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Abstract A van Leer-type numerical scheme for the model of a general fluid in a nozzle
with variable cross section is presented. The model is nonconservative, making it hard for
standard numerical schemes. Exact solutions of local Riemann problems are incorporated
in the construction of this scheme. The scheme can work well in regions of resonance,
where multiple waves are colliding. Numerical tests are conducted, where we compare the
errors and orders of accuracy for approximating exact solutions between this scheme and a
Godunov-type scheme. Results from numerical tests show that this van Leer-type scheme
has a much better accuracy than the Godunov-type scheme.
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1 Introduction

In this paper, we build a van Leer-type scheme for approximating solutions of the following
model of a general fluid flow in a nozzle with variable cross section

∂t (aρ) + ∂x(aρu) = 0,

∂t (aρu) + ∂x

(
a(ρu2 + p)

)
= p∂xa, (1.1)

∂t (aρe) + ∂x (au(ρe + p)) = 0, x ∈ RI , t > 0,

where ρ = ρ(x, t), ε = ε(x, t), T = T (x, t), S = S(x, t), and p = p(x, t) denote the
thermodynamic variables: density, internal energy, absolute temperature, specific entropy,
and the pressure, respectively; u = u(x, t) is the velocity; e = e(x, t) = ε + u2/2 is the
total energy; and a = a(x) > 0, x ∈ R is the cross-sectional area.

The model (1.1) contains a nonconservative source term. To deal with this obstacle, one
often supplements the system (1.1) with the trivial equation

∂ta = 0, (1.2)

and then, the system (1.1)–(1.2) can be re-written as a system of balance laws in noncon-
servative form. A formulation of weak solutions of this kind of systems was introduced in
[16]. Numerical approximating nonconservative systems of balance laws is a challenging
topic during the past decades. Often, nonconservative terms cause serious problems to stan-
dard schemes. For example, errors may not tend to zero when the mesh sizes tend to zero,
or even numerical oscillations may appear quickly.

Motivated by our recent work [14], we will construct a van Leer-type scheme for (1.1).
Note that in the literature, the second-order van Leer scheme can be seen as an important
improvement of the first-order Godunov scheme for hyperbolic conservation laws. There-
fore, we will also show that this van Leer-type scheme can provide us with a better accuracy
than the Godunov-type scheme. It is interesting that this van Leer-type scheme can also
give good approximations in the resonance cases where the exact solution contains several
waves associated with different characteristic fields with coinciding shock speeds.

Throughout, we assume for simplicity that the fluid is polytropic and ideal so that the
equation of state is given by

p = (γ − 1)ρε, (1.3)

where γ > 1 is the adiabatic exponent.
We note that there are many works in the literature for the study on nonconservative sys-

tems of balance laws. Theoretical studies on nonconservative systems of balance laws were
presented in [19, 20, 23–25, 27, 32–34]. Numerical treatments for balance laws in noncon-
servative form were studied in [7–9, 18]. Numerical schemes for shallow-water equations
were considered in [3, 6, 13, 26, 28]. Numerical schemes for the model of a fluid flow in
a nozzle with variable cross section were constructed in [5, 11, 15, 21, 22]. Generalized
Riemann problems were considered in [4]. Numerical schemes for two-phase flow models
were presented in [1, 2, 10, 12, 29–31]. The reader is referred to [17] for standard numerical
schemes for hyperbolic systems of conservation laws (see also the references therein).

The organization of this paper is as follows. Basic properties of the model (1.1)–(1.2) are
given in Section 2. In Section 3, the Riemann problem is revisited. Section 4 is devoted to the
construction of the van Leer-type scheme for (1.1). Numerical tests are given in Section 5,
where we compute the errors and orders of accuracy. Finally, we present several conclusions
in Section 6.
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2 Preliminaries

2.1 Nonstrict Hyperbolic Model

Using the thermodynamical identity, we can express the pressure p from (1.3) as a function
of the density ρ and the specific entropy S

p = p(ρ, S) = κ(S)ργ , κ(S) = (γ − 1) exp

(
S − S∗

Cv

)
, (2.1)

where Cv > 0 is the specific heat at constant volume and S∗ is constant. Note that for a
polytropic and ideal fluid, γ and Cv are constants.

Thus, if we choose (p, S) as two independent thermodynamic variables, we can write

ρ = ρ(p, S) =
(

p

κ(S)

)1/γ

. (2.2)

Therefore, for a smooth solution U = U(x, t) = (p(x, t), u(x, t), S(x, t), a(x))T , the
system (1.1) can be re-written as a system of balance laws in nonconservative form

∂tU + A(U)∂xU = 0, (2.3)

where

A(U) =

⎛
⎜⎜⎝

u ρc2 0 ρuc2/a

1/ρ u 0 0
0 0 u 0
0 0 0 0

⎞
⎟⎟⎠ , (2.4)

where c is the sound speed,

c2 = γp

ρ
. (2.5)

The characteristic equation is given by

λ(u − λ)
(
(u − λ)2 − c2

)
= 0.

Thus, we obtain four real eigenvalues

λ0(U) = 0, λ1(U) = u − c, λ2(U) = u, λ3(U) = u + c. (2.6)

The corresponding eigenvectors can be chosen as

r0(U) =
(
−ρu2c2, uc2, 0, a(u2 − c2)

)T

, r1(U) = (ρc, −1, 0, 0)T ,

r2(U) = (0, 0, 1, 0)T , r3(U) = (ρc, 1, 0, 0)T .

Therefore, the system (1.1) is hyperbolic, but not strictly hyperbolic. More precisely, λ0 and
λ1 coincide on the hypersurface

C+ = {U : u = c} .

λ0 and λ2 coincide on the hypersurface

C0 = {U : u = 0} .

λ0 and λ3 coincide on the hypersurface

C− = {U : u = −c} .
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These surfaces, referred to as strictly hyperbolic boundaries, separate the phase domain
into four subdomains, denoted by G+

1 , G+
2 , G−

2 , and G−
1 , in which the system is strictly

hyperbolic (see Fig. 1).

G+
1 = {U : λ0(U) < λ1(U)} ,

G+
2 = {U : λ1(U) < λ0(U) < λ2(U)} , (2.7)

G−
2 = {U : λ2(U) < λ0(U) < λ3(U)} ,

G−
1 = {U : λ3(U) < λ0(U)} .

The second and the zero characteristic fields are linearly degenerate, since

∇λ0(U) · r0(U) = ∇λ2(U) · r2(U)0.

The first and the third characteristic fields are genuinely nonlinear, since

−∇λ1(U) · r1(U) = ∇λ3(U) · r3(U) = γ + 1

2
> 0.

2.2 Rarefaction Waves

The k-rarefaction waves of the system (1.1) are the continuous piecewise-smooth self-
similar weak solutions of (1.1) associated with nonlinear characteristic fields (λk, rk),
k = 1, 3, which have the form

U(x, t) =
⎧⎨
⎩

U−, x/t < λk(U−),

Fank(x/t; U−, U+), λk(U−) ≤ x/t ≤ λk(U+),

U+, x/t > λk(U+),

(2.8)

Fig. 1 Hyperbolic boundaries and the four phases in the (p, u)−plane
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where V (ξ) := Fank(ξ ;U−, U+) is a solution of the following ordinary differential
equations

dV (ξ)

dξ
= 1

∇λk(V (ξ)) · rk(V (ξ))
rk(V (ξ)), λk(U−) ≤ ξ ≤ λk(U+),

V (λk(U±)) = U±. (2.9)

For k = 1, we determine V (ξ) = (p(ξ), u(ξ), S(ξ), a(ξ)) from (2.9) as follows

dp

dξ
= − 2

γ + 1
ρc,

du

dξ
= 2

γ + 1
, (2.10)

dS

dξ
= da

dξ
= 0,

or, equivalently,

S(ξ) = S− = S+,

a(ξ) = a− = a+,

p(ξ) =
(

p

γ−1
2γ

− − γ − 1√
γ (γ + 1)

(κ(S−))
− 1

2γ (ξ − λ1(U−))

) 2γ
γ−1

,

u(ξ) = u− + 2

γ + 1
(ξ − λ1(U−)).

From (2.10), the forward 1-rarefaction wave curve R1(U0) consisting of all right-
hand states U = (p, u, ρ, a) that can be connected to a given left-hand state U0 =
(p0, u0, ρ0, a0) by an 1-rarefaction wave is given by

R1(U0) : a = a0,(
ρ

ρ0

)γ

= p

p0
, (2.11)

u = u0 − 2
√

γ

γ − 1
(κ(S0))

1
2γ

(
p

γ−1
2γ − p

γ−1
2γ

0

)
, p ≤ p0.

Similarly, for k = 3, we have

S(ξ) = S− = S+,

a(ξ) = a− = a+,

p(ξ) =
(

p

γ−1
2γ

− + γ − 1√
γ (γ + 1)

(κ(S−))
− 1

2γ (ξ − λ3(U−))

) 2γ
γ−1

,

u(ξ) = u− + 2

γ + 1
(ξ − λ3(U−)).
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Therefore, the backward 3-rarefaction wave curveRB
3 (U0) consisting of all left-hand states

U = (p, u, ρ, a) that can be connected to a given right-hand state U0 = (p0, u0, ρ0, a0) by
an 3-rarefaction wave is given by

RB
3 (U0) : a = a0,(

ρ

ρ0

)γ

= p

p0
, (2.12)

u = u0 + 2
√

γ

γ − 1
(κ(S0))

1
2γ

(
p

γ−1
2γ − p

γ−1
2γ

0

)
, p ≤ p0

2.3 Shocks and Admissibility Criterion

A discontinuity wave of (1.1) is a weak solution of the form

U(x, t) =
{

U−, x < σ t,

U+, x > σ t,
(2.13)

where U−, U+ are left- and right-hand states, respectively, and σ is the shock speed.
A shock wave always satisfies the Rankine-Hugoniot relation for the conservative

equation ∂ta = 0, which reads

−σ [a] = 0.

The last relation leads to the following two cases:

(i) either the cross section remained unchanged across the shock, i.e., [a] = 0, or
(ii) the shock speed vanishes:

σ = 0.

If [a] = 0, then, the cross section is constant across the shock. We can eliminate this
constant value in the governing equations (1.1) and obtain the usual gas dynamics equations.
Thus, the Rankine-Hugoniot relations for the shock are given by

−σ [ρ] + [ρu] = 0,

−σ [ρu] + [ρu2 + p] = 0, (2.14)

−σ [ρe] + [u(ρe + p)] = 0.

Transforming the relations (2.14) yields

M := ρ+(u+ − σ) = ρ−(u− − σ),

ρ+(u+ − σ)2 + p+ = ρ−(u− − σ)2 + p−, (2.15)

(u+ − σ)

(
ρ+

(
ε++ 1

2
(u+ − σ)2

)
+p+

)
=(u−−σ)

(
ρ−

(
ε−+ 1

2
(u−−σ)2

)
+ p−

)
.

If M = 0, then,

σ = u+ = u−,

p+ = p−.
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Thus, in this case, the discontinuity wave (2.13) is called the 2-contact discontinuity
corresponding to the shock speed σ2(U−, U+) = u± = λ2(U±).

If M �= 0, then, the relations (2.15) can be equivalently written

M = u+ − u−
1

ρ+ − 1
ρ−

,

M2 = −p+ − p−
1

ρ+ − 1
ρ−

, (2.16)

ε+ − ε− + 1

2
(p+ + p−)

(
1

ρ+
− 1

ρ−

)
= 0.

Then, we obtain

ρ+
ρ−

= (γ + 1)p+ + (γ − 1)p−
(γ + 1)p− + (γ − 1)p+

,

u+ − u− = ±
√

−(p+ − p−)

(
1

ρ+
− 1

ρ−

)
. (2.17)

Shock waves associated with nonlinear characteristic fields, as indicated above, are
required to fulfill the Lax shock inequalities

λi(U+) < σ(U−, U+) < λi(U−), i = 1, 3. (2.18)

Observe that for a polytropic ideal gas (1.3), shock waves satisfying the Lax shock
inequalities (2.18) are characterized as follows.

(a) For a 1-Lax shock,
M > 0, u+ < u−, p+ > p−. (2.19)

(b) For a 3-Lax shock,
M < 0, u− > u+, p− > p+. (2.20)

From (2.18) and (2.19), the forward 1-shock wave curve S1(U0) consisting of all right-
hand states U = (p, u, ρ, a) that can be connected to a given left-hand state U0 =
(p0, u0, ρ0, a0) by an 1-Lax shock wave is given by

S1(U0) : a = a0,

ρ

ρ0
= (γ + 1)p + (γ − 1)p0

(γ + 1)p0 + (γ − 1)p
, (2.21)

u − u0 = −
√

−(p − p0)

(
1

ρ
− 1

ρ0

)
, p ≥ p0.

From (2.18) and (2.20), the backward 3-shock wave curve SB
3 (U0) consisting of all

left-hand states U = (p, u, ρ, a) that can be connected to a given right-hand state U0 =
(p0, u0, ρ0, a0) by an 3-Lax shock wave is given by

S1(U0) : a = a0,

ρ

ρ0
= (γ + 1)p + (γ − 1)p0

(γ + 1)p0 + (γ − 1)p
, (2.22)

u − u0 =
√

−(p − p0)

(
1

ρ
− 1

ρ0

)
, p ≥ p0.
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For UR ∈ S1(UL), we have the 1-shock speed

σ1(UL,UR) = uL −
√

(γ + 1)pR + (γ − 1)pL

2ρL

, pR > pL. (2.23)

For UL ∈ SB
3 (UR), we have the 3-shock speed

σ3(UL, UR) = uR +
√

(γ + 1)pL + (γ − 1)pR

2ρR

, pL > pR. (2.24)

From (2.23) and (2.24), we have the following lemma.

Lemma 2.1 ([32, Proposition 3.3])
1. The 1-shock speed σ1(U0, U) may change sign along the forward 1-shock wave curve
S1(U0). More precisely, we have the following:

(i) If U0 ∈ G+
2 ∪ G−

2 ∪ G−
1 , then σ1(U0, U) remains negative:

σ1(U0, U) < 0, U ∈ S1(U0). (2.25)

(ii) If U0 ∈ G+
1 , then σ1(U0, U) vanishes once at some point U = U# ∈ G+

2
corresponding to a value

p = p# = 2ρ0u20 − (γ − 1)p0

γ + 1
(2.26)

on the forward 1-shock wave curve S1(U0) such that

σ1(U0, U
#) = 0,

σ1(U0, U) > 0, p ∈ (p0, p
#),

σ1(U0, U) < 0, p > p#.

2. The 3-shock speed σ3(U,U0) may change sign along the backward 3-shock wave curve
SB
3 (U0). More precisely, we have the following:
(i) If U0 ∈ G+

1 ∪ G+
2 ∪ G−

2 , then σ3(U, U0) remains positive:

σ3(U,U0) > 0, U ∈ SB
3 (U0). (2.27)

(ii) If U0 ∈ G−
1 , then σ3(U,U0) vanishes once at some point U = U@ ∈ G−

2
corresponding to a value

p = p@ = 2ρ0u20 − (γ − 1)p0

γ + 1
(2.28)

on the backward 3-shock wave curve SB
3 (U0) such that

σ3(U
@, U0) = 0,

σ3(U, U0) < 0, p ∈ (p0, p
@),

σ3(U, U0) > 0, p > p@.

Moreover, since σ1(U−, U+) = u− − M
ρ− = u+ − M

ρ+ and M > 0, we imply that

σ1(U−, U+) < λ2(U±).

Similarly, it holds that
σ3(U−, U+) > λ2(U±).
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From (2.11), (2.12), (2.21), and (2.22), we can therefore define the forward and backward
wave curves in the nonlinear characteristic fields as follows.

W1(U0) := S1(U0) ∪ R1(U0), (2.29)

WB
3 (U0) := SB

3 (U0) ∪ RB
3 (U0).

These sets mean that:
• If U+ ∈ W1(U−), then there is the 1-wave (1-rarefaction wave or 1-shock wave)
connecting U− to U+, denoted by

W1(U−, U+) (R1(U−, U+) or S1(U−, U+).

• If U− ∈ WB
3 (U+), then there is the 3-wave (3-rarefaction wave or 3-shock wave)

connecting U− to U+, denoted by

W3(U−, U+) (R3(U−, U+) or S3(U−, U+).

2.4 Stationary Waves

Consider the case
σ = 0 = λ0.

This means that the shock wave is a contact wave associated with λ0. As shown in [32], the
jump relations for this contact wave are given by

[aρu] = 0,[
u2

2
+ h

]
= 0, (2.30)

[S] = 0,

where h is specific enthalpy given by

h = ε + p

ρ
= c2

γ − 1
,

We now describe the set of states U which can be connected to a given state U0 by a
stationary contact wave (associated with λ0), where the cross section levels on both sides
a0 and a are considered to be fixed. Substituting u = a0ρ0u0

aρ
from the 1st equation of (2.30)

into the 3rd equation of (2.30), we obtain the nonlinear equation

F(ρ) := −2γ κ(S0)

γ − 1
ργ+1 +

(
u20 + 2γ κ(S0)

γ − 1
ρ

γ−1
0

)
ρ2 −

(aρ0u0

a

)2 = 0. (2.31)

The domain of the function F(ρ) is given by

ρ ≤ ρ :=
(

γ − 1

2γ κ(S0)
u20 + ρ

γ−1
0

) 1
γ−1

.

Consider the case u0 = 0. Then, the function F(ρ) has a unique root ρ = ρ0. Therefore,
we obtain

U = (p0, 0, ρ0, a).

Consider the case u0 �= 0. We have

F ′(ρ) = −2γ (γ + 1)κ(S0)

γ − 1
ργ + 2

(
u20 + 2γ κ(S0)

γ − 1
ρ

γ−1
0

)
ρ,
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so that

F ′(ρ) > 0, ρ < ρmax,

F ′(ρ) < 0, ρ > ρmax,

where

ρmax :=
(

γ − 1

γ (γ + 1)κ(S0)
u20 + 2

γ + 1
ρ

γ−1
0

) 1
γ−1

.

Moreover,

F(0) = F(ρ) = −
(aρ0u0

a

)2
< 0.

Thus, F(ρ) admits a zero if and only if

F(ρmax) ≥ 0,

or, equivalently
a ≥ amin = amin(U0, a0),

where

amin(U0, a0) := a0ρ0|u0|√
γ κ(S0)(ρmax)γ+1

.

If a > amin, the function F(ρ) has exactly two roots denoted by ϕ1(U0, a) and ϕ2(U0, a),
which satisfy

ϕ1(U0, a) < ρmax < ϕ2(U0, a).

The following lemma provides us with the existence of the above stationary waves.

Lemma 2.2 ([32, Lemma 3.1]) Given U0 = (p0, u0, ρ0, a0) and a �= a0 such that u0 �= 0.
There exists a stationary wave connecting U0 to some state U if and only if a ≥ amin. More
precisely, we have the following:
(i) If a < amin, F(ρ) has no roots; so there are no stationary waves.
(ii) If a = amin, F(ρ) has only one root ρ = ρmax; so there is exactly one stationary wave
connecting U0 to Umax, where

Umax :=
(

κ(S0)(ρmax)
γ ,

a0ρ0u0

aρmax
, ρmax, a

)
.

(iii) If a > amin, F(ρ) has two distinct roots; so there are exactly two stationary waves
connecting U0 to the state Us

0 or the state Ub
0 , where

Us
0 :=

(
κ(S0)(ϕ1(U0, a))γ ,

a0ρ0u0

aϕ1(U0, a)
, ϕ1(U0, a), a

)
,

Ub
0 :=

(
κ(S0)(ϕ2(U0, a))γ ,

a0ρ0u0

aϕ2(U0, a)
, ϕ2(U0, a), a

)
. (2.32)

Using notations as Lemma 2.2, we have the following lemma.

Lemma 2.3 Given U0 = (p0, u0, ρ0, a0) and a.

(i) It holds that

ρmax < ρ0, U0 ∈ G+
2 ∪ G−

2 ,

ρmax > ρ0, U0 ∈ G+
1 ∪ G−

1 .
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(ii) It holds that

Us
0 ∈ G+

1 , Ub
0 ∈ G+

2 for u0 > 0,

Us
0 ∈ G−

1 , Ub
0 ∈ G−

2 for u0 < 0.

(iii) It holds that

amin < a0, U0 ∈ G±
i , i = 1, 2

amin = a0, U0 ∈ C±,

amin = 0, u0 = 0.

(iv) If a > a0, then

ϕ1(U0, a) < ρ0 < ϕ2(U0, a).

(v) If amin < a < a0, then

ρ0 < ϕ1(U0, a) < ϕ2(U0, a), for U0 ∈ G±
1 ,

ρ0 > ϕ2(U0, a) > ϕ1(U0, a), for U0 ∈ G±
2 .

It follows from Lemma 2.2 that there may be two possible stationary waves from a given
state U0 to a state with a new level cross section a. Thus, it is necessary to impose some
condition to select a unique physical stationary as follows.

(MC) Any stationary jump must not cross the sonic curve in the (p, u)-plane.

Observe that the admissibility criterion (MC) implies that:

• If a > amin and U0 ∈ G±
1 , then Us

0 is selected.
• If a > amin and U0 ∈ G±

2 , then Ub
0 is selected.

3 The Riemann Problem Revisited

In this section, the Riemann problem for (1.1) is revisited (see [32]). We distinguish between
four cases

• Case A: UL ∈ G+
1 ∪ C+ and aR > aL;

• Case B: UL ∈ G+
2 and aR > aL;

• Case C: UR ∈ G−
1 ∪ C− and aL > aR;

• Case D: UR ∈ G−
2 and aL > aR .

Notations (i) Wk(Ui, Uj ) (Sk(Ui, Uj ), Rk(Ui, Uj )) denotes the kth-wave (kth-shock,
kth-rarefaction wave, respectively) connecting the left-hand state Ui to the right-hand state
Uj , k = 0, 1, 2, 3;
(ii) Wm(Ui, Uj ) ⊕ Wn(Uj , Uk) indicates that there is an mth-wave from the left-hand state
Ui to the right-hand state Uj , followed by an nth-wave from the left-hand state Uj to the
right-hand state Uk , m, n ∈ {1, 2, 3, 4}.
(iii) U#

0 denotes the state such that σ1(U0, U
#
0 ) = 0. U@

0 denotes the state such that σ3(U@
0 ,

U0) = 0 (see Lemma 2.1).
(iv) Us

0 , U
b
0 denote the states resulting from stationary waves from U0 (see Lemma 2.2).
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3.1 Case A: UL ∈ G+
1 ∪ C+ and aR > aL

3.1.1 Construction A1

The first part of the Riemann solution can be the stationary wave

W0(UL, Us
L),

i.e.,

URie(x/t; UL,UR) =
⎧⎨
⎩

UL = (pL, uL, ρL, aL) if x/t < 0,
Us

L = (
ps

L, us
L, ρs

L, aR

)
if 0 < x/t < . . . ,

. . . ,

where
ρs

L := ϕ1(UL, aR), us
L := aLρLuL

aRρs
L

, ps
L := κ(SL)(ρs

L)γ .

If we take any U ∈ R1(U
s
L), then the second part of the Riemann solution can be a 1-

rarefaction wave
R1(U

s
L, U),

i.e.,

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < 0,
Us

L if 0 < x/t < λ1(U
s
L),

Fan1(x/t; Us
L, U) if λ1(U

s
L) ≤ x/t ≤ λ1(U),

U if λ1(U) < x/t < . . . ,

. . .

On the other hand, if we take U ∈ S1(U
s
L) such that σ1(Us

L, U) > 0 (i.e., U is located above
Us#

L , see Lemma 2.1), then the second part of the Riemann solution can be a 1-shock wave

S1(U
s
L,U),

i.e.,

URie(x/t; UL,UR) =

⎧⎪⎪⎨
⎪⎪⎩

UL if x/t < 0,
Us

L if 0 < x/t < σ1(U
s
L, U),

U if σ1(U
s
L, U) < x/t < . . . ,

. . .

Thus, if U = (p, u, ρ, aR) ∈ W1(U
s
L) such that U is located above Us#

L , then the first two
parts of the Riemann solution are

W0(UL,Us
L) ⊕ W1(U

s
L, U).

Therefore, we call the set

{U ∈ W1(U
s
L) : U is located above Us#

L }
as the composite wave curve W0.W1(UL, aR). Obviously, W0.W1(UL, aR) is a part of the
wave curveW1(U

s
L) (see Fig. 2). If we have an intersection in the (p, u)-plane

(p, u) = WB
3 (UR) ∩ W0.W1(UL, aR),

then the Riemann problem for (1.1) has a solution of the form

W0(UL,Us
L) ⊕ W1(U

s
L,U) ⊕ W2(U, U∗) ⊕ W3(U

∗, UR), (3.1)

where
U∗ = (p, u, ρ∗, aR) ∈ W3(UR).
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Fig. 2 The composite wave curves: W0.W1(UL, aR), W0.S1.W0(UL, aR), and S1.W0(UL, aR) in the (p, u)-
plane

Explicitly, the form (3.1) can be seen as follows.

• If U ∈ R1(U
s
L) and U∗ ∈ RB

3 (UR), then the form (3.1) yields

URie(x/t; UL, UR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < 0,
Us

L if 0 < x/t < λ1(U
s
L),

Fan1(x/t; Us
L, U) if λ1(U

s
L) ≤ x/t ≤ λ1(U),

U if λ1(U) < x/t < λ2(U) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < λ3(U

∗),
Fan3(x/t; U∗, UR) if λ3(U

∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ R1(U
s
L) and U∗ ∈ SB

3 (UR), then the form (3.1) yields

URie(x/t; UL,UR) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < 0,
Us

L if 0 < x/t < λ1(U
s
L),

Fan1(x/t; Us
L, U) if λ1(U

s
L) ≤ x/t ≤ λ1(U),

U if λ1(U) < x/t < λ2(U) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < σ3(U

∗, UR),

UR if x/t > σ3(U
∗, UR).

• If U ∈ S1(U
s
L) and U∗ ∈ RB

3 (UR), then the form (3.1) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < 0,
Us

L if 0 < x/t < σ1(U
s
L, U),

U, if σ1(U
s
L, U) < x/t < λ2(U) = λ2(U

∗),
U∗ if λ2(U

∗) < x/t < λ3(U
∗),

Fan3(x/t; U∗, UR) if λ3(U
∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).
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• If U ∈ S1(U
s
L) and U∗ ∈ SB

3 (UR), then the form (3.1) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < 0,
Us

L if 0 < x/t < σ1(U
s
L,U),

U if σ1(U
s
L,U) < x/t < λ2(U) = λ2(U

∗),
U∗ if λ2(U

∗) < x/t < σ3(U
∗, UR),

UR if x/t > σ3(U
∗, UR).

Algorithm to Compute the Intersection Point (p, u) = WB
3 (UR) ∩ W0.W1(UL, aR).

Assume that Us#
L is located below the curveWB

3 (UR) in the (p, u)−plane.

Step 1 Set p1 = 0, p2 = ps#
L ;

Step 2 Compute p = p1 + p2

2
; Compute u such that (p, u) ∈ W1(U

s
L) in the (p, u)-plane;

Step 3 – If (p, u) belongs toWB
3 (UR) in the (p, u)−plane, end;

– If (p, u) is located aboveWB
3 (UR) in the (p, u)−plane, set p1 = p and return Step 2;

– If (p, u) is located belowWB
3 (UR) in the (p, u)−plane, set p2 = p and return Step 2.

3.1.2 Construction A2

Fix a cross section level aM between aL and aR . The first part of the Riemann solution can
be a stationary wave

W0(UL, Us
L),

where

Us
L = (

ps
L, us

L, ρs
L, aM

)
,

ρs
L := ϕ1(UL, aM), us

L := aLρLuL

aMρs
L

, ps
L := κ(SL)(ρs

L)γ . (3.2)

The second part of the Riemann solution is a 1-shock wave with zero speed

S1(U
s
L, Us#

L ).

The third part is again a stationary wave

W0(U
s#
L ,Us#b

L ),

where

Us#b
L = (p, u, ρ, aR) ,

ρ := ϕ2(U
s#
L , aR), u := aMρs#

L us#
L

aRρ
, p := κ(Ss#

L )ργ . (3.3)

Because these three parts are discontinuity waves with same zero speed, we have a wave
collision (resonant case), i.e., W0(UL, Us

L) ⊕ S1(U
s
L, Us#

L ) ⊕ W0(U
s#
L ,Us#b

L ) is just a
discontinuity wave with zero speed

URie(x/t; UL,UR) =
⎧
⎨
⎩

UL if x/t < 0,
Us#b

L if 0 < x/t < . . . ,

. . .

We call the set
{Us#b

L : aM varies between aL and aR}
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as the composite wave curveW0.S1.W0(UL, aR). It is not difficult to check thatU#b
L andUs#

L

are two end-points of W0.S1.W0(UL, aR) (see Fig. 2). Therefore, if we have an intersection
in the (p, u)-plane

(p, u) = WB
3 (UR) ∩ W0.S1.W0(UL, aR),

then the Riemann problem for (1.1) has a solution of the form

W0(UL,Us
L) ⊕ S1(U

s
L, Us#

L ) ⊕ W0(U
s#
L , Us#b

L ) ⊕ W2(U
s#b
L , U∗) ⊕ W3(U

∗, UR), (3.4)

where
U∗ = (p, u, ρ∗, aR) ∈ W3(UR).

Explicitly, the form (3.4) can be seen as follows.

• If U∗ ∈ RB
3 (UR), then the form (3.4) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < 0,
Us#b

L if 0 < x/t < λ2(U
s#b
L ) = λ2(U

∗),
U∗ if λ2(U

∗) < x/t < λ3(U
∗),

Fan3(x/t; U∗, UR) if λ3(U
∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U∗ ∈ SB
3 (UR), then the form (3.4) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎨
⎪⎪⎩

UL if x/t < 0,
Us#b

L if 0 < x/t < λ2(U
s#b
L ) = λ2(U

∗),
U∗ if λ2(U

∗) < x/t < σ3(U
∗, UR),

UR if x/t > σ3(U
∗, UR).

Algorithm to Compute the Intersection Point (p, u) = WB
3 (UR) ∩ W0.S1.W0 (UL, aR).

Assume that Us#
L is located above WB

3 (UR) and U#b
L is located below WB

3 (UR) in the
(p, u)-plane.

Step 1 Set a1 = aL, a2 = aR;

Step 2 Compute aM = a1+a2
2 ; Compute Us

L as in (3.2); Compute Us#
L ; Compute Us#b

L =
(p, u, ρ, aR) as in (3.3);

Step 3 • If (p, u) belongs toWB
3 (UR) in the (p, u)-plane, end;

• If (p, u) is located aboveWB
3 (UR) in the (p, u)-plane, set a2 = aM and return Step 2;

• If (p, u) is located belowWB
3 (UR) in the (p, u)-plane, set a1 = aM and return Step 2.

3.1.3 Construction A3

Take any state U = (p, u, ρ, aL) ∈ S1(UL) ∩ G+
2 such that σ1(UL, U) < 0, i.e., U is

located between U#
L and U0

L, where

U0
L = (p0

L, u0L, ρ0
L, aL) = W1(UL) ∩ C0.

Then, the first part of the Riemann solution can be a 1-shock wave with negative speed

S1(UL,U).

Next, the second part of the Riemann solution can be a stationary wave

W0(U,Ub),
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where

Ub =
(
pb, ub, ρb, aR

)
,

ρb := ϕ2(U, aR), ub := aLρu

aRρb
, pb := κ(S)(ρb)γ . (3.5)

The set

{Ub : U is located between U#
L and U0

L on S1(UL)}
is called the composite wave curve S1.W0(UL, aR). Obviously, U#b

L and U0
L are two end-

points of S1.W0(UL, aR) (see Fig. 2). Therefore, if we have an intersection in the (p, u)-
plane

(pb, ub) = WB
3 (UR) ∩ S1.W0(UL, aR),

then the Riemann problem for (1.1) has a solution of the form

S1(UL, U) ⊕ W0(U,Ub) ⊕ W2(U
b, U∗) ⊕ W3(U

∗, UR), (3.6)

where

U∗ = (pb, ub, ρ∗, aR) ∈ WB
3 (UR).

Explicitly, the form (3.6) can be seen as follows.
• U∗ ∈ RB

3 (UR), then the form (3.6) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U),

U if σ1(UL,U) < x/t < 0,
Ub if 0 < x/t < λ2(U

b) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < λ3(U

∗),
Fan3(x/t; U∗, UR) if λ3(U

∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• U∗ ∈ SB
3 (UR), then the form (3.6) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U),

U if σ1(UL,U) < x/t < 0,
Ub if 0 < x/t < λ2(U

b) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < σ3(U

∗, UR),

UR if x/t > σ3(U
∗, UR).

Algorithm to Compute the State U and the Intersection Point (pb, ub) = WB
3 (UR) ∩

S1.W0(UL, aR). Assume that U#b
L is located above WB

3 (UR) and U0
L is located below

WB
3 (UR) in the (p, u)-plane.

Step 1 Set p1 = p#
L, p2 = p0

L;

Step 2 Compute p = p1+p2
2 ; Compute U = (p, u, ρ, aL) ∈ S1(UL); Compute Ub =

(pb, ub, ρb, aR) as in (3.5);

Step 3 – If (pb, ub) belongs toWB
3 (UR) in the (p, u)-plane, end;

– If (pb, ub) is located aboveWB
3 (UR) in the (p, u)-plane, set p1 = p and return Step 2;

– If (pb, ub) is located belowWB
3 (UR) in the (p, u)-plane, set p2 = p and return Step 2.
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3.2 Case B: UL ∈ G+
2 and aR > aL

3.2.1 Construction B1

The first part of the Riemann solution can be the 1-rarefaction wave

R1(UL,U+
L ),

where
U+

L = (p+
L , u+

L, ρ+
L , aL) = W1(UL) ∩ C+.

The second part of the Riemann solution can be the stationary wave

W0(U
+
L ,U+s

L ),

where

U+s
L = (

p+s
L , u+s

L , ρ+s
L , aR

)
,

ρ+s
L := ϕ1(U

+
L , aR), u+s

L := aLρ+
L u+

L

aRρ+s
L

, p+s
L := κ(SL)(ρ+s

L )γ .

Take any state U = (p, u, ρ, aR) ∈ W1(U
+s
L ) such that U is located above U+s#

L . Then,
the third part of the Riemann solution can be a 1-wave

W1(U
+s
L , U).

We call the set
{U ∈ W1(U

+s
L ) : U is located above U+s#

L }
as the composite wave curve R1.W0.W1(UL, aR) (see Fig. 3). If we have an intersection in
the (p, u)−plane

(p, u) = WB
3 (UR) ∩ R1.W0.W1(UL, aR),

then the Riemann problem for (1.1) has a solution of the form

R1(UL,U+
L ) ⊕ W0(U

+
L ,U+s

L ) ⊕ W1(U
+s
L , U) ⊕ W2(U,U∗) ⊕ W3(U

∗, UR), (3.7)

Fig. 3 The composite wave curves: R1.W0.W1(UL, aR), R1.W0.S1.W0(UL, aR) and W1.W0(UL, aR) in the
(p, u)-plane
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where

U∗ = (p, u, ρ∗, aR) ∈ WB
3 (UR).

Explicitly, the form (3.7) can be seen as follows.
• If U ∈ R1(U

+s
L ) and U∗ ∈ RB

3 (UR), then the form (3.7) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U+
L ) if λ1(UL) ≤ x/t ≤ λ1(U

+
L ) = 0,

U+s
L if 0 < x/t < λ1(U

+s
L ),

Fan1(x/t; U+s
L , U) if λ1(U

+s
L ) ≤ x/t ≤ λ1(U),

U if λ1(U) < x/t < λ2(U) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < λ3(U

∗),
Fan3(x/t; U∗, UR) if λ3(U

∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ R1(U
+s
L ) and U∗ ∈ SB

3 (UR), then the form (3.7) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U+
L ) if λ1(UL) ≤ x/t ≤ λ1(U

+
L ) = 0,

U+s
L if 0 < x/t < λ1(U

+s
L ),

Fan1(x/t; U+s
L , U) if λ1(U

+s
L ) ≤ x/t ≤ λ1(U),

U if λ1(U) < x/t < λ2(U) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < σ3(U

∗, UR),

UR if x/t > σ3(U
∗, UR).

• If U ∈ S1(U
+s
L ) and U∗ ∈ RB

3 (UR), then the form (3.7) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U+
L ) if λ1(UL) ≤ x/t ≤ λ1(U

+
L ) = 0,

U+s
L if 0 < x/t < σ1(U

+s
L , U),

U if σ1(U
+s
L , U) < x/t < λ2(U) = λ2(U

∗),
U∗ if λ2(U

∗) < x/t < λ3(U
∗),

Fan3(x/t; U∗, UR) if λ3(U
∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ S1(U
+s
L ) and U∗ ∈ SB

3 (UR), then the form (3.7) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U+
L ) if λ1(UL) ≤ x/t ≤ λ1(U

+
L ) = 0,

U+s
L if 0 < x/t < σ1(U

+s
L , U),

U if σ1(U
+s
L , U) < x/t < λ2(U) = λ2(U

∗),
U∗ if λ2(U

∗) < x/t < σ3(U
∗, UR),

UR if x/t > σ3(U
∗, UR).

Algorithm to Compute the Intersection Point (p, u) = WB
3 (UR) ∩ R1.W0.W1 (UL, aR).

Similar to case A, since R1.W0.W1(UL, aR) ≡ W0.W1(U
+
L , aR).

3.2.2 Construction B2

The first part of the Riemann solution can be the 1-rarefaction wave

R1(UL,U+
L ),
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where

U+
L = (p+

L , u+
L, ρ+

L , aL) = W1(UL) ∩ C+.

Fix a cross section aM between aL and aR . The second part of the Riemann solution can be
a stationary wave

W0(U
+
L ,U+s

L ),

where

U+s
L = (

p+s
L , u+s

L , ρ+s
L , aM

)
,

ρ+s
L := ϕ1(U

+
L , aM), u+s

L := aLρ+
L u+

L

aMρ+s
L

, p+s
L := κ(SL)(ρ+s

L )γ .

The third part of the Riemann solution can be a 1-shock wave with zero speed

S1(U
+s
L , U+s#

L ).

The fourth part of the Riemann solution can be again a stationary wave

W0(U
+s#
L ,U+s#b

L ),

where

U+s#b
L = (p, u, ρ, aR) ,

ρ := ϕ2(U
+s#
L , aR), u := aMρ+s#

L u+s#
L

aRρ
, p := κ(S+s#

L )ργ .

We call the set

{U+s#b
L : aM varies between aL and aR}

as the composite wave curve R1.W0.S1.W0(UL, aR). It is not difficult to check that U+s#
L

and U+b
L are two end-points of R1.W0.S1.W0(UL, aR) (see Fig. 3). Therefore, if we have

an intersection in the (p, u)−plane

(p, u) = WB
3 (UR) ∩ R1.W0.S1.W0(UL, aR),

then the Riemann problem for (1.1) has a solution of the form

R1(UL,U+
L )⊕W0(U

+
L ,U+s

L )⊕S1(U
+s
L , U+s#

L )⊕W0(U
+s#
L ,U+s#b

L )⊕W2(U,U∗)⊕W3(U
∗, UR),

(3.8)
where

U∗ = (p, u, ρ∗, aR) ∈ WB
3 (UR).

Explicitly, the form (3.8) can be seen as follows.
• If U∗ ∈ RB

3 (UR), then the form (3.8) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U+
L ) if λ1(UL) ≤ x/t ≤ λ1(U

+
L ) = 0,

U+s#b
L if 0 < x/t < λ2(U

+s#b
L ) = λ2(U

∗),
U∗ if λ2(U

∗) < x/t < λ3(U
∗),

Fan3(x/t; U∗, UR) if λ3(U
∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).



522 M. D. Thanh, D. H. Cuong

• If U∗ ∈ SB
3 (UR), then the form (3.8) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U+
L ) if λ1(UL) ≤ x/t ≤ λ1(U

+
L ) = 0,

U+s#b
L if 0 < x/t < λ2(U

+s#b
L ) = λ2(U

∗),
U∗ if λ2(U

∗) < x/t < σ3(U
∗, UR),

UR if x/t > σ3(U
∗, UR).

Algorithm to Compute the Intersection Point (p, u) = WB
3 (UR) ∩ R1.W0.S1.W0

(UL, aR). Similar to case A, since R1.W0.S1.W0(UL, aR) ≡ W0.S1.W0(U
+
L , aR).

3.2.3 Construction B3

Take a state U = (p, u, ρ, aL) ∈ W1(UL) such that U ∈ G+
2 , i.e., U is located between

U+
L and U0

L, where

U+
L = (p+

L , u+
L, ρ+

L , aL) = W1(UL) ∩ C+,

U0
L = (p0

L, u0L, ρ0
L, aL) = W1(UL) ∩ C0.

Then, the first part of the Riemann solution can be a 1-wave

W1(UL, U).

Next, the second part of the Riemann solution can be a stationary wave

W0(U,Ub),

where

Ub =
(
pb, ub, ρb, aR

)
,

ρb := ϕ2(U, aR), ub := aLρu

aRρb
, pb := κ(S)(ρb)γ .

We call the set

{Ub : U is located between U+
L and U0

L onW1(UL)}

as the composite wave curve W1.W0(UL, aR). Obviously, U+b
L and U0

L are two end-points
of W1.W0(UL, aR) (see Fig. 3). Therefore, if we have an intersection in the (p, u)−plane

(pb, ub) = WB
3 (UR) ∩ W1.W0(UL, aR),

then the Riemann problem for (1.1) has a solution of the form

W1(UL,U) ⊕ W0(U, Ub) ⊕ W2(U
b, U∗) ⊕ W3(U

∗, UR), (3.9)

where

U∗ = (pb, ub, ρ∗, aR) ∈ WB
3 (UR).
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Explicitly, the form (3.9) can be seen as follows.
• If U ∈ R1(UL) and U∗ ∈ RB

3 (UR), then the form (3.9) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U) if λ1(UL) ≤ x/t ≤ λ1(U),

U if λ1(U) < x/t < 0,
Ub if 0 < x/t < λ2(U

b) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < λ3(U

∗),
Fan3(x/t; U∗, UR) if λ3(U

∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ R1(UL) and U∗ ∈ SB
3 (UR), then the form (3.9) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U) if λ1(UL) ≤ x/t ≤ λ1(U),

U if λ1(U) < x/t < 0,
Ub if 0 < x/t < λ2(U

b) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < σ3(U

∗, UR),

UR if x/t > σ3(U
∗, UR).

• If U ∈ S1(UL) and U∗ ∈ RB
3 (UR), then the form (3.9) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U),

U if σ1(UL,U) < x/t < 0,
Ub if 0 < x/t < λ2(U

b) = λ2(U
∗),

U∗ if λ2(U
∗) < x/t < λ3(U

∗),
Fan3(x/t; U∗, UR) if λ3(U

∗) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ S1(UL) and U∗ ∈ SB
3 (UR), then the form (3.9) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL, if x/t < σ1(UL, U),

U, if σ1(UL,U) < x/t < 0,
Ub, if 0 < x/t < λ2(U

b) = λ2(U
∗),

U∗, if λ2(U
∗) < x/t < σ3(U

∗, UR),

UR, if x/t > σ3(U
∗, UR).

Algorithm to Compute the State U and the Intersection Point (pb, ub) = WB
3 (UR) ∩

W1.W0(UL, aR). Similar to Construction A3, but the assignment p1 = p#
L in Step 1 is

replaced by p1 = p+
L .

3.3 Case C: UR ∈ G−
1 ∪ C− and aL > aR

3.3.1 Construction C1

The last part of the Riemann solution can be the stationary wave

W0(U
s
R, UR),

i.e.,

URie(x/t; UL,UR) =
⎧⎨
⎩

. . . ,

Us
R if . . . < x/t < 0,

UR if x/t > 0,
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where

Us
R = (

ps
R, us

R, ρs
R, aL

)
,

ρs
R := ϕ1(UR, aL), us

R := aRρRuR

aLρs
R

, ps
R := κ(SR)(ρs

R)γ .

Take a state U = (p, u, ρ, aL) ∈ W3(U
s
R) such that U is located below Us@

R . Then, the
next part of the Riemann solution from the end can be a 3-wave

W3(U,Us
R).

We call the set

{U ∈ WB
3 (Us

R) : U is located below Us@
R }

as the backward composite wave curve WB
0 .WB

3 (UR, aL) (see Fig. 4). If the wave curve
W1(UL) intersects WB

0 .WB
3 (UR, aL) at a point (p, u) in the (p, u)-plane, then the Riemann

problem for (1.1) has a solution of the form

W1(UL,U∗) ⊕ W2(U
∗, U) ⊕ W3(U,Us

R) ⊕ W0(U
s
R,UR), (3.10)

where

U∗ = (p, u, ρ∗, aL) ∈ W1(UL).

Explicitly, the form (3.10) can be seen as follows.
• If U ∈ RB

3 (Us
R) and U∗ ∈ R1(UL), then the form (3.10) yields

URie(x/t; UL, UR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U),

U if λ2(U) < x/t < λ3(U),

Fan3(x/t; U, Us
R) if λ3(U) ≤ x/t ≤ λ3(U

s
R),

Us
R if λ3(U

s
R) < x/t < 0,

UR if x/t > 0.

Fig. 4 The composite wave curves: WB
0 .WB

3 (UR, aL), WB
0 .SB

3 .WB
0 (UR, aL) and SB

3 .WB
0 (UR, aL) in the

(p, u)-plane
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• If U ∈ SB
3 (Us

R) and U∗ ∈ R1(UL), then the form (3.10) yields

URie(x/t; UL, UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U),

U if λ2(U) < x/t < σ3(U,Us
R),

Us
R if σ3(U,Us

R) < x/t < 0,
UR if x/t > 0.

• If U ∈ RB
3 (Us

R) and U∗ ∈ S1(UL), then the form (3.10) yields

URie(x/t; UL, UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U∗),
U∗ if σ1(UL,U∗) < x/t < λ2(U

∗) = λ2(U),

U if λ2(U) < x/t < λ3(U),

Fan3(x/t; U, Us
R) if λ3(U) ≤ x/t ≤ λ3(U

s
R),

Us
R if λ3(U

s
R) < x/t < 0,

UR if x/t > 0.

• If U ∈ SB
3 (Us

R) and U∗ ∈ S1(UL), then the form (3.10) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U∗),
U∗ if σ1(UL, U∗) < x/t < λ2(U

∗) = λ2(U),

U if λ2(U) < x/t < σ3(U, Us
R),

Us
R if σ3(U, Us

R) < x/t < 0,
UR if x/t > 0.

Algorithm to Compute the Intersection Point (p, u) = W1(UL) ∩ WB
0 .WB

3 (UR, aL).
Assume that Us@

R is located above the curveW1(UL) in the (p, u) − plane.

Step 1 Set p1 = 0, p2 = ps@
R ;

Step 2 Compute p = p1+p2
2 and u such that (p, u) ∈ WB

3 (Us
R) in the (p, u)−plane;

Step 3 – If (p, u) belongs toW1(UL) in the (p, u)-plane, end;
– If (p, u) is located aboveW1(UL) in the (p, u)-plane, set p2 = p and return Step 2;
– If (p, u) is located belowW1(UL) in the (p, u)-plane, set p1 = p and return Step 2.

3.3.2 Construction C2

Fix a cross section aM between aL and aR . The last part of the Riemann solution can be a
stationary wave

W0(U
s
R, UR),

where

Us
R = (

ps
R, us

R, ρs
R, aL

)
,

ρs
R := ϕ1(UR, aM), us

R := aRρRuR

aMρs
R

, ps
R := κ(SR)(ρs

R)γ . (3.11)

The next part of the Riemann solution can be the 3-shock wave with zero speed

S3(U
s@
R ,Us

R).
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The next part of the Riemann solution can be again a stationary wave

W0(U
s@b
R , Us@

R ),

where

Us@b
R = (p, u, ρ, aL) ,

ρ := ϕ2(U
s@
R , aL), u := aMρs@

R us@
R

aLρ
, p := κ(Ss@

R )ργ . (3.12)

Because these three parts are discontinuity waves with same zero speed, we have a wave
collision (resonant case), i.e., W0(U

s@b
R , Us@

R ) ⊕ S3(U
s@
R ,Us

R) ⊕ W0(U
s
R,UR) is just a

discontinuity wave with zero speed

URie(x/t; UL,UR) =
⎧⎨
⎩

. . . ,

Us@b
R if . . . < x/t < 0,

UR if x/t > 0.

We call the set
{Us@b

R : aM varies between aL and aR}
as the backward composite wave curve WB

0 .SB
3 .WB

0 (UR, aL). It is not difficult to check
that Us@

R and U@b
R are two end-points of WB

0 .SB
3 .WB

0 (UR, aL) (see Fig. 4). If the wave
curve W1(UL) intersects WB

0 .SB
3 .WB

0 (UR, aL) at a point (p, u) in the (p, u)-plane, then
the Riemann problem for (1.1) has a solution of the form

W1(UL, U∗)⊕W2(U
∗, Us@b

R )⊕W0(U
s@b
R , Us@

R )⊕S3(U
s@
R ,Us

R)⊕W0(U
s
R,UR), (3.13)

where
U∗ = (p, u, ρ∗, aL) ∈ W1(UL).

Explicitly, the form (3.13) can be seen as follows.
• If U∗ ∈ R1(UL), then the form (3.13) yields

URie(x/t; UL, UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL, U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U

s@b
R ),

Us@b
R if λ2(U

s@b
R ) < x/t < 0,

UR if x/t > 0.

• If U∗ ∈ S1(UL), then the form (3.13) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎨
⎪⎪⎩

UL if x/t < σ1(UL,U∗),
U∗ if σ1(UL, U∗) < x/t < λ2(U

∗) = λ2(U
s@b
R ),

Us@b
R if λ2(U

s@b
R ) < x/t < 0,

UR if x/t > 0.

Algorithm to Compute the Intersection Point (p, u) = W1(UL)∩WB
0 .SB

3 .WB
0 (UR, aL).

Assume that Us@
R is located below W1(UL) and U@b

R is located above W1(UL) in the
(p, u)−plane.

Step 1 Set a1 = aL, a2 = aR;

Step 2 Compute aM = a1 + a2

2
; Compute Us

R as in (3.11); Compute Us@
R ; Compute

Us@b
R = (p, u, ρ, aL) as in (3.12);
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Step 3 – If (p, u) belongs toW1(UL) in the (p, u)-plane, end;
– If (p, u) is located aboveW1(UL) in the (p, u)-plane, set a1 = aM and return Step 2;
– If (p, u) is located belowW1(UL) in the (p, u)-plane, set a2 = aM and return Step 2.

3.3.3 Construction C3

Take a state U = (p, u, ρ, aR) ∈ SB
3 (UR) such that U is located between U@

R and U0
R ,

where

U0
R = (p0

R, u0R, ρ0
R, aR) = WB

3 (UR) ∩ C0.

Then, the last part of the Riemann solution can be a 3-shock wave with positive speed

S3(U,UR),

(see Lemma 2.1). The next part of the Riemann solution can be a stationary wave

W0(U
b, U),

where

Ub =
(
pb, ub, ρb, aL

)
,

ρb := ϕ2(U, aL), ub := aRρu

aLρb
, pb := κ(S)(ρb)γ . (3.14)

We call the set

{Ub : U is located between U@
R and U0

R on SB
3 (UR)}

as the backward composite wave curve SB
3 .WB

0 (UR, aL). Obviously, U@b
R and U0

R are
two end-points of SB

3 .WB
0 (UR, aL) (see Fig. 4). If the wave curve W1(UL) intersects

SB
3 .W0(UR, aL) at a point (pb, ub) in the (p, u)-plane, then the Riemann problem for (1.1)

has a solution of the form

W1(UL, U∗) ⊕ W2(U
∗, Ub) ⊕ W0(U

b, U) ⊕ S3(U,UR), (3.15)

where

U∗ = (pb, ub, ρ∗, aL) ∈ W1(UL).

Explicitly, the form (3.15) can be seen as follows.
• If U∗ ∈ R1(UL), then the form (3.15) yields

URie(x/t; UL,UR) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U

b),

Ub if λ2(U
b) < x/t < 0,

U if 0 < x/t < σ3(U, UR),

UR if x/t > σ3(U,UR).

• If U∗ ∈ S1(UL), then the form (3.15) yields

URie(x/t; UL,UR) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < σ1(UL, U∗),
U∗ if σ1(UL,U∗) < x/t < λ2(U

∗) = λ2(U
b),

Ub if λ2(U
b) < x/t < 0,

U if 0 < x/t < σ3(U,UR),

UR if x/t > σ3(U, UR).
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Algorithm to Compute the State U and the Intersection Point (pb, ub) = W1(UL)

∩SB
3 .W0(UR, aL). Assume that U@b

R is located below W1(UL) and U0
R is located above

W1(UL) in the (p, u)-plane.

Step 1 Set p1 = p@
R , p2 = p0

R;

Step 2 Compute p = p1+p2
2 ; Compute U = (p, u, ρ, aR) ∈ SB

3 (UR); Compute Ub =
(pb, ub, ρb, aL) as in (3.14);

Step 3 – If (pb, ub) belongs toW1(UL) in the (p, u)-plane, end;
– If (pb, ub) is located aboveW1(UL) in the (p, u)-plane, set p2 = p and return Step 2;
– If (pb, ub) is located belowW1(UL) in the (p, u)-plane, set p1 = p and return Step 2.

3.4 Case D: UR ∈ G−
2 and aL > aR

3.4.1 Construction D1

The last part of the Riemann solution can be the 3-rarefaction wave

R3(U
−
R ,UR),

where

U−
R = (p−

R , u−
R, ρ−

R , aR) = WB
3 (UR) ∩ C−.

The next part of the Riemann solution can be the stationary wave

W0(U
−s
R , U−

R ),

where

U−s
R = (

p−s
R , u−s

R , ρ−s
R , aL

)
,

ρ−s
R := ϕ1(U

−
R , aL), u−s

R := aRρ−
R u−

R

aLρ−s
R

, p−s
R := κ(SR)(ρ−s

R )γ .

Take any state U = (p, u, ρ, aL) ∈ WB
3 (U−s

R ) such that U is located below U−s@
R . Then,

the next part of the Riemann solution can be a 3-wave

W3(U,U−s
R ).

We call the set

{U ∈ WB
3 (U−s

R ) : U is located below U−s@
R }

as the backward composite wave curve RB
3 .WB

0 .WB
3 (UR, aL) (see Fig. 5). If the wave curve

W1(UL) intersects RB
3 .WB

0 .WB
3 (UR, aL) at a point (p, u) in the (p, u)−plane, then the

Riemann problem for (1.1) has a solution of the form

W1(UL,U∗) ⊕ W2(U
∗, U) ⊕ W3(U,U−s

R ) ⊕ W0(U
−s
R , U−

R ) ⊕ R3(U
−
R , UR), (3.16)

where

U∗ = (p, u, ρ∗, aL) ∈ W1(UL).
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Fig. 5 The backward composite wave curves: RB
3 .WB

0 .WB
3 (UR, aL), RB

3 .WB
0 .SB

3 .WB
0 (UR, aL), and

WB
3 .WB

0 (UR, aL) in the (p, u)-plane

Explicitly, the form (3.16) can be seen as follows.
• If U ∈ RB

3 (U−s
R ) and U∗ ∈ R1(UL), then the form (3.16) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U),

U if λ2(U) < x/t < λ3(U),

Fan3(x/t; U, U−s
R ) if λ3(U) ≤ x/t ≤ λ3(U

−s
R ),

U−s
R if λ3(U

−s
R ) < x/t < 0,

Fan3(x/t; U−
R ,UR) if 0 = λ3(U

−
R ) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ RB
3 (U−s

R ) and U∗ ∈ S1(UL), then the form (3.16) yields

URie(x/t; UL,UR) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U∗),
U∗ if σ1(UL,U∗) < x/t < λ2(U

∗) = λ2(U),

U if λ2(U) < x/t < λ3(U),

Fan3(x/t; U, U−s
R ) if λ3(U) ≤ x/t ≤ λ3(U

−s
R ),

U−s
R if λ3(U

−s
R ) < x/t < 0,

Fan3(x/t; U−
R ,UR) if 0 = λ3(U

−
R ) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ SB
3 (U−s

R ) and U∗ ∈ R1(UL), then the form (3.16) yields

URie(x/t; UL,UR) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U),

U if λ2(U) < x/t < σ3(U, U−s
R ),

U−s
R if σ3(U, U−s

R ) < x/t < 0,
Fan3(x/t; U−

R ,UR) if 0 = λ3(U
−
R ) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).
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• If U ∈ SB
3 (U−s

R ) and U∗ ∈ S1(UL), then the form (3.16) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U∗),
U∗ if σ1(UL,U∗) < x/t < λ2(U

∗) = λ2(U),

U if λ2(U) < x/t < σ3(U, U−s
R ),

U−s
R if σ3(U, U−s

R ) < x/t < 0,
Fan3(x/t; U−

R ,UR) if 0 = λ3(U
−
R ) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

Algorithm to Compute the Intersection Point (p, u) = W1(UL) ∩ RB
3 .W0.W

B
3 (UR, aL).

Similar to case C, since RB
3 .WB

0 .WB
3 (UR, aL) ≡ WB

0 .WB
3 (U−

R , aL).

3.4.2 Construction D2

The last part of the Riemann solution can be the 3-rarefaction wave

R3(U
−
R ,UR),

where
U−

R = (p−
R , u−

R, ρ−
R , aR) = WB

3 (UR) ∩ C−.

Fix a cross section aM between aL and aR . The next backward part of the Riemann solution
can be a stationary wave

W0(U
−s
R , U−

R ),

where

U−s
R = (

p−s
R , u−s

R , ρ−s
R , aM

)
,

ρ−s
R := ϕ1(U

−
R , aM), u−s

R := aRρ−
R u−

R

aMρ−s
R

, p−s
R := κ(SR)(ρ−s

R )γ .

The next backward part of the Riemann solution can be a 3-shock wave with zero speed

S3(U
−s@
R ,U−s

R ),

(see Lemma 2.1). The next backward part of the Riemann solution can be again a stationary
wave

W0(U
−s@b
R , U−s@

R ),

where

U−s@b
R = (p, u, ρ, aL) ,

ρ := ϕ2(U
−s@
R , aL), u := aMρ−s@

R u−s@
R

aLρ
, p := κ(S−s@

R )ργ .

We call the set
{U−s@b

R : aM varies between aL and aR}
as the backward composite wave curve RB

3 .WB
0 .SB

3 .WB
0 (UR, aL). It is not difficult to check

thatU−s@
R andU−b

R are two end-points ofRB
3 .WB

0 .SB
3 .WB

0 (UR, aL) (see Fig. 5). If the wave
curve W1(UL) intersects RB

3 .WB
0 .SB

3 .WB
0 (UR, aL) at a point (p, u) in the (p, u)-plane,

then the Riemann problem for (1.1) has a solution of the form

W1(UL,U∗) ⊕ W2(U
∗, U−s@b

R ) ⊕ W0(U
−s@b
R , U−s@

R )

⊕ S3(U
−s@
R , U−s

R ) ⊕ W0(U
−s
R , U−

R ) ⊕ R3(U
−
R ,UR), (3.17)
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where
U∗ = (p, u, ρ∗, aL) ∈ W1(UL).

Explicitly, the form (3.17) can be seen as follows.
• If U∗ ∈ R1(UL), then the form (3.17) yields

URie(x/t; UL, UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U

−s@b
R ),

U−s@b
R if λ2(U

−s@b
R ) < x/t < 0,

Fan3(x/t; U−
R , UR) if 0 = λ3(U

−
R ) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U∗ ∈ S1(UL), then the form (3.17) yields

URie(x/t; UL,UR)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U∗),
U∗ if σ1(UL, U∗) < x/t < λ2(U

∗)=λ2(U
−s@b
R ),

U−s@b
R if λ2(U

−s@b
R ) < x/t < 0,

Fan3(x/t; U−
R , UR) if 0 = λ3(U

−
R ) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

Algorithm to Compute the Intersection Point (p, u) = W1(UL) ∩ RB
3 .WB

0 .SB
3 .WB

0
(UR, aL). Similar to case C, since RB

3 .WB
0 .SB

3 .WB
0 (UR, aL) ≡ WB

0 .SB
3 .WB

0 (U−
R , aL).

3.4.3 Construction D3

Take a state U = (p, u, ρ, aR) ∈ WB
3 (UR) such that U ∈ G−

2 , i.e., U is located between
U−

R and U0
R , where

U−
R = (p−

R , u−
R, ρ−

R , aR) = WB
3 (UR) ∩ C−,

U0
R = (p0

R, u0R, ρ0
R, aR) = WB

3 (UR) ∩ C0.

Then, the last part of the Riemann solution can be a 3-wave

W3(U,UR).

The next backward part of the Riemann solution can be a stationary wave

W0(U
b, U),

where

Ub =
(
pb, ub, ρb, aL

)
,

ρb := ϕ2(U, aL), ub := aRρu

aLρb
, pb := κ(S)(ρb)γ .

We call the set

{Ub : U is located between U−
R and U0

R onWB
3 (UR)}

as the backward composite wave curve WB
3 .WB

0 (UR, aL). Obviously, U−b
R and U0

R are
two end-points of WB

3 .WB
0 (UR, aL) (see Fig. 5). If the wave curve W1(UL) intersects

WB
3 .W0(UR, aL) at a point (pb, ub) in the (p, u)-plane, then the Riemann problem for (1.1)

has a solution of the form

W1(UL,U∗) ⊕ W2(U
∗, Ub) ⊕ W0(U

b, U) ⊕ W3(U, UR), (3.18)
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where

U∗ = (pb, ub, ρ∗, aL) ∈ W1(UL).

Explicitly, the form (3.18) can be seen as follows.
• If U ∈ RB

3 (UR) and U∗ ∈ R1(UL), then the form (3.18) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U

b),

Ub if λ2(U
b) < x/t < 0,

U if 0 < x/t < λ3(U),

Fan3(x/t; U,UR) if λ3(U) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ RB
3 (UR) and U∗ ∈ S1(UL), then the form (3.18) yields

URie(x/t; UL, UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < σ1(UL,U∗),
U∗ if σ1(UL, U∗) < x/t < λ2(U

∗) = λ2(U
b),

Ub if λ2(U
b) < x/t < 0,

U if 0 < x/t < λ3(U),

Fan3(x/t; U, UR) if λ3(U) ≤ x/t ≤ λ3(UR),

UR if x/t > λ3(UR).

• If U ∈ SB
3 (UR) and U∗ ∈ R1(UL), then the form (3.18) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL if x/t < λ1(UL),

Fan1(x/t; UL,U∗) if λ1 ≤ x/t ≤ λ1(U∗),
U∗ if λ1(U

∗) < x/t < λ2(U
∗) = λ2(U

b),

Ub if λ2(U
b) < x/t < 0,

U if 0 < x/t < σ3(U, UR),

UR if x/t > σ3(U,UR).

• If U ∈ SB
3 (UR) and U∗ ∈ S1(UL), then the form (3.18) yields

URie(x/t; UL,UR) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL if x/t < σ1(UL, U∗),
U∗ if σ1(UL,U∗) < x/t < λ2(U

∗) = λ2(U
b),

Ub if λ2(U
b) < x/t < 0,

U if 0 < x/t < σ3(U,UR),

UR if x/t > σ3(U, UR).

Algorithm to Compute the State U and the Intersection Point (pb, ub) = W1(UL)

∩WB
3 .W0(UR, aL). Similar to Construction C3, but the assignment p1 = p@

R in Step 1 is
replaced by p1 = p−

R .
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4 Building a van Leer-Type Numerical Scheme

Relying on the constructions of Riemann solutions in the previous section, we are now in
a position to build up a van Leer-type scheme to compute the approximate solution of the
Cauchy problem for (1.1). Let us set

U :=

⎛
⎜⎜⎝

ρ

ρu

ρe

a

⎞
⎟⎟⎠ , F (U) :=

⎛
⎜⎜⎝

ρu

ρu2 + p

u(ρe + p)

0

⎞
⎟⎟⎠ , H(U) := −1

a

⎛
⎜⎜⎝

ρu

ρu2

u(ρe + p)

0

⎞
⎟⎟⎠ .

Then, the system (1.1) can be written in the compact form

∂tU + ∂xF (U) = H(U)∂xa, t > 0, x ∈ R. (4.1)

Accordingly, given the initial condition

U(x, 0) = U0(x), x ∈ R,

then, the discrete initial values (U0
j )j∈Z are given by

U0
j := 1

�x

∫ xj+1/2

xj−1/2

U0(x)dx.

Suppose Un = (Un
j )j∈Z at the time tn is known. Recently, the Godunov-type scheme

has been built as follows

Un+1
j = Un

j − �t

�x

(
F(URie(0−;Un

j , Un
j+1)) − F(URie(0+; Un

j−1, U
n
j ))

)
, (4.2)

where URie(
x
t
;UL,UR) denotes the exact solution of the Riemann problem for (1.1) cor-

responding to the Riemann data (UL,UR). Now, in this paper, we build a van Leer-type
scheme to compute the approximation Un+1 = (Un+1

j )j∈Z of U(·, tn+1) as follows:
• (Reconstruction Step) From the sequence Un, we construct a piecewise linear function
Upl(x) defined by

Upl(x) = Un
j + Sn

j

�x
(x − xj ), xj−1/2 < x < xj+1/2, j ∈ Z, (4.3)

where the slopes Sn
j = (sn

j,1, s
n
j,2, s

n
j,3, s

n
j,4) are defined by

Sn
j = (Un

j+1 − Un
j )�(θn

j ),

θn
j = Un

j − Un
j−1

Un
j+1 − Un

j

, (4.4)

�(θ) = |θ | + θ

1 + |θ | , the van Leer’s limiter function.

• (Evolution Step) We solve the Cauchy problem for (4.1) with the initial condition

U(x, 0) = Upl(x), x ∈ R, (4.5)

to find the solution U(·, �t).
• (Cell-averaging Step) We project (in the sense of L2) the solution U(·, �t) onto the
piecewise constant functions, i.e., we set

Un+1
j := 1

�x

∫ xj+1/2

xj−1/2

U(x, �t)dx. (4.6)
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To make sure that the waves of local Riemann problems centered at xj−1/2 and xj+1/2 do
not interact, we use the following C.F.L. condition

�t

�x
max{|λk(U

n
j )| : k = 1, 2, 3} ≤ 1

2
. (4.7)

In order to derive a more explicit form of the scheme, we integrate (4.1) over the rectangle
(xj−1/2, xj+1/2) × (0,�t). We obtain

∫ xj+1/2

xj−1/2

(U(x, �t)−U(x, 0))dx+
∫ �t

0

(
F(U(xj+1/2 − 0, t))−F(U(xj−1/2 + 0, t))

)
dt

=
∫ xj+1/2

xj−1/2

∫ �t

0
H(U(x, t))∂xadxdt.

Using (4.3), (4.5), and (4.6), we get

�x(Un+1
j − Un

j ) +
∫ �t

0

(
F(U(xj+1/2 − 0, t)) − F(U(xj−1/2 + 0, t))

)
dt

=
∫ xj+1/2

xj−1/2

∫ �t

0
H(U(x, t))∂xadxdt. (4.8)

Using the midpoint rule, we write

1

�t

∫ �t

0
F(U(xj+1/2 ± 0, t))dt = F(U(xj+1/2 ± 0,�t/2)) + O(�t2). (4.9)

For approximating F(U(xj+1/2 ± 0, �t/2)), we use a predictor-corrector scheme. Follow-

ing an idea of Hancock (see [17], for example), we define values U
n+1/2
j+1/2,± at time �t/2

by

U
n+1/2
j+1/2,− = Un

j+1/2,− − �t

2�x

(
F(Un

j+1/2,−) − F(Un
j−1/2,+)

)
(4.10)

+ �t

2�x
H(Un

j+1/2,−)(an
j+1 − an

j )�

(
an
j − an

j−1

an
j+1 − an

j

)
,

U
n+1/2
j−1/2,+ = Un

j−1/2,+ − �t

2�x

(
F(Un

j+1/2,−) − F(Un
j−1/2,+)

)

+ �t

2�x
H(Un

j−1/2,+)(an
j+1 − an

j )�

(
an
j − an

j−1

an
j+1 − an

j

)
,

where

Un
j+1/2,− = Upl(xj+1/2 − 0) = Un

j + 1

2
Sn

j ,

Un
j−1/2,+ = Upl(xj−1/2 + 0) = Un

j − 1

2
Sn

j . (4.11)

Then, we solve the Riemann problem of (4.1) at the points xj+1/2, j ∈ Z with piecewise

constant initial data U
n+1/2
j+1/2,±, whose solutions are noted as usual

URie

(
x − xj+1/2

t
; U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)
.
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The values U(xj+1/2 ± 0,�t/2) in (4.9) are substituted by

URie

(
0±;U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)
.

Next, we approximate the right-hand side of (4.8) as follows.
∫ xj+1/2

xj−1/2

∫ �t

0
H(U(x, t))∂xadxdt

≈ �x�tH
(
U(xj ,�t/2)

)
∂xa(xj ,�t/2)

≈ �x�tH(U
n+1/2
j )

a(xj+1/2 − 0,�t/2) − a(xj−1/2 + 0,�t/2)

�x

≈ �t
1

2

(
H

(
U

n+1/2
j+1/2,+

)
+ H

(
U

n+1/2
j−1/2,−

)) (
aRie

(
0−; U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)

−aRie

(
0+;U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+

))
.

Thus, the scheme (4.8) becomes

Un+1
j = Un

j − �t

�x

(
F(URie(0−, U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+)) − F(URie(0+, U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)

+ �t

2�x

(
H(U

n+1/2
j+1/2,+) + H(U

n+1/2
j−1/2,−)

) (
aRie

(
0−;U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)
(4.12)

−aRie

(
0+; U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+

))
.

The updated values U
n+1/2
j±1/2,∓ can be interpreted as follows:

U
n+1/2
j+1/2,− ≈ U(xj+1/2 − 0,�t/2)

≈ U(xj+1/2 − 0, 0) + �t

2

∂U

∂t
(xj+1/2 − 0, 0)

≈ Un
j+1/2,− + �t

2

(
−∂F (U)

∂x
(xj+1/2 − 0, 0) + H(U)

∂a

∂x
(xj+1/2 − 0, 0)

)

≈ Un
j+1/2,− − �t

2

∂F (U)

∂x
(xj+1/2 − 0, 0)

+ �t

2�x
H(Un

j+1/2,−)(an
j+1 − an

j )�

(
an
j − an

j−1

an
j+1 − an

j

)

≈ Un
j+1/2,− − �t

2�x

(
F(Un

j+1/2,−) − F(Un
j−1/2,+)

)

+ �t

2�x
H(Un

j+1/2,−)(an
j+1 − an

j )�

(
an
j − an

j−1

an
j+1 − an

j

)
,

since

∂xa(x, 0) = 1

�x
(an

j+1 − an
j )�

(
an
j − an

j−1

an
j+1 − an

j

)
, xj−1/2 < x < xj+1/2.

A similar argument can be made for U
n+1/2
j−1/2,+.

To complete the van Leer-type scheme (4.12), we will specify the values URie(0±;
UL,UR) as follows.
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Construction URie (0−; UL,UR) URie (0+; UL, UR)

A1 (3.1) UL Us
L

A2 (3.4) UL Us#b
L

A3 (3.6) U Ub

B1 (3.7) U+
L U+s

L

B2 (3.8) U+
L U+s#b

L

B3 (3.9) U Ub

C1 (3.10) Us
R UR

C2 (3.13) Us@b
R UR

C3 (3.15) Ub U

D1 (3.16) U−s
R U−

R

D2 (3.17) U−s@b
R U−

R

D3 (3.18) Ub U

5 Numerical Experiments

This section is devoted to numerical tests by using MATLAB. For each test, by taking
γ = 1.4 and CFL = 0.5, we plot the exact solution and its approximations corresponding to
the Godunov-type scheme (4.2) and the van Leer-type scheme (4.12) at t = 0.02.

5.1 Approximations of Smooth Stationary Solutions

Test 1 Consider the Cauchy problem for system (1.1) with the initial data given as follows:

U(x, 0) = (p(x), u(x), ρ(x), a(x)) , x ∈ R, (5.1)

where

a(x) = 2 + arctan x,

a(x)ρ(x)u(x) = a(0)ρ(0)u(0),

(u(x))2

2
+ h(ρ(x)) = (u(0))2

2
+ h(ρ(0)),

p(x)

(ρ(x))γ
= p(0)

(ρ(0))γ
,

(p(0), u(0), ρ(0)) = (3, 10, 0.2) ∈ G+
1 ,

(p(x), u(x), ρ(x)) ∈ G+
1 .

The exact solution in this test is just the smooth stationary wave

U(x, t) = (p(x), u(x), ρ(x), a(x)) , x ∈ R, t ≥ 0.

Figure 6 displays exact solution and its approximations for the mesh sizes h = 1/20, h =
1/80 by the van Leer-type scheme (4.12). The errors and orders for different mesh sizes
h = 1/20, h = 1/40, h = 1/80, h = 1/160, h = 1/320, h = 1/640, and h = 1/1280 are
reported in Table 1. The order of accuracy in this test is close to 2.
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Fig. 6 Exact solution and approximate solutions for the mesh sizes h = 1/20 and h = 1/80 by the van
Leer-type scheme in test 1

5.2 Test for Simple Waves

Test 2 Consider the Riemann problem for system (1.1) with the initial data given as follows

U(x, 0) =
{

UL = (pL, uL, ρL, aL) = (7.0, 2.0, 0.5, 3.0) if x < 0,
UR = (pR, uR, ρR, aR) = (7.0, 2.0, 0.4, 3.0) if x > 0.

(5.2)

Table 1 Errors and orders of accuracy for test 1

van Leer-type scheme

N L1-error L1-order

20 0.00652770 −
40 0.00159440 2.03

80 0.00041149 1.95

160 0.00010669 1.95

320 0.00002751 1.96

640 0.00000697 1.98

1280 0.00000176 1.99
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Fig. 7 Exact solution and approximate solutions for the mesh size h = 1/640 corresponding to the Godunov-
type scheme and the van Leer-type scheme in test 2

Since pL = pR , uL = uR , and aL = aR , the exact solution for this test is just the 2-contact
wave

URie(x, t; UL,UR) =
{

UL if x < 2t,
UR if x > 2t,

see the left top of Fig. 7. Figure 7 displays exact solution and its approximations for the mesh
size h = 1/640 corresponding to the Godunov-type scheme and the van Leer-type scheme.
The errors and orders of accuracy of this test are reported in Table 2. We also evaluate
from Table 2 that the L1-order of the van Leer-type scheme is approximately equal to 0.89,
while the “second-order” van Leer scheme for usual gas dynamics equations has order of
accuracy approximately equal to 2/3 for contact wave. Moreover, Fig. 7 and Table 2 show

Table 2 Errors and orders of accuracy for test 2

Godunov-type scheme van Leer-type scheme

N L1-error L1-order L1-error L1-order

40 0.004705 − 0.004909 −
80 0.002260 1.06 0.001576 1.64

160 0.001599 0.50 0.000881 0.84

320 0.001169 0.45 0.000646 0.45

640 0.000846 0.47 0.000442 0.55

1280 0.000583 0.54 0.000224 0.98
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Fig. 8 Exact solution and approximate solutions for the mesh size h = 1/640 corresponding to the Godunov-
type scheme and the van Leer-type scheme in test 3

that the accuracy and the order of accuracy of the van Leer-type scheme are better than the
Godunov-type scheme.

Test 3 Consider the Riemann problem for system (1.1) with the initial data

U(x, 0) =
{

UL = (pL, uL, ρL, aL) = (10.0, −3.787322, 0.234483, 2.0) if x < 0,
UR = (pR, uR, ρR, aR) = (8.0, −5.0, 0.2, 2.0) if x > 0.

(5.3)
We can check that UL ∈ SB

3 (UR), so the exact solution for this test is just the 3-shock wave

URie(x, t; UL,UR) =
{

UL if x < σ3(UL, UR)t,

UR if x > σ3(UL, UR)t

Table 3 Errors and orders of accuracy for test 3

Godunov-type scheme van Leer-type scheme

N L1-error L1-order L1-error L1-order

80 0.096384 − 0.075138 −
160 0.054626 0.82 0.024822 1.60

320 0.036961 0.56 0.017647 0.49

640 0.023646 0.64 0.011612 0.60

1280 0.012798 0.89 0.003850 1.59
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Fig. 9 Exact solution and approximate solutions for the mesh size h = 1/640 corresponding to the Godunov-
type scheme and the van Leer-type scheme in test 4

(see the left top of Fig. 8). Figure 8 displays exact solution and its approximations for the
mesh size h = 1/640 corresponding to the Godunov-type scheme and the van Leer-type
scheme. The errors and orders of accuracy of this test are reported in Table 3. We can
evaluate from Table 3 that the order is approximately equal to 1.07, while the “second-order”
van Leer scheme for usual gas dynamics equations has order of accuracy approximately
equal to 1.0 for shock wave. Moreover, we also see from Table 3 that the accuracy and the
order of accuracy of the van Leer-type scheme are better than those of the Godunov-type
scheme.

Table 4 Errors and orders of accuracy for test 4

Godunov-type scheme van Leer-type scheme

N L1-error L1-order L1-error L1-order

40 0.118600 − 0.124170 −
80 0.056447 1.07 0.032811 1.92

160 0.040175 0.49 0.025166 0.38

320 0.027308 0.56 0.015104 0.74

640 0.018498 0.56 0.007769 0.96

1280 0.011947 0.63 0.003880 1.00
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Table 5 States in test 5

U∗ Ub U

p 16.669020 16.669020 14.542474

u −2.240080 −2.240080 −4.115752

ρ 0.702386 0.374312 0.339545

a 2.5 2.5 1.5

Test 4 Consider the Riemann problem for system (1.1) with the initial data given as follows

U(x, 0) =
{

UL = (pL, uL, ρL, aL) = (10.0, 7.0, 0.4, 1.0) if x < 0,
UR = (pR, uR, ρR, aR) = (8.0, 7.928082, 0.341066, 1.0) if x > 0.

(5.4)

It is not difficult to check that UR ∈ R1(UL); thus, the exact solution for this test is just the
1-rarefaction wave

URie(x, t; UL,UR) =
⎧⎨
⎩

UL if x < λ1(UL)t,

Fan1(x/t; UL, UR) if λ1(UL)t ≤ x ≤ λ1(UR)t,

UR if x > λ1(UR)t

(see the left top of Fig. 9). Figure 9 displays exact solution and its approximations for the
mesh size h = 1/640 corresponding to the Godunov-type scheme and the van Leer-type
scheme. The errors and orders of accuracy of this test are reported in Table 4. We can
evaluate from Table 4 that the order is approximately equal to 1.00. This is consistent with

Fig. 10 Exact solution and approximate solutions for the mesh size h = 1/640 corresponding to the
Godunov-type scheme and the van Leer-type scheme in test 5
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Table 6 Errors and orders of accuracy for test 5

Godunov-type scheme van Leer-type scheme

N L1-error L1-order L1-error L1-order

40 1.122100 − 0.957610 −
80 0.656010 0.77 0.435920 1.14

160 0.432860 0.60 0.228890 0.93

320 0.284290 0.61 0.117430 0.96

640 0.185340 0.62 0.060191 0.96

1280 0.117570 0.66 0.029807 1.01

the fact that the “second-order” van Leer scheme for usual gas dynamics equations has
order of accuracy approximately equal to 2/3 for contact wave, and the order of accuracy is
approximately equal to 1.0 for shock wave.

5.3 Tests for the Cases When Initial Data Belongs to Same Supersonic
or Subsonic Region

Test 5 Let the Riemann data be given by

UL = (pL, uL, ρL, aL) = (20.0, −3.0, 0.8, 2.5) ∈ G−
2 ,

UR = (pR, uR, ρR, aR) = (25.0, −1.0, 0.5, 1.5) ∈ G−
2 . (5.5)

The exact solution of this test is computed by Construction D3

R1(UL,U∗) ⊕ W2(U
∗, Ub) ⊕ W0(U

b, U) ⊕ R3(U,UR),

where U∗, Ub, and U are reported in Table 5. Figure 10 displays exact solution and its
approximations for the mesh size h = 1/640 corresponding to the Godunov-type scheme
and the van Leer-type scheme. We can see from this figure that the approximate solution
corresponding to the van Leer-type scheme is closer to the exact solution than the one cor-
responding to the Godunov-type scheme. The errors and orders for different mesh sizes
h = 1/40, h = 1/80, h = 1/160, h = 1/320, h = 1/640, and 1/1280 are reported in
Table 6.We can evaluate from this table that theL1-order corresponding to the van Leer-type
scheme is approximately equal to 0.98, while the one corresponding to the Godunov-type
scheme is approximately equal to 0.64. So, the order of accuracy of the van Leer-type
scheme is better than the one of the Godunov-type scheme.

Table 7 States in test 6

U∗ Ub U

p 37.348163 37.348163 32.925856

u −2.132637 −2.132637 −3.889198

ρ 1.007640 0.874118 0.798869

a 2.5 2.5 1.5
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Fig. 11 Exact solution and approximate solutions for the mesh size h = 1/640 corresponding to the
Godunov-type scheme and the van Leer-type scheme in test 6

5.4 Test Cases for Initial Data in Different Regions Without Resonance (No
Wave Collisions)

Test 6 Let the Riemann data be given by

UL = (pL, uL, ρL, aL) = (27.0, −0.5, 0.8, 2.5) ∈ G−
2 ,

UR = (pR, uR, ρR, aR) = (12.0, −9.0, 0.4, 1.5) ∈ G−
1 . (5.6)

According to Construction C3, the exact solution is

S1(UL,U∗) ⊕ W2(U
∗, Ub) ⊕ W0(U

b, U) ⊕ S3(U, UR),

Table 8 Errors and orders of accuracy for test 6

Godunov-type scheme van Leer-type scheme

N L1-error L1-order L1-error L1-order

40 2.059300 − 1.916200 −
80 1.451800 0.50 1.303000 0.56

160 0.660860 1.14 0.494660 1.40

320 0.367600 0.85 0.241730 1.03

640 0.203470 0.85 0.121080 1.00

1280 0.108820 0.90 0.055893 1.12
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Table 9 States in test 7

U∗ U−s@b
R U−s@

R U−s
R U−

R

p 10.105278 10.105278 8.585095 2.968002 6.858253

u −2.933774 −2.933774 −4.339061 −8.956347 −6.233950

ρ 0.417667 0.314994 0.280368 0.135829 0.247067

a 2.5 2.5 1.899086 1.899086 1.5

where U∗, Ub, and U are reported in Table 7. Figure 11 displays exact solution and its
approximations for the mesh size h = 1/640 corresponding to the Godunov-type scheme
and the van Leer-type scheme. The errors and orders for this test are reported in Table 8.
We can see from Table 8 and Fig. 11 that the accuracy and the order of accuracy of the van
Leer-type scheme are better than those of the Godunov-type scheme.

5.5 Test Cases for Resonance

Test 7 Let the Riemann data be given by

UL = (pL, uL, ρL, aL) = (13.0, −4.0, 0.5, 2.5) ∈ G−
2 ,

UR = (pR, uR, ρR, aR) = (9.0, −5.0, 0.3, 1.5) ∈ G−
2 . (5.7)

Fig. 12 Exact solution and approximate solutions for the mesh size h = 1/640 corresponding to the
Godunov-type scheme and the van Leer-type scheme in test 7



A van Leer-Type Numerical Scheme for the Model 545

Table 10 Errors and orders of accuracy for test 7

Godunov-type scheme van Leer-type scheme

N L1-error L1-order L1-error L1-order

40 0.575220 − 0.486200 −
80 0.359630 0.68 0.276780 0.81

160 0.200990 0.84 0.135570 1.03

320 0.127810 0.65 0.071263 0.93

640 0.080678 0.66 0.036109 0.98

1280 0.051547 0.65 0.018114 1.00

The exact solution is constructed by Construction D2:

R1(UL,U∗) ⊕ W2(U
∗, U−s@b

R ) ⊕ W0(U
−s@b
R , U−s@

R )

⊕ S3(U
−s@
R ,U−s

R ) ⊕ W0(U
−s
R , U−

R ) ⊕ R3(U
−
R ,UR),

where U∗, U−s@b
R , U−s@

R , U−s
R , and U−

R are reported in Table 9. Figure 12 displays exact
solution and its approximations for the mesh size h = 1/640 corresponding to the Godunov-
type scheme and the van Leer-type scheme. The errors and orders for different mesh sizes
h = 1/40, h = 1/80, h = 1/160, h = 1/320, h = 1/640, and 1/1280 are reported in
Table 10. We can see from Table 10 and Fig. 12 that the accuracy and the order of accuracy
of the van Leer-type scheme are better than those of the Godunov-type scheme.

6 Conclusions and Discussions

Nonconservativeness often causes lots of inconvenience for standard numerical schemes
in approximating solutions. This work deals with numerical approximations of solutions
of a nonconservative system. A van Leer-type scheme is built and tested. Tests show that
the scheme can work through for all types of data, and of the class of high-order numeri-
cal schemes. The proposed scheme can give very desirable results for approximating exact
solutions, even in the resonance cases where the exact solution may contain several waves
with coinciding shock speeds. Moreover, it has a much better accuracy than the Godunov-
type scheme. Note that when we deal with non-smooth solutions, a high-order scheme
may give orders of accuracy below 1. Further developments for numerical approxima-
tions of solutions of more complicated systems such as multi-phase flow models will be
considered.
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