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Abstract This paper is concerned with some sufficient conditions ensuring the stochastic
stability and the almost sure exponential stability of stochastic differential equations on time
scales via Lyapunov functional methods. This work can be considered as a unification and
generalization of works dealing with these areas of stochastic difference and differential
equations.
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1 Introduction

The direct method, named also Lyapunov functional method, has become the most widely
used tool for studying the exponential stability of stochastic equations. For differential
equations, we mention the interesting book of Khas’minskii [11] dealing with necessary
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and sufficient criterion for almost sure exponential stability of linear Itô equation, which
opened a new chapter in stochastic stability theory. Since then, many mathematicians have
devoted their interests in the theory of stochastic stability. We here mention Arnold [1],
Baxendale [2], Kolmanovskii [12], Mohammed [19], Pardoux [20], Pinsky [22], ... Most of
these researches were restricted on the study of the stability for the classical Itô stochastic
differential equations.

In 1989, Mao published the papers [15, 16] which can be considered as the first works
concerning the stability of stochastic differential equations with respect to semimartingales.
For the stability of nonlinear random difference systems, we can refer to [21, 23–25].

On the other hand, in order to unify the theory of differential and difference equations
into a single set-up, the theory of analysis on time scales has received much attention from
many research groups. While the stability theory for deterministic dynamic equations on
time scales have been investigated for a long history (see [3, 13, 18, 26]), as far as we
know, we can only refer to very few papers [4, 8] dealing with the stochastically stability
and the almost sure exponential stability of stochastic dynamic equations on time scales. In
[8], the authors studied the exponential P -stability of stochastic ∇-dynamic equations on
time scales, via Lyapunov function. Continuing these ideas, we investigate the stochastical
stability and the almost sure exponential stability of ∇-stochastic dynamic equations on
time scale T

d∇X(t) = f (t, X(t−))d∇ t + g(t, X(t−))d∇M(t)

X(a) = xa ∈ R
d , t ∈ Ta,

where (Mt )t∈Ta
is a R-valued square integrable martingale and f : Ta × R

d → R
d and

g : Ta×R
d → R

d are two Borel functions. This work can be considered as a unification and
generalization of works dealing with the stability of stochastic difference and differential
equations.

The organization of this paper is as follows. Section 2 surveys some basic notation and
properties of the analysis on time scales. Section 3 is devoted to giving definition and
some results for the stochastical stability for ∇-stochastic dynamic equations. The last sec-
tion deals with some theorems, corollaries concerning the almost sure exponential stability
for ∇-stochastic dynamic equations on time scales. Some examples are also provided to
illustrate our results.

2 Preliminaries on Time Scales

Let T be a closed subset of R, endowed with the topology inherited from the standard
topology on R. Let σ(t) = inf{s ∈ T : s > t}, μ(t) = σ(t) − t and ρ(t) = sup{s ∈ T :
s < t}, ν(t) = t − ρ(t) (supplemented by sup ∅ = infT, inf ∅ = supT). A point t ∈ T is
said to be right-dense if σ(t) = t , right-scattered if σ(t) > t , left-dense if ρ(t) = t , left-
scattered if ρ(t) < t and isolated if t is simultaneously right-scattered and left-scattered.
The set kT is defined to be T if T does not have a right-scattered minimum; otherwise it is T
without this right-scattered minimum. A function f defined on T is regulated if there exist
the left-sided limit at every left-dense point and right-sided limit at every right-dense point.
A regulated function is called ld-continuous if it is continuous at every left-dense point.
Similarly, one has the notion of rd-continuous. For every a, b ∈ T, by [a, b], we mean the
set {t ∈ T : a ≤ t ≤ b}. Denote Ta = {t ∈ T : t ≥ a} and by R (resp. R+) the set
of all rd-continuous and regressive (resp. positive regressive) functions. For any function f
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defined on T, we write f ρ for the function f ◦ ρ; i.e., f
ρ
t = f (ρ(t)) for all t ∈ kT and

limσ(s)↑t f (s) by f (t−) or ft− if this limit exists. It is easy to see that if t is left-scattered
then ft− = f

ρ
t . Let

I = {t : t is left-scattered}.
Clearly, the set I of all left-scattered points of T is at most countable.

Throughout this paper, we suppose that the time scale T has bounded graininess, that is
ν∗ = sup{ν(t) : t ∈ kT} < ∞.

Let A be an increasing right continuous function defined on T. We denote by μA∇ the
Lebesgue ∇-measure associated with A. For any μA∇ -measurable function f : T → R we
write

∫ t

a
fτ∇Aτ for the integral of f with respect to the measure μA∇ on (a, t]. It is seen that

the function t �→ ∫ t

a
fτ∇Aτ is cadlag. It is continuous if A is continuous. In case A(t) ≡ t

we write simply
∫ t

a
fτ∇τ for

∫ t

a
fτ∇Aτ . For details, we can refer to [5]. If the integrand f

is regulated then
∫ b

a

f (τ−)∇τ =
∫ b

a

f (τ )�τ ∀ a, b ∈ T
k.

Therefore, if α is a regressive function on T, the exponential function eα(t, a) defined by
[4, Definition 2.30, pp. 59] is a solution of the initial value problem

y∇(t) = α(t−)y(t−), y(a) = 1, t ∈ Ta, (2.1)

(see [7] for details). Let (�,F , {Ft }t∈Ta
,P) be a probability space with filtration {Ft }t∈Ta

satisfying the usual conditions (i.e., {Ft }t∈Ta
is increasing and

⋂{Fρ(s) : s ∈ T, s > t} =
Ft for all t ∈ Ta while Fa contains all P-null sets). The notions of continuous process,
rd-continuous process, ld-continuous process, cadlag process, martingale, submartingale,
semimartingale, stopping time... for a stochastic process X = {Xt }t∈Ta

on probability space
(�,F , {Ft }t∈Ta

,P) are defined as usual.
Denote by M2 the set of square integrable Ft -martingales and by Mr

2 the subspace of
the spaceM2 consisting of martingales with continuous characteristics. For any M ∈ M2,
set

M̂t = Mt −
∑

s∈(a,t]

(
Ms − Mρ(s)

)
.

It is clear that M̂t is an Ft -martingale and M̂t = M̂ρ(t) for any t ∈ T. Further,

〈M̂〉t = 〈M〉t −
∑

s∈(a,t]

(〈M〉s − 〈M〉ρ(s)

)
. (2.2)

Therefore, M ∈ Mr
2 if and only if M̂ ∈ Mr

2. In this case, M̂ can be extended to a regular
martingale M defined on [a, ∞) by setting Ms = M̂ρ(t) if s ∈ [ρ(t), t], t ∈ Ta .

Denote by B the class of Borel sets in R whose closures do not contain the point 0. Let
δ(t, A) be the number of jumps of M on (a, t] whose values fall into the set A ∈ B. Since
the sample functions of the martingale M are cadlag, the process δ(t, A) is defined with
probability 1 for all t ∈ Ta, A ∈ B. We extend its definition over the whole � by setting
δ(t, A) ≡ 0 if the sample t �→ Mt(ω) is not cadlag. Clearly the process δ(t, A) is Ft -
adapted and its sample functions are nonnegative, monotonically nondecreasing, continuous
from the right and take integer values. We also define δ̂(t, A) for M̂t in a similar way. Let
δ̃(t, A) = �{s ∈ (a, t] : Ms − Mρ(s) ∈ A}. It is evident that

δ(t, A) = δ̂(t, A) + δ̃(t, A). (2.3)

Further, for fixed t , δ(t, ·), δ̂(t, ·) and δ̃(t, ·) are measures.
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The processes δ(t, A), δ̂(t, A) and δ̃(t, A), t ∈ Ta are Ft -regular submartingales for
fixed A. By Doob-Meyer decomposition, each process has a unique representation of the
form

δ(t, A) = ζ(t, A) + π(t, A), δ̂(t, A) = ζ̂ (t, A) + π̂(t, A),

δ̃(t, A) = ζ̃ (t, A) + π̃(t, A),

where π(t, A), π̂(t, A) and π̃(t, A) are natural increasing integrable processes and
ζ(t, A), ζ̂ (t, A), ζ̃ (t, A) are martingales. We find a version of these processes such that they
are measures when t is fixed. Throughout this paper, we suppose that 〈M〉t is absolutely con-
tinuous with respect to Lebesgue measure μ∇ , i.e., there exists an Ft -adapted progressively
measurable process Kt such that

〈M〉t =
∫ t

a

Kτ∇τ. (2.4)

Further, suppose that there exists a positive constant N such that

P{μ∇–esssupt∈Ta
|Kt | ≤ N} = 1. (2.5)

From (2.2) it follows that 〈M̂〉t is also absolutely continuous with respect μ�. Let

M̂d
t =

∫

R

ûζ (t, du) and M̂c
t = M̂t − M̂d

t .

We note that δ̂(t, A) is also the number of jumps of M on (a, t] whose values fall into the set
A ∈ B. Therefore, by applying [9, Theorem 9, pp. 90] to regular martingale M on [0, ∞),
we conclude that

〈M̂d 〉t =
∫

R

u2π̂(t, du). (2.6)

Further, from the relation

〈M̂〉t = 〈M̂c〉t + 〈M̂d 〉t ,
it follows that 〈M̂c〉t and 〈M̂d 〉t are also absolutely continuous with respect to μ∇ on T.
Thus, there existFt -adapted, progressively measurable bounded, nonnegative processes K̂c

t

and K̂d
t satisfying

〈M̂c〉t =
∫ t

a

K̂c
τ ∇τ, 〈M̂d 〉t =

∫ t

a

K̂d
τ ∇τ. (2.7)

Moreover, it is easy to show that π̂(t, A) is absolutely continuous with respect to μ∇ on T.
This means that it can be expressed as

π̂(t, A) =
∫ t

a

ϒ̂(τ, A)∇τ, (2.8)

with an Ft -adapted, progressively measurable process ϒ̂(t, A). Since B is generated by a
countable family of Borel sets, we can find a version of ϒ̂(t, A) such that the map t �→
ϒ̂(t, A) is measurable and for t fixed, ϒ̂(t, ·) is a measure. Hence, from (2.6) we see that

〈M̂d 〉t =
∫ t

a

∫

R

u2ϒ̂(τ, du)∇τ.

This implies that

K̂d
t =

∫

R

u2ϒ̂(t, du).
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For the process π̃(t, A) we can write

π̃(t, A) =
∑

s∈(a,t]
E[1A(Ms − Mρ(s))

∣
∣Fρ(s) ].

Putting ϒ̃(t, A) = E[1A(Mt−Mρ(t))|Fρ(t)]
ν(t)

if ν(t) > 0 and ϒ̃(t, A) = 0 if ν(t) = 0 yields

π̃(t, A) =
∫ t

a

ϒ̃(τ, A)∇τ. (2.9)

We see by the definition that if ν(t) > 0 then
∫

R

uϒ̃(t, du) = E
[
Mt − Mρ(t)

∣
∣Fρ(t)

]

ν(t)
= 0, (2.10)

and
∫

R

u2ϒ̃(t, du) =
E

[(
Mt − Mρ(t)

)2 ∣
∣Fρ(t)

]

ν(t)
= 〈M〉t − 〈M〉ρ(t)

ν(t)
. (2.11)

Let ϒ(t, A) = ϒ̂(t, A) + ϒ̃(t, A). We see from (2.3) that

π(t, A) =
∫ t

a

ϒ(τ,A)∇τ.

Denote by Lloc
1 (Ta,R) (resp. by Lloc

2 (Ta;M)) the family of real valued, Ft -progressively

measurable processes φ(t) with
∫ T

a
|φ(τ)|∇τ < +∞ a.s. for every T > a (resp. the space

of all real valued, Ft -predictable processes φ(t) satisfying E
∫ T

a
φ2(τ )∇〈M〉τ < ∞,for any

T > a). Let C1,2(Ta ×R
d ;R) be the set of all functions V (t, x) defined on Ta ×R

d , having
continuous ∇-derivative in t and continuous second derivative in x.

Consider a d-tuple of semimartingales X(t) = (X1(t), . . . , Xd(t)) defined by

Xi(t) = Xi(a) +
∫ t

a

fi(τ )∇τ +
∫ t

a

gi(τ )∇Mτ ,

where fi ∈ Lloc
1 (Ta,R) and gi ∈ Lloc

2 (Ta; M) for i = 1, . . . , d . For V ∈ C1,2(Ta×R
d ;R),

put

LV (t, x) (2.12)

= V ∇t (t, x) +
d∑

i=1

∂V (t, x)

∂xi

(1 − 1I(t))fi(t) + (V (t, x + f (t)ν(t)) − V (t, x)) �(t)

+1

2

∑

i,j

∂2V (t, x)

∂xixj

gi(t)gj (t)K̂
c
t −

d∑

i=1

∂V (t, x)

∂xi

gi(t)

∫

R

uϒ̂(t, du)

+
∫

R

(V (t, x + f (t)ν(t) + g(t)u) − V (t, x + f (t)ν(t)))ϒ(t, du),

with f = (f1, f2, . . . , fd); g = (g1, g2, . . . , gd) and

�(t) =
{
0 if t left-dense
1

ν(t)
if t left-scattered.
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By using the Itô’s formula in [7] we see that

Ht = V (t, X(t)) − V (a, X(a)) −
∫ t

a

LV (τ,X(τ−))∇τ (2.13)

=
d∑

i=1

∫ t

a

∂V (τ,X(τ−))

∂xi

gi(τ )∇M̂τ +
∫ t

a

∫

R

�(τ )̃ζ (∇τ, du)

+
∫ t

a

∫

R

(

�(τ) −
d∑

i=1

u
∂V (τ,X(τ−))

∂xi

gi(τ )

)

ζ̂ (∇τ, du)

is a locally integrable martingale, where �(τ) = V (τ,X(τ−) + f (τ)ν(τ ) + g(τ)u) −
V (τ,X(τ−) + f (τ)ν(τ )).

3 Stochastical Stability of Stochastic Dynamic Equations

Let M = (Mt )t∈Ta
be a square integrable (Ft )-martingale. Let f : Ta × R

d → R
d and

g : Ta × R
d → R

d be two Borel functions. Consider the stochastic differential equation
{

d∇X(t) = f (t, X(t−))d∇ t + g(t, X(t−))d∇M(t) ∀ t ∈ Ta

X(a) = xa ∈ R
d .

(3.1)

Throughout this paper we will assume that the (3.1) has a unique solution defined on Ta .
This assumption holds if the coefficients of (3.1) are Lipschitz and the condition (2.5) is
satisfied (see [6]). We denote by X(t; a, xa) the solution of (3.1) with initial condition xa .
We write simply X(t) for X(t; a, xa) if there is no confusion.

Denote by K the family of all continuous nondecreasing functions ϕ : R+ → R+ such
that ϕ(0) = 0 and ϕ(r) > 0 if r > 0. For h > 0, let Sh = {x ∈ R

d : ‖x‖ < h} and
C1,2(Ta × Sh;R+) be the family of all nonnegative functions V (t, x) from Ta × Sh to R+
such that they are continuously once differentiable in t and twice in x. We assume further
that

f (t, 0) = 0; g(t, 0) = 0 ∀ t ∈ Ta.

This assumption implies that (3.1) has the trivial solution X(t; a, 0) ≡ 0. The definitions of
stochastic stability; stochastic asymptotic stability and stochastic asymptotic stability in the
large for the trivial solution of (3.1) are referred to [17]. Precisely,

Definition 3.1 (i) Stochastically stable: for every pair of ε ∈ (0, 1) and r > 0, there exists
δ = δ(ε, r, a) > 0 such that

P

{

sup
t∈Ta

‖X(t; a, xa)‖ < r

}

≥ 1 − ε for any xa ∈ R
d with ‖xa‖ < δ.

(ii) Stochastically asymptotically stable: it is stochastically stable and, for every ε ∈
(0, 1), there exists δ0 = δ0(ε, a) > 0 such that

P

{
lim

t→∞ X(t; a, xa) = 0
}

≥ 1 − ε whenever ‖xa‖ < δ0.

(iii) Stochastically asymptotically stable in the large: it is stochastically stable and,
moreover, for all xa ∈ R

d

P

{
lim

t→∞ X(t; a, xa) = 0
}

= 1.
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Theorem 3.2 Suppose that for a h > 0, there exists a function V (t, x) ∈ C1,2(Ta×Sh;R+)

satisfying V (t, 0) ≡ 0, such that for some ϕ ∈ K,

V (t, x) ≥ ϕ(‖x‖),
and

LV (t, x) ≤ 0

for all (t, x) ∈ Ta × Sh. Then, the trivial solution of (3.1) is stochastically stable.

Proof Let ε ∈ (0, 1) and 0 < r < h be arbitrary. By the continuity of V (t, x) and the fact
V (a, 0) = 0, we can find a 0 < δ = δ(ε, r, a) < r such that

1

ε
sup
x∈Sδ

V (a, x) ≤ ϕ(r). (3.2)

For any xa ∈ Sδ , consider a stopping time

κr = inf {t ≥ a : X(t) /∈ Sr } .

By [7, Corollary 2, pp. 325], for any t ≥ a,

V (κr ∧ t, X(κr ∧ t))

= V (a, X(a)) +
∫ κr∧t

a

LV (τ,X(τ−))∇τ

+
d∑

i=1

∫ κr∧t

a

∂V (τ,X(τ−))

∂xi

gi(τ,X(τ−))∇M̂τ +
∫ κr∧t

a

∫

R

�(τ )̃ζ (∇τ, du)

+
∫ κr∧t

a

∫

R

(

�(τ) −
d∑

i=1

u
∂V (τ,X(τ−))

∂xi

gi(τ,X(τ−))

)

ζ̂ (∇τ, du).

Because LV (t, x) ≤ 0, we obtain that

EV (κr ∧ t, X(κr ∧ t)) ≤ V (a, xa). (3.3)

Since ‖X(κr ∧ t)‖ = ‖X(κr)‖ ≥ r if κr ≤ t and V (t, x) ≥ ϕ(‖x‖) for all (t, x) ∈ Ta ×Sh,

EV (κr ∧ t, X(κr ∧ t)) ≥ E
[
1{κr≤t}V (κr ,X(κr))

] ≥ ϕ(r)P{κr ≤ t}. (3.4)

Combining (3.2), (3.3) and (3.4) we obtain

P{κr ≤ t} ≤ ε.

Letting t → ∞, we get P{κr < ∞} ≤ ε. This means that

P

{

sup
t∈Ta

‖X(t; a, xa)‖ < r

}

≥ 1 − ε.

The proof is complete.

Theorem 3.3 Suppose that for a h > 0, there exists a function V (t, x) ∈ C1,2(Ta×Sh;R+)

such that for some ϕ1, ϕ2, ϕ3 ∈ K,

ϕ1(‖x‖) ≤ V (t, x) ≤ ϕ2(‖x‖),
and

LV (t, x) ≤ −ϕ3(‖x‖)
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for all (t, x) ∈ Ta × Sh. Then, the trivial solution of (3.1) is stochastically asymptotically
stable.

Proof From Theorem 3.2, the trivial solution (3.1) is stochastically stable. So, we need only
to show that for any ε ∈ (0, 1), there is a δ0 = δ0(ε, a) > 0 such that

P

{
lim

t→∞ X(t; a, xa) = 0
}

≥ 1 − ε for any xa ∈ R
d with ‖xa‖ < δ0. (3.5)

By Theorem 3.2, there is a δ0 = δ0(ε, a) > 0 such that

P

{

sup
t∈Ta

‖X(t; a, xa)‖ <
h

2

}

≥ 1 − ε

4
, (3.6)

provided xa ∈ Sδ0 . Fix xa ∈ Sδ0 and choose 0 < b < ‖xa‖. Let 0 < a1 < b be sufficiently
small such that

ϕ2(a1)

ϕ1(b)
≤ ε

4
. (3.7)

Define the stopping times

κa1 = inf{t ≥ a : ‖X(t)‖ ≤ a1},
and

κh = inf

{

t ≥ a : ‖X(t)‖ ≥ h

2

}

.

From (3.6) we get
P{κh = ∞} ≥ 1 − ε

4
. (3.8)

By [7, Corollary 2, pp. 323], we can derive that for any t ≥ a,

0 ≤ EV (κa1 ∧ κh ∧ t, X(κa1 ∧ κh ∧ t)) = V (a, xa)

+E

∫ κa1∧κh∧t

a

LV (τ,X(τ−))∇τ ≤ V (a, xa) − ϕ3(a1)E(κa1 ∧ κh ∧ t − a).

Consequently,

(t − a)P{κa1 ∧ κh ≥ t} ≤ E(κa1 ∧ κh ∧ t − a) ≤ V (a, xa)

ϕ3(a1)
.

Letting t → ∞ implies that
P{κa1 ∧ κh = ∞} = 0. (3.9)

Combining (3.8) and (3.9) yields P{κa1 = ∞} ≤ ε
4 . Therefore, we can choose c sufficiently

large such that

P{κa1 < c} ≥ 1 − ε

2
.

Hence,

P{κa1 < c ∧ κh} ≥ P({κa1 < c} ∩ {κh = ∞})
≥ P{κa1 < c} − P{κh < ∞} ≥ 1 − 3ε

4
. (3.10)

Now, define two stopping times

d =
{

κa1 if κa1 < κh ∧ c,

∞ otherwise

and
κb = inf{t > d : ‖X(t)‖ ≥ b}.
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By [7, Corollary 2, pp. 323], for any t ≥ c,

EV (κb ∧ t, X(κb ∧ t)) ≤ EV (d ∧ t, X(d ∧ t)).

Noting that
V (κb ∧ t, X(κb ∧ t)) = V (d ∧ t, X(d ∧ t)) = V (t, X(t))

on ω ∈ {κa1 ≥ κh ∧ c}, we get
E

[
1{κa1<κh∧c}V (κb ∧ t, X(κb ∧ t))

]
≤ E

[
1{κa1<κh∧c}V (κa1 ∧ t, X(κa1 ∧ t))

]
.

Since {κb ≤ t} ⊂ {κa1 < κh ∧ c},
ϕ1(b)P{κb ≤ t} ≤ ϕ2(a1).

From (3.7) it yields

P{κb ≤ t} ≤ ε

4
.

Letting t → ∞ we have

P{κb < ∞} ≤ ε

4
.

It then follows, using (3.10) as well, that

P{d < ∞ and κb = ∞} ≥ P{κa1 < κh ∧ c} − P{κb < ∞} ≥ 1 − ε.

So

P

{

ω : lim sup
t→∞

‖X(t)‖ ≤ b

}

≥ 1 − ε.

Since b is arbitrary, we must have

P

{

ω : lim sup
t→∞

‖X(t)‖ = 0

}

≥ 1 − ε

as required. The proof is complete.

Theorem 3.4 Suppose there exists a function V (t, x) ∈ C1,2(Ta ×R
d ;R+) with V (t, 0) ≡

0 such that for any h > 0

ϕ1(‖x‖) ≤ V (t, x) ≤ ϕ2(‖x‖) for all (t, x) ∈ Ta × Sh,

LV (t, x) ≤ −ϕ3(‖x‖) for all (t, x) ∈ Ta × Sh, (3.11)

for some ϕ1, ϕ2, ϕ3 ∈ K. Further,

lim‖x‖→∞ inf
t≥a

V (t, x) = ∞.

Then, the trivial solution of (3.1) is stochastically asymptotically stable in the large.

Proof From Theorem 3.2, the trivial solution is stochastically stable. So we only need to
show that

P

{
lim

t→∞ X(t; a, xa) = 0
}

= 1 (3.12)

for all xa ∈ R
d . Fix any xa and write X(t; a, xa) = X(t) again. Let ε ∈ (0, 1) be arbitrary.

Since lim‖x‖→∞ inft≥a V (t, x) = ∞,we can find an h > 2‖xa‖ sufficiently large for

inf
2‖x‖≥h,t≥a

V (t, x) ≥ 4V (a, xa)

ε
. (3.13)

Let
κh = inf{t ≥ a : 2‖X(t)‖ ≥ h}.
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Similarly as above, we can show that for any t ≥ a,

EV (κh ∧ t, X(κh ∧ t)) ≤ V (a, xa). (3.14)

But, by (3.13), we see that

EV (κh ∧ t, X(κh ∧ t)) ≥ 4V (a, xa)

ε
P{κh ≤ t}.

It then follows from (3.14) that

P{κh ≤ t} ≤ ε

4
.

Letting t → ∞ gives P{κh < ∞} ≤ ε
4 . That means

P

{

‖X(t)‖ ≤ h

2
for all t ≥ a

}

≥ 1 − ε

4
. (3.15)

Thus, we get the inequality (3.6). Hence, we can follow the same argument as in the proof
of Theorem (3.3) to show that

P

{
lim

t→∞ X(t) = 0
}

≥ 1 − ε.

Since ε is arbitrary,

P

{
lim

t→∞ X(t) = 0
}

= 1.

The proof is complete.

We now consider a special case. Let P be a positive definite matrix and V (t, x) = x�Px,
where x� is the transpose of a vector x. Using (2.12) we have

LV (t, x) = (1 − 1I(t))
(
x�Pf (t, x) + f (t, x)�Px

)

+
[
(x + f (t, x)ν(t))�P(x + f (t, x)ν(t)) − x�Px

]
�(t)

+g(t, x)�Pg(t, x)K̂c
t −

(
x�Pg(t, x) + g(t, x)�Px

) ∫

R

uϒ̂(t, du)

+
∫

R

[
(x + f (t, x)ν(t) + g(t, x)u)� P (x + f (t, x)ν(t) + g(t, x)u)

−
(
x + f (t, x)ν(t))�P(x + f (t, x)ν(t))

]
ϒ(t, du). (3.16)

It is easy to see that

(1 − 1I(t))
(
x�Pf (t, x) + f (t, x)�Px

)

+
[
(x + f (t, x)ν(t))�P(x + f (t, x)ν(t)) − x�Px

]
�(t) (3.17)

= x�Pf (t, x) + f (t, x)�Px + f (t, x)�Pf (t, x)ν(t).
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Paying attention that ν(t)
∫
R

uϒ̂(t, du) = 0, ν(t)
∫
R

uϒ̃(t, du) = 0 and ϒ(t, A) =
ϒ̂(t, A) + ϒ̃(t, A), we have

∫

R

[
(x + f (t, x)ν(t) + g(t, x)u)� P(x + f (t, x)ν(t) + g(t, x)u)

− (x + f (t, x)ν(t))�P(x + f (t, x)ν(t))
]
ϒ(t, du) (3.18)

=
∫

R

g(t, x)�Pg(t, x)u2ϒ(t, du) +
(
x�Pg(t, x) + g(t, x)�Px

) ∫

R

uϒ̂(t, du).

Since Kt = K̂c
t + ∫

R
u2ϒ(t, du), we can substitute (3.17) and (3.18) into (3.16) to obtain

LV (t, x) = x�Pf (t, x) + f (t, x)�Px + f (t, x)�Pf (t, x)ν(t)

+g(t, x)�Pg(t, x)Kt . (3.19)

Thus, if we can find a positively defined matrix P such that LV defined by (3.19) satisfies
(3.11) then the trivial solution of (3.1) is stochastically asymptotically stable in the large.

Example 3.5 Let T be a time scale

T =
∞⋃

k=1

[

k

(
1

3
+ b

)

, k

(
1

3
+ b

)

+ b

]

,

where b is a positive real number. We have

ν(t) =
{
0 if t ∈ ⋃∞

k=1

(
k( 13 + b), k( 13 + b) + b

]

1
3 if t ∈ ⋃∞

k=1 {k( 13 + b)}.
(3.20)

Consider the stochastic dynamic equation on time scale T
{

d∇X(t) = AX(t−)d∇ t + BX(t−)d∇W(t), t ∈ T

X(0) = x0 ∈ R
d ,

(3.21)

where W(t) is an one dimensional Brownian motion on time scale defined as in [10] and
A, B are d × d - matrices. In this case Kt = 1. Let P be a positive definite matrix and
V (t, x) = x�Px. By (3.19), we have

LV (t, x) = x� (
PA + A�P + A�PAν(t) + B�PBKt

)
x. (3.22)

Hence, if the spectral abscissa of the matrix PA + A�P + 1
3A

�PA + B�PB is bounded
by a negative constant −c, then we have LV (t, x) ≤ −c‖x‖2. By virtue of Theorem 3.4,
the trivial solution of (3.21) is stochastically asymptotically stable in the large.

4 Almost Sure Exponential Stability of Stochastic Dynamic Equations

In this section, we keep all assumptions imposed on the coefficients f and g of (3.1).

Definition 4.1 The trivial solution of the (3.1) is said to be almost surely exponentially
stable if

lim sup
t→∞

ln ‖X(t; a, xa)‖
t

< 0 a.s. (4.1)

holds for any xa ∈ R
d .
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Theorem 4.2 Let α1, c1, p be positive numbers and α be a positive number satisfying
α

1+αν(t)
≤ α1. Suppose that there exists a function V ∈ C1,2(Ta ×R

d ;R+) such that for all

(t, x) ∈ Ta × R
d ,

c1‖x‖p ≤ V (t, x), (4.2)

and
LV (t, x) ≤ −α1V (t−, x) + ηt a.s., (4.3)

where ηt is a nonnegative ld-continuous function defined on Ta satisfying
∫ ∞

a

eα(t−, a)ηt∇t < ∞ a.s. (4.4)

Then, the trivial solution of (3.1) is almost surely exponentially stable.

Proof From (2.13), (4.3), we have

eα(t, a)V (t, X(t))

= V (a, xa) +
∫ t

a

eα(τ−, a) (αV (τ−, X(τ−)) + (1 + αν(τ))LV (τ,X(τ−)) ∇τ

+
∫ t

a

eα(τ, a)∇Hτ

≤ V (a, xa)

+
∫ t

a

eα(τ−, a) (αV (τ−, X(τ−)) + (1 + αν(τ)) (−α1V (τ−, X(τ−)) + ητ )) ∇τ

+
∫ t

a

eα(τ, a)∇Hτ .

It follows from inequality α
1+αν(t)

≤ α1 that
∫ t

a

eα(τ−, a) (αV (τ−, X(τ−)) + (1 + αν(τ)) (−α1V (τ−, X(τ−)) + ητ )) ∇τ

≤
∫ t

a

eα(τ−, a)(1 + αν(τ))ητ∇τ.

Therefore,
eα(t, a)V (t, X(t)) ≤ V (a, xa) + Ft + Gt,

where

Ft =
∫ t

a

(1 + αν(τ))eα(τ−, a)ητ∇τ ; Gt =
∫ t

a

eα(τ, a)∇Hτ .

By assumption (4.4), it follows that

F∞ = lim
t→∞ Ft < ∞.

Define
Yt = V (a, xa) + Ft + Gt for all t ∈ Ta.

Then Yt is a nonnegative semimartingale. By [14, Theorem 7, pp. 139], one sees that

{F∞ < ∞} ⊂
{
lim

t→∞ Yt exists and finite
}

a.s.

Since P{F∞ < ∞} = 1,

P

{
lim

t→∞ Yt exists and finite
}

= 1.
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Noting that 0 ≤ eα(t, a)V (t, X(t)) ≤ Yt for all t ≥ a a.s., we have

P

{

lim sup
t→∞

eα(t, a)V (t, X(t)) < ∞
}

= 1.

So,
lim sup
t→∞

[eα(t, a)V (t, X(t))] < ∞ a.s. (4.5)

The relations (4.2) and (4.5) imply

lim sup
t→∞

ln ‖X(t)‖p

t
+ lim inf

t→∞
ln eα(t, a)

t
≤ lim sup

t→∞
ln eα(t, a)V (t, X(t))

t
= 0.

It is easy to see that lim inft→∞ ln eα(t,a)
t

= β > 0. Therefore,

lim
t→∞

ln ‖X(t)‖
t

≤ −β

p
a.s.

The proof is complete.

Consider now a special case of function V (t, x) = ‖x‖2. By (3.19)

LV (t, x) = 2x�f (t, x) + ‖g(t, x)‖2Kt + ‖f (t, x)‖2ν(t). (4.6)

We can impose conditions on the functions f and g such that there are a positive number α

and a nonnegative ld-continuous function ηt satisfying (4.4) such that

2x�f (t, x) + ‖f (t, x)‖2ν(t) + ‖g(t, x)‖2Kt ≤ −α‖x‖2 + ηt .

Example 4.3 Let T be a time scale and 0 ≤ a ∈ T. Let 1e = (1, 1, . . . , 1)�. Consider the
stochastic dynamic equation on time scale T

{
d∇X(t) = (

AX(t−) + e−t sin(‖X(t−)‖)1e

)
d∇ t + BX(t−))d∇W(t),

X(0) = x0 ∈ R
d , t ∈ Ta,

(4.7)

where A and B are d × d matrices and W(t) is an one dimensional Brownian motion on
time scale defined as in [10]. Let V (t, x) = ‖x‖2. By (4.6) we have

LV (t, x) = 2x�Ax + 2e−t sin(‖x‖)x�1e + ‖Ax + e−t sin(‖x‖)1e‖2ν(t) + x�B�Bx

≤ 2x�Ax + 2e−t‖x‖√d + 2(‖Ax‖2 + e−2t d)ν(t) + x�B�Bx

≤ x� (
2A + 2A�Aν∗ + B�B

)
x + 2(

√
d‖x‖ + dν∗)e−t .

Suppose that the spectral abscissa of the matrix 2A + 2A�Aν∗ + B�B is bounded by a
negative constant −β. Then, we have

LV (t, x) ≤ −β

2
‖x‖2 + 2(

√
d‖x‖ + dν∗)e−t − β

2
‖x‖2 ≤ −β

2
‖x‖2 + 2d

(

ν∗ + 1

β

)

e−t

for all t ∈ Ta . For α = 1
2 min{1, β}, all assumptions of Theorem 4.2 are satisfied. Thus, the

trivial solution of (4.7) is almost surely exponentially stable.
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