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Abstract Based on the subgradient methods and fixed point techniques, we develop a new
iteration method for solving variational inequalities on the solution set of Ky Fan inequali-
ties. The convergence for the proposed algorithms to the solution is guaranteed under certain
assumptions in the Euclidean spaceRn.
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continuous · Global convergence
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1 Introduction

Let C be a nonempty closed convex subset of the Euclidean space Rn with inner product
〈·, ·〉 and norm ‖ · ‖. The Ky Fan inequalities, shortly KF(f,C), are formulated as follows:

Find x∗ ∈ C such that f (x∗, x) ≥ 0 ∀x ∈ C,
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where f is a bifunction from C × C toR such that f (x, x) = 0 for all x ∈ C, and for each
x ∈ C, the function f (x, y) is convex and subdiffentiable with respect to the second argu-
ment y on C. The solution set of Problem KF(f,C) is denoted by Sol(f, C). An important
example of Ky Fan inequalities is the variational inequalities denoted by V I (F,C). It corre-
sponds to f (x, y) = 〈F(x), y − x〉 for every x, y ∈ C, where F : C → Rn is a continuous
mapping, and can be expressed as follows:

Find x̄ ∈ C such that 〈F(x̄), y − x̄〉 ≥ 0 ∀y ∈ C.

In the present work, we are concerned with the variational inequalities on the solution set
of Ky Fan inequalities, shortly V IKF(F, f, C), which consist in finding a point x∗, such
that

x∗ ∈ Sol(f, C) and 〈F(x∗), x − x∗〉 ≥ 0 ∀x ∈ Sol(f, C),

where the bifunction f : C × C → R and F : C → Rn. The variational inequalities
on the solution set of Ky Fan inequalities are special classes of quasivariational inequalities
and bilevel Ky Fan inequalities (see [1, 7, 9, 15, 16, 23]). However, this class of prob-
lems includes, as special cases, lexicographic variational inequalities, Ky Fan inequalities,
some classes of mathematical programs with equilibrium constraints (see [4, 8, 13, 18, 27]),
bilevel minimization problems (see [2, 25]), variational inequalities (see [14]), minimum-
norm problems of the solution set of variational inequalities (see [6, 30]), and bilevel convex
programming models (see [26, 29]). The problems have recently attracted many researcher’s
interest, due to the fact that those algorithms have extensive applications in a variety of areas
such as image recovery, signal processing, and network resource allocation (see for instance
[3, 9, 12, 19, 27]). The merit of these problems is that it unifies all these particular problems
in a convenient way.

A particularly interesting problem occurs in the case that F(x) = x for all x ∈ C, the
problem reduces to a minimum-norm problem over the solution set of the following Ky Fan
inequalities:

Find x∗ ∈ C such that x∗ = PrSol(f,C)(0),

where PrSol(G,C)(0) is the projection of 0 onto Sol(f, C). To solve Problem
V IKF(F, f, C): find x∗ ∈ Sol(f, C) such that

〈F(x∗), x − x∗〉 ≥ 0 ∀x ∈ Sol(f, C),

where F is Lipschitz continuous and strongly monotone fromRn toRn, and

f (x, y) = 〈G(x), y − x〉 + ϕ(y) − ϕ(x),

where G : Rn → Rn is monotone and ϕ : Rn → (−∞,+∞] is lower semicontinu-
ous and convex; Maingé [21] proposed the projected subgradient method and showed the
convergence of the iteration sequences under certain appropriate conditions imposed on the
regular parametrics.

Anh et al. [7] introduced an extragradient algorithm for solving V IKF(F, f, C), where
f (x, y) = 〈G(x), y − x〉 for every x, y ∈ C. Then, the algorithm consists of roughly two
loops. At each iteration k of the outer loop, they applied the extragradient method to the
lower variational inequality problem. Then, starting from the obtained iterate in the outer
loop, they compute an εk-solution of Problem V I (G,C). The convergence of the algorithm
crucially depends on the starting point x0 and the parameters chosen in advance. Under
assumptions that F is strongly monotone and Lipschitz continuous, G is pseudomonotone
and Lipschitz continuous on C, and the sequences of parameters were chosen appropriately.
They showed that two iterative sequences {xk} and {zk} converge to the same point x∗
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which is a solution of the problem. However, at each iteration of the outer loop, the scheme
requires computing an approximation solution to a variational inequality problem.

There exist some other solution-methods for lexicographic variational inequalities when
the cost operator has some monotonicity (see [13, 18, 23, 26]). In all of these methods, it
requires solving auxiliary variational inequalities. In order to avoid this requirement, we
combine the contractivity of the mapping T := I − μF in [16] for solving variational
inequalities V I (F,C) with some conditions of F and μ, and the extragradient methods
proposed by Korpelevich in [20]. Then, the strong convergence of proposed sequences will
be considered in a real Hilbert space. Let Fix(T ) be the fixed point set of a demicontractive
mapping T : C → C. For solving V I (F,Sol(f, C) ∩ Fix(T )) in a real Hilbert space, by
using the hybrid steepest descent method for fixed point problems introduced by Yamada
and Ogura in [28], Maingé and Moudafi in [22] proposed the following iterative process:

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

zk such that f (zk, y) + 1

rk
〈y − zk, zk − xk〉 ≥ 0 ∀y ∈ C,

xk+1 = [(1 − λ)I + λT ](tk) with tk = zk − αkF (zk),

where I stands for the identity mapping onH, λ ∈ (0, 1), {αk} ⊂ [0, 1) and {rk} ⊂ (0, ∞).
Under certain conditions on the parameters, the sequence {xk} converges strongly to a solu-
tion of Problem V I (F,Sol(f, C) ∩ Fix(T )). By replacing the computation of zk in the
Maingé and Moudafi algorithm by an extragradient iteration, Vuong et al. in [24] recently
proposed extragradient-viscosity methods for solving Problem V I (F,Sol(f, C) ∩ Fix(T )).
The strong convergence of the iterates generated by these algorithms is obtained by com-
bining a viscosity approximation method with an extragradient method. This is done when
the basic iteration comes directly from the extragradient method, under a Lipschitz-type
continuous and pseudomonotone assumptions on the equilibrium bifunction. In this paper,
we are interested in finding a solution to variational inequalities on the solution set of Ky
Fan inequalities V IKF(F, f, C), where the operators F and f satisfy the following usual
conditions:

(A1) For each x ∈ C, f (x, ·) is lower semicontinuous convex on C. If {xk} ⊂ C is
bounded and εk ↘ 0 as k → ∞, then the sequence{wk} with wk ∈ ∂

εk

2 f (xk, xk) is
bounded, where ∂

εk

2 f (xk, xk) stands for ε-subdifferential of the convex function f (xk, x)

with respect to the second argument at xk:

∂
εk

2 f (xk, xk) =
{
w ∈ H : f (xk, x) − f (xk, xk) ≥ 〈w, x − xk〉 − εk ∀x ∈ C

}

=
{
w ∈ H : f (xk, x) + εk ≥ 〈w, x − xk〉 ∀x ∈ C

}
;

(A2) f is pseudomonotone on C with respect to every solution x∗ of Problem
V IKF(F, f, C) and satisfies the following condition, called the strict paramonotonicity
property

y ∈ C, f (y, x∗) = f (x∗, y) = 0 ⇒ y ∈ Sol(f, C);
(A3) For each x ∈ C, f (·, x) is upper semicontinuous on C;
(A4) The solution set Sol(f, C) of Problem V I (F,C) is nonempty;
(A5) F is L-Lipschitz continuous and β-strongly monotone.

It is well known that if the cost mapping F of variational inequalities V I (F, C) is
continuous and strongly monotone on the nonempty closed convex subset C ⊂ H, then
Problem V I (F,C) has a unique solution (see [12, 14]). When f is pseudomonotone and
Sol(f, C) �= ∅, Sol(f, C) is convex (see [10]). Thus, under Conditions (A2), (A4), and
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(A5), Problem V IKF(F, f, C) has a unique solution. The purpose of this paper is to pro-
pose an algorithm for directly solving the variational inequalities on the solution set of Ky
Fan inequalities by using the projected subgradient method and fixed point techniques.

The rest of this paper is divided into three sections. In Section 2, we recall some proper-
ties for monotonicity, the metric projection onto a closed convex set, and introduce in detail
a new algorithm for solving Problem V IKF(F, f, C). The third section is devoted to the
convergence analysis for the algorithm. Finally, in the last section, we consider a numerical
example to illustrate the convergence of the algorithm.

2 Preliminaries

Let C be a nonempty closed convex subset of the Euclidean spaceRn. There exists a unique
point in C, denoted by PrC(x) satisfying

‖x − PrC(x)‖ ≤ ‖x − y‖ ∀y ∈ C.

Then, PrC is called the metric projection ofRn to C. It is well known that PrC satisfies the
following properties:

(a) ‖PrC(x) − PrC(y)‖ ≤ ‖x − y‖ ∀x, y ∈ Rn;
(b) ‖PrC(x) − PrC(y)‖2 ≤ 〈PrC(x) − PrC(y), x − y〉 ∀x, y ∈ Rn;
(c) 〈x − PrC(x), y − PrC(x)〉 ≤ 0 ∀y ∈ C, x ∈ Rn;
(d) ‖PrC(x) − y‖2 ≤ ‖x − y‖2 − ‖PrC(x) − x‖2 ∀y ∈ C, x ∈ Rn;
(e) ‖PrC(x) − PrC(y)‖2 ≤ ‖x − y‖2 − ‖PrC(x) − x + y − PrC(y)‖2 ∀x, y ∈ Rn.

Now, we list some well-known definitions which will be used in our analysis.

Definition 2.1 Let C be a nonempty subset inRn. The operator ϕ : C → Rn is said to be

(i) γ -strongly monotone on C if for each x, y ∈ C,

〈ϕ(x) − ϕ(y), x − y〉 ≥ γ ‖x − y‖2;

(ii) pseudomonotone on C if for each x, y ∈ C,

〈ϕ(y), x − y〉 ≥ 0 ⇒ 〈ϕ(x), x − y〉 ≥ 0;

(iii) Lipschitz continuous with constant L > 0 (shortly L-Lipschitz continuous) on C if
for each x, y ∈ C,

‖ϕ(x) − ϕ(y)‖ ≤ L‖x − y‖.

If ϕ : C → C and L = 1, then ϕ is called nonexpansive on C.

The bifunction f : C × C → R is said to be

(iv) pseudomonotone on C × C if for each x, y ∈ C,

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0.
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In the case f (x, y) = 0, Problem V IKF(f,C) is the variational inequalities V I (F,C)

and Algorithm 1 becomes the basic projection algorithm (see Algorithm 12.1.1 [14]).
To investigate the convergence of this algorithm, we recall the following technical

lemmas which will be used in the sequel.

Lemma 2.2 (See [16]) Let A : Rn → Rn be a β-strongly monotone and L-Lipschitz
continuous, λ ∈ (0, 1] and μ ∈ (0, 2β

L2 ). Then, the mapping T (x) := x − λμA(x) for all
x ∈ Rn, satisfies the inequality:

‖T (x) − T (y)‖ ≤ (1 − λτ)‖x − y‖ ∀x, y ∈ Rn,

where τ = 1 − √
1 − μ(2β − μL2) ∈ (0, 1].

Lemma 2.3 (See [30]) Let {ak} and {δk} be sequences of nonnegative real numbers such
that

ak+1 ≤ ak + δk ∀k ≥ 0,

where {δk} satisfies ∑∞
k=0 δk < ∞. Then, there exists the limit limk→∞ ak .

3 Convergence Results

In this section, we will state and prove the convergence of the sequences in Algorithm 1.

Theorem 3.1 Let C be a nonempty closed convex subset ofRn. Let the mapping F : C →
Rn and the bifunction f : C×C → R satisfy Assumptions (A1)–(A5). Then, the sequences
{xk} and {yk} in Algorithm 1 converge to the same point which is the unique solution of
Problem V IKF(F, f, C).

Suppose that x∗ is the unique solution of Problem V IKF(F, f, C). The proof of the
theorem is divided into five parts.
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Claim 1

‖xk+1 − x∗‖2 ≤ ξ̄k‖xk − x∗‖2 + 2βk

λ
f (xk, x∗) + Sk, (3.1)

where τ = 1− √
1 − μ(2β − μL2), ξ̄k := 1− τξk, Sk = 2βkεk ξ̄k

λ
+ β2

k ξ̄k + ξkτμ2

τ 2
‖F(x∗)‖2

and there exists the limit limk→∞ ‖xk − x∗‖2 = c.

Proof For each x ∈ C, set gk(x) := x − ξkμF(x) for all k = 0, 1, · · · . By Lemma 2.2, we
have

‖gk(x) − gk(y)‖ ≤ (1 − ξkτ )‖x − y‖ ∀x, y ∈ C.

By using the nonexpansiveness of the projection and the triangle inequality, we get that

‖xk+1 − x∗‖ = ‖PrC[yk − μξkF (yk)] − x∗‖
= ‖PrC[yk − μξkF (yk)] − PrC(x∗)‖
≤ ‖gk(y

k) − gk(x
∗) − μξkF (x∗)‖

≤ ‖gk(y
k) − gk(x

∗)‖ − μξk‖F(x∗)‖
≤ ξ̄k‖yk − x∗‖ + μξk‖F(x∗)‖.

This implies that

‖xk+1 − x∗‖2 ≤ [ξ̄k‖yk − x∗‖ + μξk‖F(x∗)‖]2

=
[
(1 − ξkτ )‖yk − x∗‖ + ξkτ

(μ

τ
‖F(x∗)‖

)]2
(3.2)

≤ (1 − ξkτ )‖yk − x∗‖2 + ξkτμ2

τ 2
‖F(x∗)‖2.

Since yk = PrC(xk − αkw
k) and x∗ ∈ Sol(F, f, C) ⊆ C, we have

‖yk − x∗‖2 = ‖PrC(xk − αkw
k) − PrC(x∗)‖2

≤ ‖xk − αkw
k − x∗‖2

= ‖xk − x∗‖2 − 2αk〈wk, xk − x∗〉 + α2
k‖wk‖2

≤ ‖xk − x∗‖2 + 2αk(f (xk, x∗) − f (xk, xk) + εk) + α2
kγ

2
k

= ‖xk − x∗‖2 + 2αkf (xk, x∗) + 2αkεk + β2
k

≤ ‖xk − x∗‖2 + 2
βk

λ
f (xk, x∗) + 2

βkεk

λ
+ β2

k .

Combining this and (3.2), we obtain (3.1).
On the other hand, since x∗ ∈ Sol(F, f, C) ⊆ Sol(f, C), i.e., f (x∗, x) ≥ 0 for all

x ∈ C, xk ∈ C, by pseudomonotonicity of f with respect to x∗, we have f (xk, x∗) ≤ 0.
Then, using ξ̄k ∈ (0, 1] and (3.1), we get

‖xk+1 − x∗‖2 ≤ ξ̄k‖xk − x∗‖2 + 2βk

λ
f (xk, x∗) + Sk

≤ ‖xk − x∗‖2 + Sk.

Then, we have
ak+1 ≤ ak + δk ∀k ≥ 0,

where ak := ‖xk − x∗‖2 and δk := Sk . By the assumptions (2.1), we have
∞∑

k=0

β2
k < ∞,

∞∑

k=0

βkεk < ∞,

∞∑

k=0

ξk < ∞,
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and hence
∑∞

k=0 Sk < ∞, and using Lemma 2.3, there exists the limit c := limk→∞ ‖xk −
x∗‖2.

Claim 2 lim sup
k→∞

f (xk, x∗) = 0 and lim
k→∞ ‖yk − xk‖ = 0.

Proof Since −f (xk, x∗) ≥ 0, Claim 1 and ξ̄k ∈ (0, 1] for every k, one has

0 ≤ 2βk

λ
[−f (xk, x∗)] ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 + Sk.

Then, we have

2

λ

∞∑

k=0

βk[−f (xk, x∗)] ≤ ‖x0 − x∗‖2 +
∞∑

k=0

Sk < ∞,

and hence,
∞∑

k=0

βk[−f (xk, x∗)] < ∞.

Then, by
∑∞

k=0 βk = ∞ and −f (xk, x∗) ≥ 0, we can deduce that lim sup
k→∞

f (xk, x∗) = 0 as

desired.
Otherwise, by the definition of yk, xk ∈ C and the property of PrC , we have

‖yk − xk‖ = ‖PrC(xk − αkw
k) − PrC(xk)‖

≤ ‖xk − αkw
k − xk‖

= αk‖wk‖
≤ αkγk

= βk

→ 0 as k → ∞.

So, limk→∞ ‖yk − xk‖ = 0.

Claim 3 Suppose that {xkj } is the subsequence of {xk} such that
lim sup
k→∞

f (xk, x∗) = lim
j→∞ f (xkj , x∗), (3.3)

and x̄ is a limit point of {xkj }. Then, x̄ ∈ Sol(f, C).

Proof For simplicity of notation, without loss of generality, we may assume that xkj con-
verges to x̄ as j → ∞. Since f (·, x∗) is upper semicontinuous, Claim 2 and (3.3), we
have

f (x̄, x∗) ≥ lim sup
j→∞

f (xkj , x∗)

= lim
j→∞ f (xkj , x∗)

= lim sup
k→∞

f (xk, x∗)

= 0.

On the other hand, since f is pseudomonotone with respect to x∗ and f (x∗, x̄) ≥ 0, we
have f (x̄, x∗) = 0. Thus, f (x̄, x∗) = 0. Then, by the assumption (A2), we can deduce that
x̄ is a solution of KF(f,C) as well.
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Claim 4 The sequences {xk} and {yk} converge to the unique solution x∗ ∈ Sol(F, f, C).

Proof By Claim 2 and Claim 3, if the subsequence {xkj } converges to x̄, then x̄ ∈ Sol(f, C)

and also ykj ⇀ x̄. In a similar way as Claim 1, we also have

‖xk+1 − x∗‖2 ≤ β̄k‖yk − x∗‖2
≤ ‖yk − x∗‖2 (3.4)

≤ ‖xk − x∗‖2 + 2
βkεk

λ
+ β2

k .

Combining this and limk→∞ ‖xk − x∗‖2 = c2, we obtain

lim
k→∞ ‖yk − x∗‖ = c.

From ykj ⇀ x̄ ∈ Sol(f, C) as j → ∞, it follows that

lim inf
k→∞ 〈yk − x∗, F (x∗)〉 = lim

j→∞〈ykj − x∗, F (x∗)〉 = 〈x̄ − x∗, F (x∗)〉 ≥ 0.

Since F is β-strongly monotone on C, we get

lim inf
k→∞ 〈yk − x∗, F (yk)〉 = lim inf

k→∞ [〈yk − x∗, F (yk) − F(x∗)〉 + 〈yk − x∗, F (x∗)〉]
≥ lim inf

k→∞ [β‖yk − x∗‖2 + 〈yk − x∗, F (x∗)〉]
= βc2 + lim inf

k→∞ 〈yk − x∗, F (x∗)〉
≥ βc2. (3.5)

Assume, to get a contradiction, that c > 0, and choose ε = 1
2βc2. It follows from (3.5) that

there exists k0 such that the inequality

〈yk − x∗, F (yk)〉 ≥ βc2 − ε = βc2 − 1

2
βc2 = 1

2
βc2 > 0

holds for all k ≥ k0. Otherwise,

‖xk+1 − x∗‖2
= ‖PrC(yk − βkμF(yk)) − PrC(x∗)‖2
≤ ‖yk − βkμF(yk) − x∗‖2
= ‖yk − x∗‖2 − 2βkμ〈F(yk), yk − x∗〉 + β2

k μ2‖F(yk)‖2
= ‖yk − x∗‖2 − 2βkμ〈F(yk) − F(x∗), yk − x∗〉 − 2βkμ〈F(x∗), yk − x∗〉

+β2
k μ2‖F(yk)‖2

≤ ‖yk − x∗‖2 − 2βkμβ‖yk − x∗‖2 − 2βkμ〈F(x∗), yk − x∗〉 + β2
k μ2‖F(yk)‖2

≤ ‖yk − x∗‖2 − 2βkμ〈F(x∗), yk − x∗〉 + β2
k M,
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where M := sup{μ2‖F(yk)‖2 : k = 0, 1, . . . } < ∞. Then, using (3.4), we get

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2
βkεk

λ
+ β2

k − 2βkμ〈F(x∗), yk − x∗〉 + β2
k M

≤ ‖xk − x∗‖2 + 2
βkεk

λ
+ β2

k − βkμβc2 + β2
k M ∀k ≥ k0.

After summation, we can write

‖xk+1 − x∗‖2 − ‖xk0 − x∗‖2 + μβc2
k∑

j=k0

βj ≤ 2

λ

k∑

j=k0

βkεk + (1 + M)

k∑

j=k0

β2
k .

Passing to the limit as k → ∞, we get
∑∞

j=k0
βj < ∞. This is a contradiction with the

assumption
∑∞

j=k0
βj = ∞ of (2.1). As a consequence, we have c = 0, xk → x∗ and

yk → x∗.

Now, we use Algorithm 1 to solve the variational inequalities V I (F,C) on the solu-
tion set of the variational inequalities V I (G,C), which is called lexicographic variational
inequalities, shortly LV I (F, G, C). In this case, f (x, y) = 〈G(x), y − x〉 for all x, y ∈ C

and

∂
εk

2 f (x, x) = {G(x)} ∀x ∈ C, εk ≥ 0.

Thus, Algorithm 1 and its convergence lead to the following results.

When f (x, y) = 〈G(x), y − x〉 for all x, y ∈ C, we give the following application of
Theorem 3.1. We suppose that the mappings F and G satisfy five conditions:

(B1) G is upper semicontinuous on C;
(B2) F is pseudomonotone on C with respect to every solution x∗ of Problem

LV I (F, G, C) and satisfies the following condition, called the strict paramonotonicity
property

y ∈ C, 〈G(x∗), y − x∗〉 = 〈G(y), x∗ − y〉 = 0 ⇒ y is a solution of Problem V I (G,C);
(B3) For each x ∈ C, 〈G(·), x − ·〉 is upper semicontinuous on C;
(B4) F is L-Lipschitz continuous and β-strongly monotone;



770 P. N. Anh et al.

(B5) The solution set of Problem LV I (F, G, C) is nonempty.

Theorem 3.2 Let C be a nonempty closed convex subset of Rn. Let the mappings F :
C → Rn and G : C → Rn satisfy Assumptions (B1)–(B5). Then, the sequences (xk) and
(yk) in Algorithm 2 converge to the same point x∗, which is the unique solution of Problem
LV I (F, G, C).

4 Numerical Illustration

In this section, we consider a numerical example to illustrate the convergence of Algo-
rithm 1. The computations are performed by Matlab R2013a running on Laptop Intel(R)
Core(TM) i3-3110M CPU@2.40 GHz 2.40 GHz 4 Gb RAM. To compute the projections in
Algorithm 1, we implemented them in Matlab to solve strongly convex quadratic problems
by using the quadratic-program solver from the Matlab optimization toolbox.

Example 4.1 Let us take H := R5, F (x) = Mx + q with the matrix M generated as
suggested in [17], later in [22]:

M = AAT + B + D,

where A is a 5×5 matrix, B is a 5×5 skew-symmetric matrix, D is a 5×5 diagonal matrix,
and q is a vector inR5. The feasible set C and the equilibrium bifunction f are defined by

C =

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ R5+
x1 + x2 ≥ 1.5
x1 + x2 + x3 + 2x4 + x5 ≥ 5
3x1 + 2x2 + x3 + 3x4 + 4x5 ≤ 12,

f (x, y) = 〈d, arctan(x − y)〉 + 〈v, x − y〉, where

arctan(x) = (arctan(x1), . . . , arctan(x5))
T ,

d = (1, 3, 5, 7, 9)T , v = (2, 4, 6, 8, 1)T .

Table 1 Results for Algorithm 1 with different starting points and the tolerance ε = 10−3

x0 = (1, 2, 0, 0, 1) x0 = (1, 1, 1, 1, 0)

Test prob. Iter. (k) CPU times (s) Test prob. Iter. (k) CPU times (s)

1a t18 214.0313 1b 721 200.4531

2a 744 180.4375 2b 669 178.7344

3a 617 173.5000 3b 839 252.4063

4a 1056 293.7500 4b 491 144.4219

5a 803 227.1719 5b 607 167.0156

6a 621 178.3438 6b 451 131.9219

7a 926 219.9375 7b 472 112.6563

8a 580 167.1875 8b 493 122.9844

9a 468 138.6094 9b 479 126.4688
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Table 2 Algorithm 1 with different parameters, x0 = (1, 1, 1, 1, 0) and the tolerance ε = 10−3

Test prob. λk βk ξk No. of iterations CPU times (s)

1 1 + 10
k+2

1
k+1

1
k2+1

313 75.1875

2 1 + 1
k+2

1
2k+1

1
k2+1

235 54.5469

3 k + 1 1
2k+1

1
k2+1

78 17.1250

4 2k + 1 1
2k+1

1
k2+1

55 14.2344

5 2k + 1 1
2k+1

1
2k2+1

60 12.0469

6 k + 1 1
k+1

1
2k2+1

98 23.4688

7 k + 1 1
5k+1

1
k2+1

68 14.5000

8 5k + 1 1
5k+1

1
3k2+1

31 6.2344

9 100 1
5k+1

1
3k2+1

46 10.5156

The pseudomonotone bifunction f (x, y) is suggested by Bnouhachem in [11] and later
in [5]. Then, we have

∂
εk

2 f (x, y) =
{(

d1
−1

1 + (x1 − y1)2
− v1, . . . , d5

−1

1 + (x5 − y5)2
− v5

)T
}

,

and hence,

∂
εk

2 f (x, x) =
{
(−d1 − v1, . . . , −d5 − v5)

T
}

⇒
wk = (−d1 − v1, . . . , −d5 − v5)

T ∀k ≥ 0.

The initial data is listed in the following.

– Every entry of A, B, and q is randomly and uniformly generated from (−3, 3), and
every diagonal entry of D is randomly generated from (0, 1);

– The tolerance error is ε-solution, if max{‖yk − xk‖, ‖xk+1 − xk‖} ≤ ε;

– The parameters: μ = 1
‖M‖ ∈

(
0, 2β

L2

)
=

(
0, 2

‖M‖
)

, λk = 1 + 10
k+2 , βk = 1

k+1 , ξk =
1

k2+1
for all k ≥ 0;

– The starting point x0 = (1, 2, 0, 0, 1)T or x0 = (1, 1, 1, 1, 0)T .

The matrix M is positive definite, so F is strongly monotone and Lipschitz continuous on
C. The numerical results are showed in Tables 1 and 2.

From the preliminary numerical results reported in the tables, we observe that:

(a) Similar to other methods for equilibrium problems such as the proximal point algo-
rithm, or the extragradient method, the gap function method, and other methods, the
rapidity of Algorithm 1 depends very much on the starting point x0;

(b) Algorithm 1 is quite sensitive to the choice of the parameters λk, βk , and ξk .
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