. We shall show that the set
of cost functions c for which (G, c) has no local robust equilibrium, is nowhere dense. First
we need the following auxiliary result.

Lemma 2 Let {q1, . . . , qm} be a family of vectors inRl with q1 = · · · = qk ∈ Min{q1, . . . ,

qm} for some k � m and qk �= qj for j > k. Then for every ε > 0, there exists q̃1, . . . , q̃k

such that

(i) ‖q̃i − qi‖ � ε for i = 1, . . . , k.
(ii) q̃i − q̃j /∈ R

l+ ∪ (−R
l+), i, j ∈ {1, . . . , k}, i �= j .

(iii) Min{q̃1, . . . , q̃k, qk+1, . . . , qm} = {q̃1, . . . , q̃k} ∪ ((Min{q1, . . . , qm})\{q1, . . . ,

qk}).

Proof Let ε > 0 be given. Let ei ∈ R
l denote the unit ith vector and e the vector of ones.

Since q1 = · · · = qk �= qj for j > k, there exists a positive ε′ � ε/(3l) such that

qi − ε′e /∈ qj − R
l+ for all qj ∈ Min{q1, . . . , qm}, j > k, i = 1, . . . , k. (16)

Define

q̃i = qi − ε′e + ε′
(

i

k
e1 +

(

1 − i

k

)

el

)

, i = 1, . . . , k.

Then,

‖q̃i − qi‖ = ε′‖ − e + i

k
e1 +

(

1 − i

k

)

el‖ � 3lε′ � ε,
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which proves (i). Moreover for i, j ∈ {1, . . . , k}, i �= j , one has

q̃i − q̃j = ε′
(

i − j

k
e1 + j − i

k
el

)

/∈ R
l+ ∪ (−R

l+)

which is (ii). Finally, since qi ∈ Min{q1, . . . , qm}, we have qj /∈ qi − R
l+ and hence qj /∈

q̃i − R
l+ for all j > k. This and (ii) prove that q̃i ∈ Min{q̃1, . . . , q̃k, qk+1, . . . , qm}, i =

1, . . . , k. For j > k such that qj ∈ Min{q1, . . . , qm}, one observes that

qj − R
l+ ⊆ qj + ε′

(
i

k
e1 +

(

1 − i

k

)

el

)

− R
l+

and deduces from (16) that q̃i /∈ qj − R
l+, for i ∈ {1, . . . , l}. Therefore, qj ∈

Min{q̃1, . . . , q̃k, qk+1, . . . , qm}. For j > k such that qj �∈ Min{q1, . . . , qm}, we find
some qi ∈ Min{q1, . . . , qm} such that qi ≤ qj . If i > k, then it is clear that qj �∈
Min{q̃1, . . . , q̃k, qk+1, . . . , qm}. If i � k, then we have q̃i ≤ qi ≤ qj , which again implies
that qj �∈ Min{q̃1, . . . , q̃k, qk+1, . . . , qm}. From this, (iii) follows.

For a feasible flow ȳ ∈ K and w ∈ W , we define

I+
w (ȳ) := {i ∈ Iw(ȳ) : ȳpi

> 0}.
Because the set C̄w(ȳ) is finite, the set Iw(ȳ) is nonempty. Moreover, if ȳ is an equilibrium,
then, in view of the conservation flow equation, the set I+

w (ȳ) is nonempty too.

Theorem 2 Let y be a feasible flow of (G, c̄). If it is an equilibrium, then for every ε > 0,
there exists a continuous vector cost function ĉ such that ‖ĉ − c̄‖ � ε and ȳ is a strict
equilibrium of (G, ĉ). Consequently the set of continuous vector cost functions c for which
ȳ is a strict equilibrium is open and dense in the space of continuous vector cost functions.
Moreover, if y is a strict equilibrium of (G, c̄), then

r(y) =
√

l

2
min

w∈W,i∈I+
w (y)

min
p′∈Pw\{pi }

‖(c̄p′(y) − c̄pi
(y))+‖,

where (c̄p′(y) − c̄pi
(y))+ denotes the positive part of the vector c̄p′(y) − c̄pi

(y).

Proof If y be a strict equilibrium of (G, c̄), then we are done. We consider the case where
ȳ is not a strict equilibrium of (G, c̄). Observe first that because y is an equilibrium,

∑

p∈Pw,w∈W

ypd[c̄p(y),Min(C̄w(y))] = 0.

In view of Corollary 1, there exist some w ∈ W and pi ∈ Pw such that ypi
> 0 and

the set {j ∈ Iw(y) : c̄pi
(y) = c̄pj

(y) ∈ Min C̄w(y)} consists of at least two elements.
Applying Lemma 2 to the set C̄w(y), we find cost functions ĉp, p ∈ P such that ‖ĉp(y) −
c̄p(y)‖ � ε for all p ∈ P , all elements of Min Ĉw(y) are distinct from each other and
Iw(y) is unchanged for Ĉ(y). We deduce that d[c̃p(y),Min Ĉ(y)] = 0 and χ{0}(‖ĉpi

(y) −
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ĉpj
(y)‖) = 0 for j �= i and j ∈ Iw(y). This argument applied to all paths on which the

flow y has a nonzero component, we deduce

ρ̂(y) =
∑

p∈Pw,w∈W

yp

⎛

⎝d[ĉp(y),Min Ĉw(y)] +
∑

i∈Iw(y),pi �=p

χ{0}(‖ĉp(y) − ĉpi
(y)‖)

⎞

⎠ = 0,

which, in view of Corollary 1, implies that y is a strict equilibrium for (G, ĉ).
Finally, assume that ȳ is a strict equilibrium of (G, c̄). It follows from the proof of Corol-

lary 1 that y is a vector equilibrium of (G, c̃) as soon as c̃pi
(y) �= c̃p(y) and c̃pi

(y) �≤ c̃p(y)

for any w ∈ W , pi, p ∈ Pw with pi �= p and yp > 0, which is equivalent to

(c̃pi
(y) − c̃p(y))+ �= 0.

Let ε < r(y) and ‖c̃pi
(y) − cpi

(y)‖ ≤ ε, ‖c̃p(y) − cp(y)‖ ≤ ε, one has

(c̃pi
(y) − c̃p(y))+ � [(cpi

(y) − εe) − (cp(y) + εe)]+ ≥ 0,

proving that y is a vector equilibrium of (G, c̃).
Let ε > r(y) and let

r(y) =
√

l

2
‖(cp′(y) − cpi

(y))+‖
for some i ∈ I+

w (y), p′ ∈ Pw\{pi}. Define a perturbed cost c̃ by

c̃p(y) =
⎧
⎨

⎩

cp(y) if p �= p′, p �= pi

cpi
(y) + (ε/

√
l)e if p = pi

cpi
(y) − (ε/

√
l)e if p = p′.

Then, ‖c̃p(y) − cp(y)‖ � ε for all p ∈ P and c̃p′(y) − c̃pi
(y) = cp′(y) − cpi

(y) − 2ε ≤ 0.
Consequently, c̃pi

(y) /∈ Min C̃w(y). This and the fact that ypi
> 0 implies that ϕ̃(y) > 0.

By Theorem 2, y is not a vector equilibrium of (G, c̃).

We notice that when ȳ is a strict equilibrium, in view of Lemma 1, for i ∈ I+
w (ȳ),

one has min
p′∈Pw\{pi }

‖(c̄p′(y) − c̄pi
(y))+‖ > 0, by which min

w∈W,i∈I+
w (y)

min
p′∈Pw\{pi }

‖(c̄p′(y) −
c̄pi

(y))+‖ > 0 as we expected for r(ȳ). When ȳ is an equilibrium, one may have
min

p′∈Pw\{pi }
‖(c̄p′(y) − c̄pi

(y))+‖ = 0 for some i ∈ I+
w (ȳ), in which case r(ȳ) = 0 and ȳ is

not a strict equilibrium.

4 Computing Strict Equilibria

In this section, we propose an algorithm to generate a set of strict equilibrium flows together
with their radius of robustness. Actually, we first apply the algorithm of [14] to generate a
subset of vector equilibrium flows and then identify the elements of this set that are strict
and compute their radius of robustness. We shall illustrate our algorithm by some numerical
examples.

4.1 Description of the Algorithm

Assume that W consists of r elements w1, . . . , wr in the network and for each
pair wi there are |Pwi

| paths connecting its origin to its destination. We denote
Ij = {i ∈ {1, . . . , m} : pi ∈ Pwj

}. We denote also Eε
q the set of
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ε−equilibria, Eq the set of vector equilibria when ε = 0, S × R = {(y, r(y)) :
y is a strict equilibrium and r(y) is radius of robustness corresponding to y}.

Part 1 (Algorithm of [14] generating a subset of vector equilibrium flows)

Step 0 (Initialization) Choose a positive integer q and a tolerance level ε � 0.

Step 1 Set δj = dwj
/(q|Pwj

|), j = 1, . . . , r .

Step 2 Choose (k1, . . . , km)T ∈ N
m satisfying

∑

i∈Ij

ki = q|Pwj
|, j = 1, . . . , r .

Step 3 Store y = (y1, . . . , ym)T in S0, where

yi = kiδj for i ∈ Ij , j = 1, . . . , r

and return to Step 2 for other vectors (k1, . . . , km) unless no one is left.

Step 4 Choose a feasible flow y0 from S0 to start. Set k = 0, uk−1 = yk , αk−1 = ∞,
S0 = S0 \ {y0} and Eε

q = ∅.

Step 5 Compute Ji(y
k) = {i′ ∈ {1, . . . , m} : pi′ ∈ Pw(i), cpi

(yk) − cpi′ (y
k) � 0} for

every i ∈ {1, . . . , m}. Set

ψk(y) :=
m∑

i=1

ypi

∑

i′∈Ji (y
k)

〈cpi
(y) − cpi′ (y), e〉.

Compute ψk(y
k).

If ψk(y
k) � ε, store yk in Eε

q and return to Step 4 until no element of S0 is left.
Otherwise, go to the next step.

Step 6 If |ψk(y
k) − αk−1| � ε, go to Step 4 to choose another feasible solution from S0 to

restart the procedure.
If ψk(y

k) < αk−1 − ε, set αk = ψk(y
k) and go to Step 7.

If ψk(y
k) > αk−1 + ε, replace yk = yk−1 + (yk − yk−1)/2 and return to Step 5.

Step 7 Compute ∇ψk(y
k). Solve (Pk)

minimize uT ∇ψk(y
k)

subject to u ∈ K

|ui − y0
i | � δw(i), i = 1, . . . , m.

Let uk be an optimal solution.
If |ψk(y

k) − ψk(u
k)| � ε, go to Step 4 to choose another feasible solution from S0 to

restart the procedure until no element of S0 is left.
Otherwise, set yk+1 = uk . Update k = k + 1 and return to Step 5.

Part 2 (Identifying strict equilibria and computing their radius of robustness)
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Step 8 Choose a vector equilibrium y1 from Eq to start. Set k = 1, S = ∅ and R = ∅.

Step 9 Determine Iw(yk).
Calculate

ρ(yk) =
∑

p∈Pw,w∈W

yk
p

∑

i∈Iw(yk),pi �=p

χ{0}(‖cp(yk) − cpi
(yk)‖).

If ρ(yk) �= 0, then return to Step 1 and choose another vector equilibrium from Eq to restart
the algorithm until no element of Eq is left.
If ρ(yk) = 0, then determine I+

w (yk) and calculate

r(yk) =
√

l

2
min

w∈W,i∈I+
w (yk)

min
p′∈Pw\{pi }

‖(cp′(Y
k
) − cpi

(Y
k
))+‖.

Store (yk, r(yk)) in S × R and go to Step 8 until no element of Eq is left.

Observe that in Step 9, if ρ(yk) = 0, then, in view of Corollary 1, the current equilibrium
flow yk is strict and its radius of robustness is given by the formula of Theorem 2. Moreover,
according to [14, Theorem 5.1] the upper limit of the sets Eq (the set of all possible accu-
mulation points) when q tends to +∞, contains all equilibria of the network. Therefore, the
upper limit of the sets obtained from Part 2 of our algorithm contains all strict equilibria.

4.2 Numerical Examples

In this subsection, we give some numerical examples to illustrate our algorithm. Using the
MATLAB optimization toolbox, we compute a representative set of strict vector equilibria
for a network with either linear or nonlinear vector cost functions. We know that if the cost
functions are continuous, then the network has equilibrium flows, but it may have no strict
equilibrium as it was shown in [14]. In Examples 4 and 6 with nonlinear cost functions,
every equilibrium obtained by our algorithm is strict. In Example 5, the network has some
strict equilibria and some equilibria that are not strict as well.

Example 4 Consider a network problem with one pair of origin-destination nodes w =
(x, x′), two criteria: travel time and travel cost, 5 available paths: Pw = {p1, p2, . . . , p5}
with the travel demand dw = 500. Assume that

c1,1(y) = y3
1 + y2

2 + y3
5 , c4,1(y) = 8y2

1 + y2 + y3
4 ,

c1,2(y) = 2y1 + y2y3 + 15y5, c4,2(y) = 5y1 + 3y4 + 3y2
5 ,

c2,1(y) = y3
1 + y2

2 + y2
3 , c5,1(y) = 8y3y4 + y2

5 ,

c2,2(y) = 5y2 + 3y3 + 12y4, c5,2(y) = 10y3
2 + y5.

c3,1(y) = y1 + y2 + y3
3 ,

c3,2(y) = 10y2 + y3 + 2y5,

With q = 1 we have 126 initial points. After 52.06344 seconds we obtained 9 vector
equilibria which are all strict equilibria. The obtained strict vector equilibria and radius of
robustness are given in the table below.
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Strict vector equilibria Radius of robustness

(0, 100, 100, 300, 0)T 141.4
(50, 300, 50, 150, 0)T 282.8
(50, 200, 150, 75, 25)T 0
(0, 200, 100, 200, 0)T 1060.7
(28.1259, 246.8740, 53.1259, 171.8742, 0)T 660.7
(0, 300, 50, 150, 0)T 282.8
(0, 300, 89.812, 110.188, 0)T 1.3
(100, 50, 200, 150, 0)T 176.8
(0, 300, 50, 150, 0)T 282.8

Example 5 Consider a network problem with one pair of origin-destination nodes w =
(x, x′), two criteria: travel time and travel cost, four available paths: Pw = {p1, p2, p3, p4}
with the travel demand dw = 200. Assume that

c1,1(y) = 2y1 + y2
4 , c3,1(y) = 200 − y1 − y2 + y2y3,

c1,2(y) = y1 + y2 + y3 + 5y2
4 , c3,2(y) = 200 + y2(y2 − 1) + y3(y

2
3 − 1),

c2,1(y) = y2y3 + y3 + y4, c4,1(y) = y2
4 + 450,

c2,2(y) = y1 + y2
2 + y3

3 + y(4, 1), c4,2(y) = 5y2
4 .

With q = 1, we have 35 initial points. After about 4.5 s, we obtained 2 strict equilibria
among 16 vector equilibria. The numerical results are given in the tables below.

Strict vector equilibria Radius of robustness

(0, 0, 50, 150)T 0.201 × 10−13

(0, 150, 0, 50)T 0.0502 × 10−13

Vector equilibria ρ Vector equilibria ρ Vector equilibria ρ

(0, 0, 50, 150)T 50 (100, 0, 100, 0)T 100 (50, 0, 50, 100)T 50
(0, 0, 100, 100)T 100 (50, 150, 0, 0)T 150 (150, 50, 0, 0)T 50
(0, 0, 150, 50)T 150 (100, 0, 50, 50)T 50 (0, 150, 0, 50)T 150
(0, 50, 50, 100)T 100 (100, 100, 0, 0)T 100 (50, 50, 50, 50)T 100
(50, 0, 100, 50)T 100 (150, 0, 50, 0)T 50

Example 6 Consider a network problem given in Fig. 1 with two pairs of origin-destination
nodes w1 = (x2, x1) and w2 = (x2, x3), two criteria: travel time and travel cost, three
available paths: Pw1 = {p1, p2, p3} between x2 and x1, five available paths: Pw2 =
{p4, p5, . . . , p8} between x2 and x3 with the travel demands dw1 = 200; dw2 = 300.
Assume that for the first O/D pair the cost functions are as below

c1,1(y) = y2
1 + y2

2 + y3
3 , c2,2(y) = y2 + 10y3 + 2y7 + y8,

c1,2(y) = 2y1 + 5y2 + 3y3 + y4, c3,1(y) = y1 + y2
2 + y3

3 + y5 + y6,

c2,1(y) = 8y1y2 + y2
2 + y7 + y8, c3,2(y) = 10y3

3 + 2y5,

N. Ba Minh, T.T.T. Phuong648



Fig. 1 Network problem

and for the second O/D pair the cost functions are given by

c4,1(y) = y1 + y2 + y3
4 + y2

5 + y3
8 , c7,1(y) = y2 + 8y2

4 + y5 + y3
7 ,

c4,2(y) = y1 + 2y4 + y5y6 + 15y8, c7,2(y) = y1 + y2 + 5y4 + 3y7 + 3y2
8 ,

c5,1(y) = y1 + y3 + y3
4 + y2

5 + y2
6 , c8,1(y) = y1 + y3 + 8y6y7 + y2

8 ,

c5,2(y) = y1 + 5y3 + 5y5 + 3y6 + 12y7, c8,2(y) = y1 + y3 + 10y3
5 + y8.

c6,1(y) = y3 + y4 + y5 + y3
6 ,

c6,2(y) = 3y3 + 10y5 + y6 + 2y8,

With 1260 initial points, after about 82 s, we obtained only one vector equilibrium
(0, 200, 0, 0, 180, 0, 0, 120)T which is also a strict equilibrium the radius of robustness with
radius of robustness 1001.9804.
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