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Abstract
Let R be a commutative ring and let M be an R-module. For a ∈ R, AnnM(a) = {m ∈
M : am = 0} is said to be an annihilator submodule of M . In this paper, we study the
property of being prime or essential for annihilator submodules of M . Also, we introduce
the annihilator essential graph of equivalence classes of zero divisors ofM ,AER(M), which
is constructed from classes of zero divisors, determined by annihilator submodules of M

and distinct vertices [a] and [b] are adjacent whenever AnnM(a) +AnnM(b) is an essential
submodule of M . Among other things, we determine when AER(M) is a connected graph,
a star graph, or a complete graph. We compare the clique number of AER(M) and the
cardinal of m − AssR(M).

Keywords Annihilator submodule · Annihilator essential graph · Zero divisor graph
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1 Introduction

Throughout this paper, R is a commutative ring with non-zero identity and all modules
are unitary. Let M be an R-module. A proper submodule P of M is said to be prime if
rm ∈ P for r ∈ R and m ∈ M , implies that m ∈ P or r ∈ AnnR(M/P ) = {r ∈
R : rM ⊆ P }. Let SpecR(M) denote the set of prime submodules of M . For a ∈ R
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we call AnnM(a) = {m ∈ M : am = 0} the annihilator submodule of a in M . Let
m − AssR(M) = {P ∈ SpecR(M) : P = AnnM(a), for some 0 �= a ∈ R}. The properties
of prime submodules and m − AssR(M) are studied in [8, 9] and [4]. By [8, Proposition
3.2], any maximal element of {AnnM(a) : a �∈ AnnR(M)} is a prime submodule of M .
Thus, m − AssR(M) is a non-empty set, when M is a Noetherian R-module. In Section 2,
we study some properties of the elements of m − AssR(M). In particular, we show that
AnnM(a) = {m ∈ M | rm ∈ AnnR(aM)M for some r �∈ AnnR(aM)} whenever AnnM(a)

is a prime submodule of M and a �∈ r(AnnR(M)). Also, we compare m − AssR(M) and
the set of associated prime ideals of R, AssR(R), and we show that:

m − AssR(M) = {AnnM(a) |AnnR(a) ∈ AssR(R)} ,

where M is either a free or a faithful multiplication R-module.
There are many studies of various graphs associated to rings or modules (see for instance

[3, 5, 6, 10]). A submodule N of M is called an essential submodule if it has a non-zero
intersection with any other non-zero submodule of M . In the third section, we investigate
the property of being essential for an annihilator submodule, AnnM(a), in two cases, a ∈
r(AnnR(M)) = {r ∈ R : rtM = 0 for some positive integer t} or a �∈ r(AnnR(M)). We
prove that, if AnnM(a), AnnM(b) ∈ m − AssR(M), then AnnM(a) + AnnM(b) is an
essential submodule of M . By relying on this fact, we introduce the annihilator essential
graph of equivalence classes of zero divisors of M , AER(M), which is constructed from
classes of zero divisors, determined by annihilator submodules and distinct vertices [a] and
[b] are adjacent whenever AnnM(a) + AnnM(b) is an essential submodule of M . Among
other things, we determine when AER(M) is a connected graph, a star graph, or a complete
graph. An aspect of AER(M) is the connection to elements of m − AssR(M). We com-
pare the clique number of AER(M) and the cardinal number of m − AssR(M) under the
additional assumption r(AnnR(M)) = 0 or r(AnnR(M)) = AnnR(M) �= 0.

The zero-divisor graph determined by equivalence classes, �E(R), was introduced in
[10], and further studied in [2, 7, 11]. We shall compare �E(R) and AER(R) to determine
some properties of the ring R.

Let � be a (undirected) graph. We say that � is connected if there is a path between
any two distinct vertices. For vertices x and y of �, we define d(x, y) to be the length of a
shortest path between x and y, if there is no path, then d(x, y) = ∞. The diameter of � is

diam(�) = sup {d(x, y) | x and y are vertices of �} .
The girth of �, denoted by gr(�), is the length of a shortest cycle in � (gr(�) = ∞ if
� contains no cycle). A graph � is complete if any two distinct vertices are adjacent. The
complete graph with n vertices is denoted by Kn (we allow n to be an infinite cardinal). The
clique number, ω(�), is the greatest integer n > 1 such that Kn ⊆ �, and ω(�) = ∞ if
Kn ⊆ � for all integers n ≥ 1.

2 Annihilators Which Are Prime Submodules

Let R be a commutative ring and M be an R-module. In this section, we investigate the
primeness of annihilator submodules of M .

Theorem 1 Let M be a Noetherian R-module with r(AnnR(M)) �= AnnR(M). Then, there
exists a ∈ r(AnnR(M)) such that AnnM(a) is a prime submodule of M .
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Proof Assume that a ∈ r(AnnR(M)) \ AnnR(M). If AnnM(a) is a maximal element of
X = {AnnM(b) : b �∈ AnnR(M)}, then [8, Proposition 3.2] shows that AnnM(a) is a prime
submodule of M and we are done. Otherwise, there exists b ∈ R such that AnnM(b) is a
maximal element of X and AnnM(a) ⊆ AnnM(b). We show that b ∈ r(AnnR(M)). By
assumption a ∈ r(AnnR(M)), so that there is an integer t such that 0 = atM ⊆ AnnM(b).
Thus, abM = 0, since AnnM(b) is a prime submodule. Hence, b ∈ AnnR(aM) ⊆
AnnR(bM) and so b2M = 0 which implies that b ∈ r(AnnR(M)).

The following example shows that AnnM(a) can be a prime submodule of M but a �∈
r(AnnR(M)).

Example 1 Let Zp2q be the ring of integers modulo p2q for some prime integers p, q. Then,
AnnZ(Zp2q) = p2qZ, r(AnnZ(Zp2q)) = pqZ and AnnZ

p2q
(p2) = qZp2q is a prime

submodule of Zp2q while p2 �∈ r(AnnZ(Zp2q)).

Lemma 1 If a ∈ R, then AnnR(M/AnnM(a)) = AnnR(aM).

Proof If a ∈ AnnR(M), there is nothing to prove. Thus, assume that a �∈ AnnR(M)

and r ∈ AnnR(M/AnnM(a)). Then, rM ⊆ AnnM(a) and so arM = 0. Hence, r ∈
AnnR(aM). The converse is similar.

Theorem 2 Let AnnM(a) be a prime submodule of M and a �∈ r(AnnR(M)). Then,
AnnM(a) = {m ∈ M : rm ∈ AnnR(aM)M for some r ∈ R \ AnnR(aM)} and it is a
minimal prime submodule of M .

Proof By assumption and Lemma 1, AnnR(M/AnnM(a)) = AnnR(aM) = p is a prime
ideal of R. Let H := {m ∈ M : rm ∈ pM for some r �∈ p} and m ∈ H . Then, there
exists s ∈ R \ p such that sm ∈ pM . This implies that sm = ∑k

i=1 simi , where si ∈ p.
Thus, sam = ∑k

i=1 siami = 0 and so sm ∈ AnnM(a). Hence, by assumption and s /∈ p,
it follows that m ∈ AnnM(a). Therefore, H ⊆ AnnM(a). Let m ∈ AnnM(a). Then, am =
0 ∈ pM . If a /∈ p, we are done. Otherwise, a2M = 0 and so a ∈ r(AnnR(M)), contrary to
assumption. Thus, m ∈ H .

Assume that P is a prime submodule of M and P ⊆ AnnM(a). Let m ∈ AnnM(a). Then,
am = 0 ∈ P which implies that a ∈ AnnR(M/P ) or m ∈ P . If aM ⊆ P ⊆ AnnM(a), then
a2M = 0 and so a ∈ r(AnnR(M)); it is a contradiction. Hence, m ∈ P and P = AnnM(a)

which implies that AnnM(a) is a minimal prime submodule of M .

Corollary 1 Let AnnR(M) = p be a prime ideal of R and a �∈ p. Then, the following
statements are true:
(i) AnnR(aM) = AnnR(M).
(ii) If AnnM(a) is a prime submodule of M , then AnnM(a) = {m ∈ M : rm = 0 for
some r ∈ R \ p} = ∪b �∈pAnnM(b).
(iii) |m − AssR(M)| ≤ 1.

Proof (i) It is clear that AnnR(M) ⊆ AnnR(aM). To establish the reverse inclusion, let
r ∈ AnnR(aM). Then, arM = 0 and so ar ∈ AnnR(M). By assumption, AnnR(M) is a
prime ideal of R and a �∈ AnnR(M), thus r ∈ AnnR(M). Hence, AnnR(aM) ⊆ AnnR(M).
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(ii) It follows by (i) and Theorem 2.
(iii) It follows by (ii).

The following lemma shows that there is a natural injective map from

SpecR(M) ∩ {AnnM(a) : a �∈ r(AnnR(M))} −→ Spec(R) ∩ {AnnR(aM) : a ∈ R}

given by AnnM(a) → AnnR(aM).

Lemma 2 LetAnnM(a) andAnnM(b) be prime submodules ofM and a, b /∈ r(AnnR(M)).
Then, AnnM(a) = AnnM(b) if and only if AnnR(aM) = AnnR(bM).

Proof In view of Lemma 1, if AnnM(a) = AnnM(b), then AnnR(aM) = AnnR(bM).
For the converse, assume that m ∈ AnnM(a). Thus, am = 0 and am ∈ AnnM(b). If
m ∈ AnnM(b), we are done. Otherwise, a ∈ AnnR(bM) = AnnR(aM) which implies that
a ∈ r(AnnR(M)) contrary to assumption. Thus, m ∈ AnnM(b).

The following result shows that the above injective map from SpecR(M) ∩ {AnnM(a) :
a �∈ r(AnnR(M))} to Spec(R) ∩ {AnnR(aM) : a ∈ R}, could be a bijection.

An R-module M is called a multiplication module if for each submodule N of M , N =
IM for some ideal I of R. Multiplication module has been studied in [1].

Theorem 3 Let M be either a free or a faithful multiplication module and a ∈ R. Then,
AnnM(a) is a prime submodule of M if and only if AnnR(a) is a prime ideal of R. In
particular,

m − AssR(M) = {AnnM(a) : AnnR(a) ∈ AssR(R)}.

Proof Assume that M is a free R-module, thus M ∼= ⊕i∈IRi (Ri = R), where I is an
index set. Let a ∈ R and AnnR(a) be a prime ideal of R. It is easy to see that AnnM(a) ∼=
⊕i∈IAnnR(a). Let rm ∈ AnnM(a) and r �∈ AnnR(aM) = AnnR(a) for some r ∈ R,
m = (mi)i∈I ∈ M . Thus, rmi ∈ AnnR(a) and so mi ∈ AnnR(a), for all i ∈ I . Hence, m ∈
AnnM(a) and AnnM(a) is a prime submodule of M . By the same argument, the converse
follows.

By [1, Corollary 2.11], AnnM(a) is a prime submodule of M if and only if AnnR(aM)

is prime ideal of R. On the other hand, AnnR(aM) = AnnR(a) since M is faithful. Thus,
AnnM(a) is a prime submodule of M if and only if AnnR(a) is a prime ideal of R.

Theorem 4 Let M be a projective module and a ∈ R. If AnnR(a) is a prime ideal of R,
then AnnM(a) is a prime submodule of M . Furthermore, |AssR(R)| ≤| m − AssR(M) |,
whenever M is a faithful projective module.

Proof By assumption, there exists a free R-module F and an R-module A such that F
∼= M ⊕ A. By assumption and Theorem 3, AnnF (a) is a prime submodule of F . Let x ∈
M , r ∈ R, and rx ∈ AnnM(a). Then, arx = 0 and so ar(x, 0) = 0. Thus, r(x, 0) ∈
AnnF (a). Hence, r ∈ AnnR(aF ) or (x, 0) ∈ AnnF (a). Therefore, r ∈ AnnR(a(M ⊕A)) ⊆
AnnR(aM) or x ∈ AnnM(a).
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3 The Annihilator Essential Graph of Zero Divisors

Recall that R is a commutative ring and M is an R-module. A submodule N of M is called
an essential submodule if it has a non-zero intersection with any other non-zero submodule
of M . In this section, we investigate the essentialness of the annihilator submodules of M

and we introduce the annihilator essential graph of equivalence classes of zero divisors of
M , AER(M), which is constructed from classes of zero divisors, determined by annihilator
submodules of M .

Theorem 5 Let M be an R-module. Then, the following statements are true:
(i) For all a ∈ R, aM + AnnM(a) is an essential submodule of M .
(ii) If a ∈ r(AnnR(M)), then AnnM(a) is an essential submodule of M .
(iii) If a �∈ r(AnnR(M)) and AnnM(a) is a prime submodule of M , then AnnM(a) is not an
essential submodule of M .

Proof (i) Let a ∈ R. We have to show that aM + AnnM(a) is an essential submodule of
M . Let N be a submodule of M . Then, aN ⊆ aM ∩ N ⊆ (aM + AnnM(a)) ∩ N . If
(aM + AnnM(a)) ∩ N = 0, then aN = 0 which implies that N ⊆ AnnM(a). Hence,
N ⊆ (aM + AnnM(a)) ∩ N and so N = 0. Therefore, aM + AnnM(a) is an essential
submodule of M .

(ii) By assumption, there exists an integer t , such that atM = 0. Thus, aM ⊆
AnnM(at−1) and so aM + AnnM(a) ⊆ AnnM(at−1). Hence, AnnM(at−1) is an essential
submodule ofM by (i). Suppose thatN is a non-zero submodule ofM . Then, AnnM(at−1)∩
N �= 0 and so there is 0 �= x ∈ N such that at−1x = 0. Thus, 0 �= aix ∈ N ∩ AnnM(a),
for some i with 0 ≤ i ≤ t − 2. Hence, AnnM(a) is an essential submodule of M .

(iii) By assumption, a �∈ r(AnnR(M)) so aM �= 0. Let am ∈ aM ∩ AnnM(a). Then, by
hypotheses, m ∈ AnnM(a) which shows that am = 0 and so aM ∩ AnnM(a) = 0. Thus,
AnnM(a) is not an essential submodule of M .

Theorem 6 Let M be an R-module and a, b ∈ R. Then, the following statements are true:
(i) If either abM = 0 or AnnM(a),AnnM(b) are prime submodules of M , then AnnM(a)+
AnnM(b) is an essential submodule of M .
(ii) If AnnM(a),AnnM(b) are prime submodules of M and a, b �∈ r(AnnR(M)), then
abM = 0.

Proof (i) Let a, b ∈ R and abM = 0. Then, bM ⊆ AnnM(a) and so bM + AnnM(b) ⊆
AnnM(a) +AnnM(b). Thus, by using Theorem 5 (i), the assertion follows.

Assume that a, b ∈ R and AnnM(a),AnnM(b) are prime submodules of M . If either
a ∈ r(AnnR(M)) or b ∈ r(AnnR(M)), then by Theorem 5 (ii), either AnnM(a) or
AnnM(b) is an essential submodule of M and the assertion follows. Thus, assume that
a, b �∈ r(AnnR(M)). Without loss of generality, we can assume that AnnM(a) �⊆ AnnM(b);
see Theorem 2. Thus, there is m ∈ M such that am = 0 and bm �= 0. By am ∈ AnnM(b), it
follows that a ∈ AnnR(bM). Hence, abM = 0 and the result follows by previous paragraph.

(ii) We suppose that abM �= 0 and look for a contradiction. By (i), AnnM(a)+AnnM(b)

is an essential submodule of M . Thus, (AnnM(a) + AnnM(b)) ∩ abM �= 0. Hence, there
are m ∈ M , m′ ∈ AnnM(a) and m′′ ∈ AnnM(b) such that abm �= 0 and abm = m′ +
m′′. Thus, a2b2m = 0. By assumption, AnnM(a),AnnM(b) are prime submodules of M ,
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thus AnnM(a) = AnnM(a2) and AnnM(b) = AnnM(b2). Therefore, abm = 0 that is a
contradiction.

Corollary 2 Let a, b �∈ r(AnnR(M)) and AnnM(a) be a prime submodule of M . Then,
AnnM(a) + AnnM(b) is an essential submodule of M if and only if AnnM(b) �⊆ AnnM(a).

Proof If AnnM(b) �⊆ AnnM(a), then by a similar argument to that of Theorem 6 (ii), one
can show that abM = 0 and so AnnM(a) + AnnM(b) is an essential submodule of M .
Conversely, assume that AnnM(b) ⊆ AnnM(a). Thus, AnnM(a) is an essential submodule
of M and so AnnM(a) ∩ aM �= 0. Now, by a similar argument to that of Theorem 6 (ii), we
achieve a contradiction.

Assume Z(M) denotes the set of zero divisors of M and Z(M)∗ = Z(M) \ {0}. For
a, b ∈ R, we say that a ∼ b if and only if AnnM(a) = AnnM(b). As noted in [10], ∼ is an
equivalence relation. If [a] denotes the class of a, then [0] = AnnR(M) and [a] = R\Z(M)

for all a ∈ R \ Z(M); the other equivalence classes form a partition of Z(M).

Definition 1 The annihilator essential graph of equivalence classes of zero divisors of M ,
denoted AER(M), is a graph associated to M whose vertices are the classes of elements of
Z(M)∗, and each pair of distinct classes [a] and [b] are adjacent if and only if AnnM(a) +
AnnM(b) is an essential submodule of M .

The following remark which we include for the reader’s convenience is based on the
Theorems 5 and 6 and Corollary 2.

Remark 1 LetM be anR-module and let [a], [b] be two distinct vertices ofAER(M). Then,
the following statements hold:
(i) If a ∈ r(AnnR(M)), then [a] is a universal vertex of AER(M).
(ii) If abM = 0, then [a], [b] are adjacent in AER(M).
(iii) If AnnM(a),AnnM(b) are prime submodules of M , then [a], [b] are adjacent in
AER(M).
(iv) Let a, b �∈ r(AnnR(M)) and AnnM(a) be a prime submodule of M . Then, [a], [b] are
adjacent in AER(M) if and only if AnnM(b) �⊆ AnnM(a).

The following example shows that AER(M) can be an empty graph.

Example 2 Consider M = Z×Z6 as a Z-module. Thus, AnnM(2) = 0× 3Z6, AnnM(3) =
0 × 2Z6 and AnnM(6) = 0 × Z6. Hence, AEZ(M) is an empty graph with vertices [2, 3]
and [6].

Theorem 7 Let M be a Noetherian R-module. Then, AER(M) is not a connected graph if
and only if r(AnnR(M)) = 0 and there exists an element a ∈ Z(M)∗ such that AnnM(a) ⊆
∩P∈m−AssR(M)P .

Proof (⇒) Assume that AER(M) is not connected. Thus, r(AnnR(M)) = 0, otherwise,
by Remark 1 (i), AER(M) has a universal vertex which is a contradiction. Also, Remark 1
(iii) implies that the induced subgraph of elements of m−AssR(M) is complete; hence, by
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hypothesis, there exists a ∈ Z(M)∗ such that AnnM(a) is not prime and [a] is not joint with
any element of m − AssR(M). Therefore, AnnM(a) ⊆ ∩P∈m−AssR(M)P by Remark 1 (iv).

(⇐) Let r(AnnR(M)) = 0 and let there be an element a inZ(M)∗ such that AnnM(a) ⊆
∩P∈m−AssR(M)P . We have to show that [a] is an isolated vertex in AER(M). By hypothesis
and Remark 1 (iv), [a] is not adjacent with any element of m − AssR(M). On the other
hand, if AnnM(b) �∈ m − AssR(M), then AnnM(b) ⊆ AnnM(c), for some c ∈ R with
AnnM(c) ∈ m − AssR(M). Thus, AnnM(a) + AnnM(c) is not an essential submodule of
M . Hence, AnnM(a)+ AnnM(b) is not an essential submodule of M , and so [a] and [b] are
not adjacent. Therefore, [a] is an isolated vertex and AER(M) is not connected.

Corollary 3 Let M be a Noetherian R-module. Then, AER(M) is a connected graph if and
only if either r(AnnR(M)) �= 0 or for each a ∈ Z(M)∗ there exists P ∈ m − AssR(M)

such that AnnM(a) �⊆ P .

Theorem 8 Let M be a Noetherian R-module. If AER(M) is a connected graph, then
diamAER(M) ≤ 3.

Proof If r(AnnR(M)) �= 0, then AER(M) has a universal vertex and therefore we have
diamAER(M) ≤ 2. Now, let r(AnnR(M)) = 0 and [a], [b] are two distinct vertices
of AER(M). By assumption, AER(M) is connected, so there exist a′, b′ ∈ Z(M)∗ such
that AnnM(a′), AnnM(b′) are prime submodules of M and AnnM(a) �⊆ AnnM(a′) and
AnnM(b) �⊆ AnnM(b′). Thus, by Remark 1 (iv), if [a′] = [b′], then [a] − [a′] − [b] is a
path, and if [a′] �= [b′], then [a]− [a′] − [b′] − [b] is a path and so diamAER(M) ≤ 3.

To see that the bound is sharp, notice that equality holds for Z30. It is easy to see that
diamAEZ30(Z30) = 3.

Corollary 4 If R is Noetherian, then AER(R) is connected and diamAER(R) ≤ 3.

Proof It is an immediate consequence of Theorems 7 and 8.

Theorem 9 Let M be a Noetherian module and let AER(M) be a connected graph. If
AER(M) has a cycle, then gr(AER(M)) ≤ 4.

Proof If r(AnnR(M)) �= 0 or | m − AssR(M) |≥ 3, then the result follows by Remark
1 (i) and (iii). Assume that r(AnnR(M)) = 0 and | m − AssR(M) |≤ 2. Thus, we have
| m−AssR(M) |= 2 since AER(M) is connected. Suppose that AnnR(a) and AnnR(b) are
two prime submodules of M and [c] is an arbitrary vertex of AER(M). Then, [c] is adjacent
to [a] or [b], by Corollary 3 and Remark 1 (iv). Thus, we have a cycle of length at most four
and therefore gr(AER(M)) ≤ 4.

Theorem 10 Let M be a Noetherian R-module. Then, the following statements are true:
(i) If r(AnnR(M)) = 0, then ω(AER(M)) =| m − AssR(M) |.
(ii) If r(AnnR(M)) = AnnR(M) �= 0, then ω(AER(M)) =| m − AssR(M) | +1.

Proof (i) Let n := ω(AER(M)) and k :=| m − AssR(M) |. Then, by Remark 1 (iii),
k ≤ n. If AnnM(a) is not a prime submodule, then there is an annihilator prime submodule
AnnM(b) such that [a] and [b] are not adjacent by Remark 1 (iv), where a, b ∈ Z(M)∗.
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Assume that H is a maximal clique and k < n. So, there is a vertex of m − AssR(M)

which is not a vertex of H . Assume that H contains k − t vertices of m−AssR(M), where
t > 0. Thus, at least t + 1 vertices of H are adjacent to k − t vertices of m − AssR(M)

and could not be adjacent to all other t vertices of m − AssR(M). Hence, there exist at
least two vertices [c], [d] of H that are not adjacent to a vertex [e] of m − AssR(M). Then,
AnnM(c) + AnnM(d) ⊆ AnnM(e) and AnnM(e) is not essential, by Theorem 5 (iii). Thus,
[c], [d] are not adjacent and it is a contradiction. Hence, k = n.

(ii) Assume that a ∈ AnnR(M). Thus, [a] is a universal vertex of AER(M). Now, by a
similar argument to that of (i), the result follows.

Theorem 11 Let M be a Noetherian R-module and r(AnnR(M)) = 0. Then, the following
statements are equivalent:
(i) AER(M) is a complete graph;
(ii) AnnM(a) is a prime submodule of M , for all a ∈ Z(M)∗;
(iii) AER(M) = K1 or K2.

Proof (i) ⇒ (ii) Assume that a ∈ Z(M)∗. If AnnM(a) is a maximal element of X =
{AnnM(b) : b �∈ AnnR(M)}, then it is a prime submodule of M and the result fol-
lows. Otherwise, there is b ∈ Z(M)∗ such that AnnM(b) is a maximal element of X

and AnnM(a) ⊆ AnnM(b). Thus, [a] is not adjacent to [b] by Remark 1 (iv) contrary to
assumption. Hence, AnnM(a) is a prime submodule of M , for all a ∈ Z(M)∗.

(ii) ⇒ (i) It is obvious by Remark 1 (iii).
(i) ⇒ (iii) Assume that a, b, c ∈ Z(M)∗ and assume [a], [b], [c] are all distinct vertices

of AER(M). Thus, in view of (i) ⇔ (ii) and Theorem 6 (ii), we have ab = ac = bc = 0.
Hence, a(b + c) = 0 and so b + c ∈ Z(M)∗. Therefore, [b + c] is a vertex of AER(M).
If [b + c] and [b] are two distinct vertices of AER(M), then by assumption [b + c] and [b]
are adjacent and so as above 0 = b(b + c) = b2 which implies that b ∈ r(AnnR(M)) = 0;
this is a contradiction. Now, assume that [b + c] = [b]. Thus, AnnM(b + c) = AnnM(b).
So that, cM ⊆ AnnM(b) = AnnM(b + c). Thus, (b + c)cM = 0 and so c2 = 0. It leads to
a similar contradiction. Hence, AER(M) has at most two vertices.

(iii) ⇒ (i) It is obvious.

Theorem 12 Let M be an R-module and AnnR(M) �= 0. Then, the following statements
are true:
(i) If AER(M) is a star graph with more than two vertices, then AnnR(M) is a prime ideal
of R.
(ii) If M is Noetherian and AnnR(M) is a prime ideal of R, then AER(M) is a star graph.

Proof (i) Assume that AER(M) is a star graph with center vertex [c], where c ∈ AnnR(M).
We have to show that AnnR(M) is a prime ideal of R. Assume that a, b ∈ R and abM =
0. If either aM = 0 or bM = 0, we are done. Otherwise, with condition AnnM(a) �=
AnnM(b), [a] and [b] are adjacent inAER(M), by Remark 1 (ii). So that we can assume that
[a] = [c] and then AnnM(a) = AnnM(c)which implies that a ∈ AnnR(M), a contradiction.
Hence, AnnM(a) = AnnM(b). Thus, a2M = 0 and so a ∈ r(AnnR(M)) and [a] is the
center vertex of AER(M) by Remark 1 (i) is again a contradiction. Therefore, either aM =
0 or bM = 0 and AnnR(M) is a prime ideal of R.

(ii) In view of Corollary 1, | m − AssR(M) |= 1. Let AnnM(a) be the unique element
of m−AssR(M) and so the unique maximal element of X = {AnnM(b) : b �∈ AnnR(M)}.
Then, AnnM(a) is not an essential submodule of M , by Theorem 5. Assume that b, c ∈
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Z(M)\AnnR(M). Thus, AnnM(b)+AnnM(c) ⊆ AnnM(a) and so AnnM(b)+AnnM(c) is
not essential submodule of M . Hence, [b] and [c] are not adjacent in AER(M). Therefore,
all vertices of AER(M) are adjacent to [d] where d ∈ AnnR(M) that implies AER(M) is a
star graph.

The annihilator essential graph AER(R) and the graph of equivalence classes of zero
divisors �E(R) have the same vertex sets (see [10]). Moreover, if [a], [b] are adjacent
vertices of �E(R), then ab = 0, so by Remark 1 (ii), [a], [b] are adjacent in AER(R).
Therefore, �E(R) is a subgraph of AER(R). Now, the question arises as when these graphs
are the same?

Theorem 13 If R is a reduced ring, then AER(R) = �E(R).

Proof Assume that [a], [b] are adjacent in AER(R). Then, AnnR(a) + AnnR(b) is an es-
sential ideal of R. If ab �= 0, then (AnnR(a) + AnnR(b)) ∩ abR �= 0. Thus, there exist
r ∈ R, s ∈ AnnR(a) and t ∈ AnnR(b) such that 0 �= abr = s + t . Hence, a2b2r = 0, and
so abr ∈ Nil(R) = 0 is a contradiction. Thus, ab = 0. The converse is true by the previous
paragraph.

Let p be a prime number andR = Zp3 . Then,AER(R) = �E(R) = K2, but Nil(R) �= 0.
So that the converse of Theorem 13 is not true necessarily.

Theorem 14 Let R be a Noetherian non-reduced ring and AER(R) = �E(R). Then, the
following statements are true:
(i) Z(R) = AnnR(a), for some a ∈ Nil(R).
(ii) If AnnR(a) is an essential ideal of R, then a ∈ Nil(R).
(iii) Nil(R) = r(AnnR(Z(R))).

Proof (i) Assume that 0 �= x ∈ Nil(R) thus AnnR(x) is an essential ideal ofR, see Theorem
5 (ii), and so x is a universal vertex of AER(R). Hence, by assumption, either AnnR(x) =
AnnR(y) or xy = 0, for all y ∈ Z(R). We first show that Z(R) is an ideal of R. Let a, b ∈
Z(R). It is enough to show that a + b ∈ Z(R). If AnnR(b) = AnnR(a), then we are done.
Thus, assume that AnnR(b) �= AnnR(a). If AnnR(x) = AnnR(a), then there is an integer
n such that xna = 0 and xn �= 0. Moreover xb = 0 since AnnR(x) �= AnnR(b). Hence,
xn(a + b) = 0 and so a + b ∈ Z(R). If AnnR(x) �= AnnR(a) and AnnR(x) �= AnnR(b),
then xa = xb = 0 which implies that x(a + b) = 0 and a + b ∈ Z(R). Thus, Z(R)

is an ideal of R. We have Z(R) = ∪AnnR(x)∈AssR(R)AnnR(x). Thus, by Prime Avoidance
Theorem Z(R) = AnnR(a), for some a ∈ Z(R). Furthermore, by a ∈ Z(R) = AnnR(a), it
follows that a2 = 0 and a ∈ Nil(R).

(ii) Let a ∈ R and assume that AnnR(a) is an essential ideal of R. If AnnR(a) =
AnnR(a2), then AnnR(a) ∩ Ra = 0. Thus, by hypotheses Ra = 0 and so a = 0 ∈ Nil(R).
Now, assume that AnnR(a) �= AnnR(a2). Thus, [a], [a2] are two distinct adjacent vertices
of AE(R). Hence, by assumption, a3 = 0 and therefore a ∈ Nil(R).

(iii) Let a ∈ r(AnnR(Z(R))). Then, anZ(R) = 0, for some integer n, and so an+1 = 0
since a ∈ Z(R). Hence, a ∈ Nil(R) and therefore r(AnnR(Z(R))) ⊆ Nil(R). Assume that
Z(R) is generated by a1, a2, . . . , an and a ∈ Nil(R). Then, by hypotheses and Remark 1
(i), for all i = 1, 2, . . . , n, either aai = 0 or AnnR(ai) = AnnR(a). If aai = 0 for all
i = 1, 2, . . . , n, then a ∈ AnnR(Z(R)). Now, assume that there is j with 1 ≤ j ≤ n such
that AnnR(aj ) = AnnR(a). Thus, akaj = 0 for some integer k. Thus, akai = 0, for all
i = 1, 2, . . . , n that implies a ∈ r(AnnR(Z(R))). So, Nil(R) ⊆ r(AnnR(Z(R))).
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Theorem 15 Let R be a Noetherian ring and let AER(R) be a graph with at least four
vertices. Then, AER(R) is not a cycle graph.

Proof Let AER(R) be a cycle graph with vertices [a1], · · · , [an]. Then, [11, Proposition
1.8] implies that AER(R) �= �E(R) so we can assume that [a1], [an] are not adjacent in
�E(R). Thus, in view of [11, Corollary 3.3], it follows that AnnR(a2),AnnR(an−1) are
prime ideal of R. Hence, [a2], [an−1] are adjacent in AER(R), by Remark 1 (iii). So that
n = 4 and moreover �E(R) is the path [a1] − [a2] − [a3] − [a4]. Now, a1a4 ∈ Z(R)∗ and
AnnR(a1a4) �= AnnR(ai), for all i with 1 ≤ i ≤ 4 since a1a3 �= 0, a2a4 �= 0 and a22 �= 0.
Therefore, AER(R) is not a cycle graph.

Theorem 16 If M is a faithful multiplication R-module, then AER(R) and AER(M) are
isomorphic.

Proof Let a, b ∈ Z(M); we show that AnnR(a) = AnnR(b) if and only if AnnM(a) =
AnnM(b). Let AnnR(a) = AnnR(b). Then, AnnR(aM) = AnnR(bM) since M is faithful.
Thus, AnnM(a) = AnnR(aM)M = AnnR(bM)M = AnnM(b) since M is multiplication.
Conversely, if AnnM(a) = AnnM(b), then AnnR(aM) = AnnR(bM) by Lemma 1. So
that AnnR(a) = AnnR(b). Now, in view of [1, Theorem 2.13], AnnR(a) + AnnR(b) is an
essential ideal of R if and only if AnnM(a) + AnnM(b) is an essential submodule of M .
Therefore, AER(R) and AER(M) are isomorphic.
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