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Abstract
In this paper, we give a formula for normal reduction number of an integrally closed m-
primary ideal of a two-dimensional normal local ring (A,m) in terms of the geometric
genus pg(A) of A. Also, we compute the normal reduction number of the maximal ideal
of Brieskorn hypersurfaces. As an application, we give a short proof of a classification of
Brieskorn hypersurfaces having elliptic singularities.

Keywords Normal reduction number · Geometric genus · Hypersurface of Brieskorn type

Mathematics Subject Classification (2010) 13B22 · Secondary 14B05 · 14J17

1 Introduction

For a Noetherian local ring (A,m) and an m-primary ideal I , let I denote the integral
closure, that is, z ∈ I if and only if zn + c1z

n−1 + · · · + cn = 0 for some n ≥ 1 and ci ∈ I i

(i = 1, . . . , n).
For a given Noetherian local ring (A,m) and an integrally closedm-primary ideal I (i.e.,

I = I ) with minimal reduction Q, we are interested in the question:
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Question What is the minimal number r such that I r ⊂ Q for every m-primary ideal I of
A and its minimal reduction Q?

One example of this direction is the Briançon-Skoda Theorem saying;
If (A,m) is a d-dimensional rational singularity (characteristic 0) or an F-rational ring (char-
acteristic p > 0), then I d ⊂ Q and d is the minimal possible number in this case (cf. [3,
9]).

The aim of our paper is to answer this question in the case of normal two-dimensional
local rings using resolution of singularities.

In what follows, we always assume that (A,m) is an excellent two-dimensional normal
local domain. For any m-primary integrally closed ideal I ⊂ A (e.g., the maximal ideal m)
and its minimal reduction Q of I , we define two normal reduction numbers as follows:

nr(I ) = min{n ∈ Z≥0 | In+1 = QIn},
r̄(I ) = min{n ∈ Z≥0 | IN+1 = QIN for every N ≥ n}.

These are analogues of the reduction number rQ(I) of an ideal I ⊂ A. But in general,
rQ(I) is not independent of the choice of a minimal reductionQ. On the other hand, nr(I ) =
r̄(I ) is not known in general.

Also, we define the following:

nr(A) = max{nr(I ) | I is anm-primary integrally closed ideal ofA},
r̄(A) = max{r̄(I ) | I is anm-primary integrally closed ideal ofA}.

These invariants of A characterize “good” singularities.

Example 1.1 (See [8] for (1), [12] for (2)) Suppose that A is not regular.

(1) A is a rational singularity (pg(A) = 0) if and only if nr(A) = r̄(A) = 1.
(2) If A is an elliptic singularity, then r̄(A) = 2, where we say that A is an elliptic singu-

larity if the arithmetic genus of the fundamental cycle on any resolution of A is 1.

One of the main aims is to compare these invariants with geometric invariants (e.g.,
geometric genus pg(A)). In [13], we have shown that nr(A) ≤ pg(A) + 1. But actually, it
turns out that we have a much better bound (see Theorem 2.9).

Theorem 1.2 If (A,m) is a normal two-dimensional local ring, then pg(A) ≥ (nr(A)
2

)
.

On the other hand, sometimes we have nr(A) = nr(m). For example, if A =
K[[x, y, z]]/(f ), where f is a homogeneous polynomial of degree d ≥ 2 with isolated
singularity, it is easy to see nr(m) = d − 1. If d ≤ 4, we can see by Theorem 1.2 that
nr(A) = nr(m) = d − 1. We do not have an answer yet if d = 5.

Question 1.3 If A is a homogeneous hypersurface singularity of degree d, then nr(A) =
d − 1?

To have examples for this theory, we compute nr(m) of Brieskorn hypersurface singular-
ities, that is, two-dimensional normal local domains

A = K[[x, y, z]]/(xa + yb + zc),

where K is an algebraically closed field of any characteristic and 2 ≤ a ≤ b ≤ c.



Normal Reduction Numbers for Normal Surface Singularities... 89

Note that our approach in this paper will be extended to the case of Brieskorn complete
intersection singularity (see [11]).

We can get an explicit value of nr(m) in this case.

Theorem 3.1 Let A be a Brieskorn hypersurface singularity as above. Put m = (x, y, z)A

and Q = (y, z)A. Then

nr(m) = r̄(m) =
⌊

(a − 1)b

a

⌋
.

Moreover, if we put nk = � kb
a

� for each k ≥ 0, then

mn = Qn + xQn−n1 + x2Qn−n2 + · · · + xa−1Qn−na−1 .

As an application of the theorem, we can show that the Rees algebra R(m) is normal if
and only if r̄(m) = a − 1 (see Corollary 3.7). Moreover, we can determine �A(mn+1/Qmn)

for every n ≥ 0 and q(m) = �A(H 1(X,OX(−M))), where X → SpecA denotes the
resolution of singularity of SpecA and M denotes the maximal ideal cycle on X.

In the last section, we discuss Brieskorn hypersurfaces with elliptic singularities. In fact,
the first author proved that if A is an elliptic singularity then nr(A) = 2. In particular, if
A is an elliptic singularity then nr(m) ≤ 2. If, in addition, A is a Brieskorn hypersurface
singularity A = K[[x, y, z]]/(xa +yb +zc), then our theorem shows that �(a−1)b/a� ≤ 2.
Using this fact, we can classify all Brieskorn hypersurfaces with elliptic singularity (see
Theorem 4.4).

We are interested to know if nr(A) characterizes elliptic singularities or not. Namely, the
question is equivalent to say, if A is not rational or elliptic, then does there exist I such that
nr(I ) ≥ 3? We can find such an ideal for all non-elliptic Brieskorn hypersurface singularity
except (a, b, c) = (3, 4, 6) or (3, 4, 7).

2 Normal Reduction Numbers and Geometric Genus

Throughout this paper, let (A,m) be a two-dimensional excellent normal local domain. In
another word, A is a local domain with a resolution of singularities f : X → Spec(A). For
a coherentOX-Module F , we denote by hi(F) the length �A(H i(F)).

We define the geometric genus of A by the following:

pg(A) = h1(OX),

which is independent of the choice of resolution of singularities. When pg(A) = 0, A is
called a rational singularity.

Let I ⊂ A be an m-primary integrally closed ideal. Then, there exist a resolution of
singularity X → SpecA and an anti-nef cycle Z on X so that IOX = OX(−Z) and I =
H 0(OX(−Z)). Then, we say that I is represented by Z on X and write I = IZ . Then,
InZ = In for every integer n ≥ 1.

In what follows, let A, X, I = IZ be as above.
The authors have studied pg-ideals in [13–15]. So, we first recall the notion of pg-ideals

in terms of q(kI).

Definition 2.1 Put q(0I ) = h1(OX ), q(I ) := h1(OX(−Z)) and q(nI) = q(In) for every
integer n ≥ 1.
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Theorem 2.2 [13] The following statements hold.

(1) 0 ≤ q(I ) ≤ pg(A).
(2) q(kI) ≥ q((k + 1)I ) for every integer k ≥ 1.
(3) q(nI) = q((n + 1)I ) = q((n + 2)I ) = · · · for some integer n ≥ 0.

Definition 2.3 [13] The ideal I is called the pg-ideal if q(I ) = pg(A).

Example 2.4 Any two-dimensional excellent normal local domain over an algebraically
closed field admits a pg-ideal. Moreover, if A is a rational singularity, then everym-primary
integrally closed ideal is a pg-ideal.

2.1 Upper Bound on Normal Reduction Numbers

Let Q be a minimal reduction of I . Then, there exists a nonnegative integer r such that
I r+1 = QIr . This is independent of the choice of a minimal reduction Q of I (see, e.g.,
[5, Theorem 4.5]). So we can define the following notion.

Definition 2.5 (Normal reduction number) Put

nr(I ) = min{n ∈ Z≥0 | In+1 = QIn},
r̄(I ) = min{n ∈ Z≥0 | IN+1 = QIN for every N ≥ n}.

We call them the normal reduction numbers of I . We also define

nr(A) = max{nr(I ) | I is am-primary integrally closed ideal ofA},
r̄(A) = max{r̄(I ) | I is am-primary integrally closed ideal ofA},

which are called the normal reduction numbers of A.

Our study on normal reduction numbers is motivated by the following observation: For
anm-primary ideal I in a two-dimensional excellent normal local domain A, I is a pg-ideal
if and only if r̄(I ) = 1.

By definition, nr(I ) ≤ r̄(I ) holds in general. In the next section, we show that nr(m) =
r̄(m) holds true for any Brieskorn hypersurfaceA = K[[x, y, z]]/(xa+yb+zc). But it seems
to be open whether equality always holds for other integrally closed m-primary ideals.

Question 2.6 When does nr(I ) = r̄(I ) hold?

In order to state the main result in this section, we recall the following lemma, which
gives a relationship between nr(I ) and q(kI).

Lemma 2.7 For any integer n ≥ 1, we have

2 · q(nI) + �A(In+1/QIn) = q((n + 1)I ) + q((n − 1)I ).

Proof Assume Q = (a, b) and consider the exact sequence as follows:

0 → OX((n − 1)Z) → OX(−Z)(−nZ)⊕2 → OX(−(n + 1)Z) → 0,
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where the map OX(−nZ)⊕2 → OX(−(n + 1)Z) is defined by (x, y) 
→ ax + by as in
Lemma 4.3 of [15]. By taking the cohomology long exact sequence, we have the following
exact sequence:

→ H 0(OX(−nZ))⊕2 ϕ→ H 0(OX(−(n + 1)Z))

→ H 1(OX(−(n − 1)Z)) → H 1(OX(−nZ))⊕2 → H 1(OX(−(n + 1)Z)) → 0.

Since Coker(ϕ) ∼= In+1/QIn, we obtain the required assertion.

The lemma gives another description of nr(I ) in terms of q(kI):

nr(I ) = min{n ∈ Z≥1 | q((n − 1)I ), q(nI), q((n + 1)I ) forms an arithmetic sequence}.
In particular,

nr(I ) ≤ min{n ∈ Z≥0 | q((n − 1)I ) = q(nI) = q((n + 1)I ) = · · · } = r̄(I ).

If the following question has an affirmative answer for I , then nr(I ) = r̄(I ) holds true.

Question 2.8 When is �A(In+1/QIn) a non-increasing function of n?

The main result in this section is the following theorem, which refines an inequality
nr(I ) ≤ pg(A) + 1 (see [14, Lemma 3.1]).

Theorem 2.9 For any m-primary integrally closed ideal I ⊂ A, we have

pg(A) ≥
(

r

2

)
+ q(rI ),

where r = nr(I ). In particular, pg(A) ≥ (nr(A)
2

)
.

Proof Suppose nr(I ) = r . Then, since I k+1 �= Q Ik for every k = 1, 2, . . . , r − 1 and
I r+1 = Q Ir , we have

q((r − 1)I ) − q(rI ) = q(rI ) − q((r + 1)I ),

q((r − 2)I ) − q((r − 1)I ) ≥ q((r − 1)I ) − q(rI ) + 1,
...

pg(A) − q(I ) ≥ q(I ) − q(2I ) + 1.

Thus, if we put ak = q((r − k)I ) for k = 0, 1, . . . , r , then we get

ak − ak−1 ≥ ak−1 − ak−2 + 1 ≥ · · · ≥ {
a1 − a0

} + (k − 1) ≥ k − 1.

Hence,

pg(A) = ar =
r∑

k=1

(ak − ak−1) + a0 ≥
r∑

k=1

(k − 1) + a0 = r(r − 1)

2
+ q(rI ),

as required.
The last assertion immediately follows from the definition of nr(A).

The above theorem gives a best possible bound (see also the next section).
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Example 2.10 If pg(A) <
(nr(J )+1

2

)
for some m-primary integrally closed ideal J ⊂ A,

then nr(A) = nr(J ).

Proof Suppose nr(A) �= nr(J ). Then, nr(A) ≥ nr(J ) + 1. By assumption and the theorem,
we have (

nr(A)

2

)
≤ pg(A) <

(
nr(J ) + 1

2

)
≤

(
nr(A)

2

)
.

This is a contradiction. Therefore, nr(A) = nr(J ).

3 Normal Reduction Numbers of theMaximal Ideal of Brieskorn
Hypersurfaces

Let K be a field of any characteristic, and let a, b, c be integers with 2 ≤ a ≤ b ≤ c. Then,
a hypersurface singularity

A = K[[x, y, z]]/(xa + yb + zc), m = (x, y, z)A

is called a Brieskorn hypersurface singularity if A is normal.

3.1 Normal Reduction Number of theMaximal Ideal

The main purpose in this section to give a formula for the reduction number of the maximal
ideal m in a hypersurface of Brieskorn type: A = K[[x, y, z]]/(xa + yb + zc). Namely, we
prove the following theorem.

Theorem 3.1 Let A = K[[x, y, z]]/(xa +yb +zc) be a Brieskorn hypersurface singularity.
If we put Q = (y, z)A and nk = � kb

a
� for k = 1, 2, . . . , a − 1, then, m = Q and we have

(1) mn = Qn + xQn−n1 + x2Qn−n2 + · · · + xa−1Qn−na−1 for every n ≥ 1.
(2) r̄(m) = nr(m) = na−1. In particular, if r̄(m) ≤ 2, then, � (a−1)b

a
� ≤ 2.

(3) R′(m) and G(m) are Cohen-Macaulay.

Remark 3.2 Note 0 := n0 ≤ n1 < n2 < · · · < na−1. In particular, nk ≥ k for each
k = 0, 1, . . . , a − 1.

In the following, we use the notation in this theorem and prove it.

Lemma 3.3 For integers k, n with n ≥ 1 and 1 ≤ n ≤ a − 1, we have that xk ∈ Qn if and
only if n ≤ nk .

Proof Suppose n ≤ nk . Then,

(xk)a = (xa)k = (−1)k(yb + zc)k ∈ Qbk ⊂ Qank = (Qnk )a .

Hence, xk ∈ Qnk ⊂ Qn.
Next, we prove the converse. Suppose xk ∈ Qn. Then, there exists a nonzero element

c ∈ A such that c(xk)� ∈ Qn� for all large integers �. By Artin-Rees’ lemma [10, Theorem
8.5], we can choose an integer �0 ≥ 1 such that Q� ∩ cA = cQ�−�0 for every � ≥ �0.
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Now suppose that n ≥ nk + 1. Since kb
a

+ 1
a

≤ nk + 1 ≤ n, we get

(yb + zc)k� = (−1)kxka� ∈ Qna� : c ⊂ Qna�−�0 ⊂ Q(nk+1)a�−�0 ⊂ Q(bk+1)�−n0

for sufficiently large �. This implies that ybk� ∈ (ybk�+1, z) and this is a contradiction
because y, z forms a regular sequence. Therefore, n ≤ nk , as required.

Corollary 3.4 For an integer n ≥ 1, if we put

Ln = Qn + xQn−n1 + x2Qn−n2 + · · · + xa−1Qn−na−1 ,

then Qn ⊂ Ln ⊂ Qn = mn.

Proof It is enough to prove xkyizj ∈ Qn if and only if i + j ≥ n − nk . In fact, since
Q = (y, z) is a parameter ideal in A, [6, Corollary 6.8.13] and Lemma 3.3 imply

xkyizj ∈ Qn ⇐⇒ xkyi−1zj ∈ Qn−1

⇐⇒ · · · · · ·
⇐⇒ xk ∈ Qn−i−j

⇐⇒ n − nk ≤ i + j .

Hence, Ln ⊂ Qn.

Put d = gcd(a, b), a′ = a
d
and b′ = b

d
. If we put

In = (xkyizj | kb′ + ia′ + ja′ ≥ n)A

for every n ≥ 1, then {In}n=1,2,... is a filtration of A.

Lemma 3.5 G({In}) is always reduced. In particular, R′({In}) is a Gorenstein normal
domain.

Proof One can easily see

G({In}) ∼=
{

K[X, Y,Z]/(Xa + Y b + Zc) if b = c

K[X, Y,Z]/(Xa + Y b) if b < c.
(3.1)

By assumption, K[X, Y,Z]/(Xa + Yb + Zc) is a normal domain. If charK = 0, then
K[X, Y,Z]/(Xa + Yb) is reduced. Otherwise, we put p = charK > 0. Since A is normal,
we have that p does not divide gcd(a, b) = d. Hence K[X, Y ]/(Xa + Y b) is reduced.

As A is normal, R = R′({In}) is a Gorenstein normal domain because G({In}) ∼=
R/t−1R.

Lemma 3.6 Ln = Ina′ for every n ≥ 1.

Proof Since Ln and Ina′ are monomial ideals, it suffices to show that xkyizj ∈ Ln if and
only if xkyizj ∈ Ina′ . But this is clear from the definition.
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We are now ready to prove the theorem.

Proof of Theorem 3.1 (1) SinceR′({In}) is normal by Lemma 3.5, we have that every In is
integrally closed. In particular, Ln = Ina′ is also integrally closed by Lemma 3.6. Therefore,
Ln = Qn = mn by Corollary 3.4.

(2) One can easily see that Ln+1 = QLn if and only if n ≥ na−1. Hence, (2) is
immediately follows from (1).

(3) R′(m) is Cohen-Macaulay since it is a Veronese subring of a Cohen-Macaulay ring
R′({In}). Then G(m) = R′(m)/t−1R′(m) is also Cohen-Macaulay by [14, Theorem 4.1].

Corollary 3.7 Let (A,m) be a Brieskorn hypersurface as in Theorem 3.1. Then,

(1) R(m) is normal if and only if r̄(m) = a − 1.
(2) R(m) is Cohen-Macaulay if and only if r̄(m) = 1.
(3) m is a pg-ideal if and only if a = 2 and r̄(m) = 1.

Proof (1) Suppose r̄(m) = a − 1. Then, na−1 = a − 1 by (1) and this implies that nk = k

for each k = 1, 2, . . . , a − 1. Then, one can easily see that mn = (Q, x)n = mn for every
n ≥ 1. Hence,R(m) is normal.

Conversely, ifR(m) is normal, then, mn = mn = (Q, x)n. Then, na−1 = a − 1.
(2) Since F = {mn} is a good m-adic filtration, R(m) = R(F ) is Cohen-Macaulay if

and only if G(F) is Cohen-Macaulay and r̄(m)− 2 = a(G(F)) < 0 by [2, Part 2, Corollary
1.2] and [4, Theorem 3.8].

(3) m is a pg-ideal if and only if R(m) is normal and Cohen-Macaulay. Hence, the
assertion follows from (1), (2).

3.2 q(m) and �A (mn+1/Qmn )

In the proof of Theorem 3.1, we gave a formula of the integral closure of mn. As an
application, we give a formula of q(m) for Brieskorn hypersurface singularities.

Proposition 3.8 Let A = K[[x, y, z]]/(xa + yb + zc) be a Brieskorn hypersurface
singularity. Under the same notation as in Theorem 3.1, we have

(1) �A(mn+1/Qmn) = max
(
a − � a(n+1)

b
�, 0

)
.

(2) q(m) = pg(A) −
a−1∑

k=1

(nk − nk−1)(a − k).

Proof Suppose nk ≤ n < nk+1 for some 0 ≤ k ≤ a − 2. Then mn = Qn + xQn−n1 +· · ·+
xkQn−nk + (xk+1) and xk+1, xk+2, . . . , xa−1 forms a K-basis of mn+1/Qmn and thus
�A(mn+1/Qmn) = a − 1 − k. Hence,

�A(mn+1/Qmn) =
{

a − 1 − k if nk ≤ n < nk+1, k = 0, 1, . . . , a − 2;
0 if n ≥ na−1.

Moreover, one can easily see k = a − � a(n+1)
b

� − 1.



Normal Reduction Numbers for Normal Surface Singularities... 95

(2) Put an = pg(A) − q(nm) and vn = �A(mn+1/Qmn) for every n ≥ 0. Then, a0 = 0
and {an} is an increasing sequence and an+1 = an for sufficiently large n. By Lemma 2.7,
we have

0 = an+1 − an = an − an−1 − vn = · · · = a1 − a0 −
n∑

k=1

vk

for sufficiently large n ≥ 1. Hence, (1) yields

pg(A) − q(m) = a1 =
n∑

k=1

vk =
a−1∑

k=1

(nk − nk−1)(a − k),

as required.

When a = 2, one can obtain the following.

Example 3.9 Let A = K[[x, y, z]]/(x2 + yb + zc) be a Brieskorn hypersurface singularity
and put r = � b

2 �. Then,
(1) q(im) =

{
pg(A) − i(r − 1) + (

i
2

)
if 1 ≤ i ≤ r − 1;

pg(A) − (
r
2

)
if i ≥ r .

(2) The normal Hilbert coefficients of m are given as follows:

e0(m) = 2, e1(m) = r, e2(m) =
(

r

2

)
,

where

�A(A/In+1) = e0(I )

(
n + 2

2

)
− e1(I )

(
n + 1

1

)
+ e2(I )

for sufficiently large n.

3.3 Geometric Genus

In this subsection, let us consider a graded ring

B = K[x, y, z]/(xa + yb + zc)

with deg x = q0 = bc, deg y = q1 = ac and deg z = q2 = ab. Put m = (x, y, z)A and
D = abc. In particular, the a-invariant of B is given by a(B) = D − q0 − q1 − q2. Also,
we have that A = B̂m is the completion of the local ring Bm. Then, we can calculate pg(A)

using this formula.

Lemma 3.10 Under the above notation, we have

pg(A) =
a(B)∑

i=0

dimK Bi = �{(t0, t1, t2) ∈ Z
⊕3
≥0 | D − q0 − q1 − q2 ≥ q0t0 + q1t1 + q2t2}.

We can find many examples of Brieskorn hypersurfaces with pg(A) = p for a given
p ≥ 1 if nr(m) = 1, 2.

Example 3.11 Let p ≥ 1 be an integer.
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(1) If A = C[[x, y, z]]/(x2 + y3 + z6p+1), then pg(A) = p and nr(m) = r̄(m) = 1.
(2) If A = C[[x, y, z]]/(x2 + y4 + z4p+1), then pg(A) = p and nr(m) = r̄(m) = 2.

Example 3.12 Let k ≥ 1 be an integer.

(1) Put A = C[[x, y, z]]/(x2 + y6 + z10k+i ) for i = 0, 1, . . . , 9. Then, nr(m) = r̄(m) = 3
and

pg(A) =
{
6k, (if i = 0, 1, 2);
6k + 1, (if i = 3, 4, 5); pg(A) =

{
6k + 3, (if i = 6, 7, 8);
6k + 4, (if i = 9, 10, 11).

(2) Put A = C[[x, y, z]]/(x2 + y7 + z14k+i ) for i = 0, 1, . . . , 13. Then, nr(m) = r̄(m) = 3
and

pg(A) =

⎧
⎪⎪⎨

⎪⎪⎩

9k, (if i = 0, 1, 2);
9k + 1, (if i = 3, 4);
9k + 2, (if i = 5);
9k + 3, (if i = 6, 7, 8);

pg(A) =
⎧
⎨

⎩

9k + 4, (if i = 9);
9k + 5, (if i = 10, 11);
9k + 6, (if i = 12, 13).

We discuss when pg(A) = (nr(m)
2

)
holds.

Proposition 3.13 Let A = C[[x, y, z]]/(xa + yb + zc) with 2 ≤ a ≤ b ≤ c. Then,
pg(A) = (nr(m)

2

)
if and only if one of the following cases:

• (a, b, c) = (2, 2, n) (n ≥ 1). In this case, nr(A) = nr(m) = 1 and pg(A) = 0.
• (a, b, c) = (2, 3, 3), (2, 3, 4), (2, 3, 5). In this case, nr(A) = nr(m) = 1 and pg(A) = 0.
• (a, b, c) = (2, 4, 4), (2, 4, 5), (2, 4, 6), (2, 4, 7). In this case, nr(A) = nr(m) = 2 and
pg(A) = 1.
• (a, b, c) = (2, 2r, 2r), (2, 2r, 2r + 1), (2, 2r, 2r + 2) (r ≥ 3). In this case, nr(A) =
nr(m) = r and pg(A) = (

r
2

) ≥ 3.
• (a, b, c) = (2, 2r+1, 2r+1), (2, 2r+1, 2r+2) (r ≥ 2). In this case, nr(A) = nr(m) = r

and pg(A) = (
r
2

)
.

• (a, b, c) = (3, 3, 3), (3, 3, 4), (3, 3, 5). In this case, nr(A) = nr(m) = 2 and pg(A) = 1.
• (a, b, c) = (3, 3s + 1, 3s + 1). In this case, nr(A) = nr(m) = 2s and pg(A) = (2s

2

)
.

• (a, b, c) = (3, 3s + 2, 3s + 2), (3, 3s + 2, 3s + 3). In this case, nr(A) = nr(m) = 2s + 1
and pg(A) = (2s+1

2

)
.

Proof We give a proof of only if part. Put r = nr(m). By Theorem 3.1, we have � (a−1)b
a

�.
So, we can write (a −1)b = ra +ε, where ε is an integer with 0 ≤ ε ≤ a −1. Now suppose

abc − bc − ca − ab ≥ bcλ0 + caλ1 + abλ2.

Then,

(ra + ε)c − ca − ab ≥ bcλ0 + caλ1 + abλ2. (eq.pg)

Suppose λ0 = 0. Then,

(
r − 1 + ε

a
− λ1

) c

b
≥ λ2 + 1
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and thus λ1 < r − 1 + ε
a
. By Lemma 3.10 and assumption, we have

(
r

2

)
= pg(A) ≥

r−1∑

k=0

⌊(
r − 1 + ε

a
− k

) c

b

⌋

≥
r−2∑

k=0

⌊
(r − 1 − k)

c

b

⌋
+

⌊ ε

a
· c

b

⌋

≥
r−2∑

k=0

(r − 1 − k) +
⌊ ε

a
· c

b

⌋
≥

(
r

2

)
.

Hence,
(
r − 1 + ε

a
− k

)
c
b

< r − k for each k = 0, 1, . . . , r − 1. Moreover, if λ0 ≥ 1,
then, since λ1 = λ2 = 0 does not satisfy the condition (eq.pg) by Theorem 2.9, we get the
following:

abc − bc − ca − ab < bc, that is,
2

a
+ 1

b
+ 1

c
> 1.

This implies a = 2, 3. If a = 2, then ε = 0, 1. If a = 3, then ε = 0, 1, 2.
Now suppose a = 3 and ε = 2. Then, as 2b = 3r + 2, we can write r = 2s, b = 3s + 1,

where s ≥ 1. Moreover, the condition holds true if and only if (2s + 2
3 − 1) c

3s+1 < 2s. This

means c < 3s + 1 + 3s+1
6s−1 . Hence, c = 3s + 1 because c ≥ b = 3s + 1. Similarly, easy

calculation yields the required assertion.

3.4 Weighted Dual Graph

In this subsection, let us explain how to construct the weighted dual graph of the minimal
good resolution of singularity X → SpecA for a Brieskorn hypersurface singularity A =
K[[x, y, z]]/(xa + yb + zc). Though it is obtained in [7], we use the notation of [11] in
which the first author studies complete intersection singularities of Brieskorn type. Let E

be the exceptional set of X → SpecA and E0 the central curve with genus g and E2
0 = −c0.

We define positive integers ai, �i, αi , λi , ĝi (i = 1,2,3), ĝ, and � as follows:

a1 = a, a2 = b, a3 = c,

�1 = lcm(b, c), �2 = lcm(a, c), �3 = lcm(a, b),

α1 = a1
(a1,�1)

, α2 = a2
(a2,�2)

, α3 = a3
(a3,�3)

,

λ1 = �1
(a1,�1)

, λ2 = �2
(a2,�2)

, λ3 = �3
(a3,�3)

,

ĝ1 = (b, c), ĝ2 = (a, c), ĝ3 = (a, b).

We put ĝ = abc
lcm(a,b,c)

and � = lcm(a, b, c), and define integers βi by the following
condition:

λiβi + 1 ≡ 0 (mod αi), 0 ≤ βi < αi .

Then, E0 has ĝ1 + ĝ2 + ĝ3 branches. For each w = 1, 2, 3, we have ĝw branches as follows:

Bw : Ew,1 − Ew,2 − · · · − Ew,sw ,
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where E2
w,j = −cw,j and

αw

βw

= [[cw,1, cw,2, . . . , cw,sw ]]

is a Hirzebruch-Jung continued fraction if αw ≥ 2, we regard Bw empty if αw = 1.
Moreover, we have

2g − 2 = ĝ −
3∑

w=1

ĝw, c0 =
3∑

w=1

ĝwβw

αw

+ ĝ

�
.

For instance, if (a, b, c) = (3, 4, 7), then we have the following:

a1 = 3, a2 = 4, a3 = 7, �1 = 28, �2 = 21, �3 = 12,

α1 = 3, α2 = 4, α3 = 7, λ1 = 28, λ2 = 21, λ3 = 12,

β1 = 2, β2 = 3, β3 = 4, ĝ1 = 1, ĝ2 = 1, ĝ3 = 1,

ĝ = 1, � = 84.

Thus, g = 0 and c0 = 2. Therefore, each irreducible component of E is a rational curve,
and the weighted dual graph of E is represented as in Fig. 1, where the vertex � has weight
−4 and other vertices • have weight −2.

See [11, 4.4] for more details.

4 Brieskorn Hypersurfaces with Elliptic Singularities

We use the notation of Section 3.4. Let ZE denote the fundamental cycle.
We call pf (A) := pa(ZE) the fundamental genus of A. The singularity A is said to be

elliptic if pf (A) = 1. We have the following.

Theorem 4.1 [12] If pf (A) = 1, then r̄(A) = 2.

Remark 4.2 By [1], nr(A) = 1 if and only if A is rational. Therefore, nr(A) = r̄(A) if
r̄(A) = 2.

It is natural to ask whether the converse of Theorem 4.1 holds or not. In the following, we
classify Brieskorn hypersurface singularities with pf (A) = 1 or r̄(A) = 2 as an application
of results in Section 3. Before doing that, we need the following formula of pf (A) in the
case of Brieskorn hypersurfaces. Put α = α1α2α3.

Fig. 1 The weighted dual graph of k[[x, y, z]]/(x3 + y4 + z7)
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Lemma 4.3 ([16], [7, Theorem 1.7], [11, 5.4]) If λ3 ≤ α, then −Z2
E = ĝ3 �λ3/α3� and

pf (A) = 1

2
λ3

{
ĝ − (2 �λ3/α3� − 1)ĝ3

λ3
− ĝ1

α1
− ĝ2

α2

}
+ 1

= 1

2
(ab − a − b − (2 �λ3/α3� − 1)(a, b)) + 1.

We are now ready to state our result in the case of pf (A) = 1.

Theorem 4.4 (A,m) is elliptic (i.e., pf (A) = 1) if and only if (a, b, c) is one of the
following.

(1) (2, 3, c), c ≥ 6.
(2) (2, 4, c), c ≥ 4.
(3) (2, 5, c), 5 ≤ c ≤ 9.
(4) (3, 3, c), c ≥ 3.
(5) (3, 4, c), 4 ≤ c ≤ 5.

Proof If A is elliptic, then by Theorem 4.1 and Theorem 3.1, we have � (a−1)b
a

� ≤ 2. Thus
possible pairs (a, b) are as follows:

(2, 2), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4).

We know that A is rational if (a, b, c) = (2, 2, c) with 2 ≤ c or (2, 3, c) with 3 ≤ c ≤ 5.
We obtain the assertion by Lemma 4.3, for example, pf (A) = 3 − �10/c� for (a, b, c) =
(2, 5, c), and pf (A) = 4 − �12/c� for (a, b, c) = (3, 4, c).

We can classify Brieskorn hypersurface singularities with r̄(A) = 2 except (a, b, c) =
(3, 4, 6) or (3, 4, 7).

Proposition 4.5 r̄(A) = 2 if and only if pf (A) = 1, except (a, b, c) = (3, 4, 6), or (3, 4, 7).

Proof It suffices to check whether nr(A) ≥ 3 for singularities with r̄(m) = 2 and pf (A) ≥
2.

Suppose (a, b, c) = (2, 5, c), c ≥ 10. Let Q = (y, z2) and J = Q. Then, xz �∈ Q and
(xz)2 = (y5 + zc)z2 ∈ Q6 = (Q3)2. Hence, nr(J ) ≥ 3.

Next suppose that (a, b, c) = (3, 4, c), c ≥ 8. Let Q = (y, z2) and J = Q, again. Then,
x2z �∈ Q and (x2z)3 = (y4 + zc)2z3 ∈ Q9 = (Q3)3. Hence, nr(J ) ≥ 3.

Applying the result of [11], we can show that the formula for r̄(m) for Brieskorn complete
intersection singularities. Thus, the statement above can be extended to those singularities.

Remark 4.6 Suppose that pg(A) = 3. It follows from Theorem 2.9 and its proof that
nr(I ) = 3 if and only if q(I ) = 1 and q(nI) = 0 for n ≥ 2. In particular, q(nI) = q(I ) for
n ≥ 2 if q(I ) ≥ 2.

Remark 4.7 If (a, b, c) = (3, 4, 6) or (3, 4, 7), we have the following:
(1) pg(A) = 3, pf (A) = 2, h1(OX(−ZE)) = 1.
(2) There exists a point p ∈ E such that mOX = IpOX(−ZE), where Ip ⊂ OX is

the ideal sheaf of the point p; so m = H 0(OX(−ZE)), but m is not represented by ZE .
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Note that H 0(OX(−nZE)) �= mn for n ≥ 2. On the other hand,OX(−2ZE) = OX(KX) is
generated by global sections. By the vanishing theorem, h1(OX(−nZE)) = 0 for n ≥ 2.
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Soc. 3(1), 31–116 (1990)

4. Hoa, L.T., Zarzuela, S.: Reduction number and a-invariant of good filtrations. Comm. Algebra 22(14),
5635–5656 (1994)

5. Huneke, C.: Hilbert functions and symbolic powers. Michigan Math. J. 34(2), 293–318 (1987)
6. Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society

Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)
7. Konno, K., Nagashima, D.: Maximal ideal cycles over normal surface singularities of Brieskorn type.

Osaka J. Math. 49(1), 225–245 (2012)
8. Lipman, J.: Rational singularities with applications to algebraic surfaces and unique factorization. Inst.

Hautes Études Sci. Publ. Math. 36, 195–279 (1969)
9. Lipman, J., Teissier, B.: Pseudo-rational local rings and a theorem of Briançon-Skoda on the integral
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