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Abstract In this article, we present a conjugate duality for nonconvex optimization
problems. This duality scheme is symmetric and has zero gap. As applied to a vector-
maximization problem, it transforms the latter into an optimization problem over a weakly
efficient set which can be solved by monotonic optimization methods.
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1 Introduction

A nonconvex duality with zero gap, called quasigradient duality, was developed by Thach
in two well-known articles [9, 10]. An important feature of this duality theory is that, with a
suitable definition of quasiconjugate of a function, it transforms certain classes of difficult
nonconvex optimization problems into simpler ones, sometimes even into convex problems.
Moreover, the corresponding duality relationship often reveals important properties useful
for the theoretical and computational study of the original problem. In particular, in [12], by
defining the quasiconjugate of a function f : Rn+ → R as

f ∗(p) = 1

sup{f (x) : pT x ≤ 1, x ≥ 0} ∀p ∈ R
n+,

the maximization of a Leontiev production function over a convex feasible region is con-
verted by duality into the maximization of an increasing linear function over a convex
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region. In [13], this duality theory, extended to vector maximization problems, is used to
establish important properties related to weak Pareto efficiency. More recently, in [14], qua-
siconjugate duality scheme is applied for studying a specific nonlinear optimization problem
under resource allocation constraints. It turned out that the feasible set of the dual to this
problem is a singleton (in the case of a single resource) or the set of Pareto efficient solutions
of an associated vector-maximization problem (in the case of k > 1 resources).

So far, quasiconjugate duality has been restricted to the classes of concave scalar-
maximization and concave vector-maximization problems involving concave criteria func-
tions. However, many functions encountered in mathematical economics and other applica-
tions are not concave but only quasiconcave. Outstanding examples are the Cobb-Douglas
function, generalized Cobb-Douglas function, generalized Leontiev function, constant
elasticity of substitution (C.E.S) function (cf. [3]), and posynomial function (under the
assumption that all goods are useful).

To overcome this limitation, we will attempt, in the first part of the present paper, to
extend quasiconjugate duality to the very general class of nonconvex scalar-maximization
and vector-maximization problems involving continuous quasiconcave and increasing func-
tions. The extension will preserve the main properties earlier established in [13], especially
the symmetric property and the zero gap duality property. Also, duality relationships will
be developed so that they can help to characterize the (weak) Pareto efficient solutions.

It is worth noting that most of the existing duality theories for vector-maximization
problems are based on applying Lagrange duality to a scalarized problem depending on
the weight parameters (cf. [2, 6, 8]). In some works, the theory of set-valued maps has
also been used for studying vector-optimization problems (cf. [4, 5]). However, in all these
approaches, the duality is not symmetric and often requires convexity of the primal problem.

Together with the extension of quasiconjugate duality, we will also present a new applica-
tion. Specifically, it will be shown that using quasiconjugate duality for vector-optimization
we can convert an optimization problem over weakly efficient sets into a bilevel optimiza-
tion problem. The latter in turn can be reformulated as a monotonic optimization problem
amenable to efficient solution methods developed by Tuy and his coauthors in [15–17].

The paper is organized as follows. After the introduction, in Section 2, together with a
review of basic results of quasiconjugate as presented in [7, 11] and [13], we will provide
some new related results and introduce the concept of quasi-subgradient of a function. Next,
in Section 3, we will develop quasiconjugate duality for scalar-maximization problems and
in Section 4, quasiconjugate duality for vector-maximization problems. Finally, Section 5
is devoted to an application of quasiconjugate duality to optimization over weakly efficient
sets.

2 Quasiconjugate of a Function

Throughout this section, we assume that f (x) is a nonnegative finite-valued function onRn+
satisfying f (x) > 0 for all x from

R
n++ := {x ∈ R

n| xi > 0 ∀i = 1, 2, . . . , n}.
Following Thach in [11], we define the quasiconjugate of f as the function f ∗ : Rn+ → R

with
f ∗(p) = 1

sup{f (x) : pT x ≤ 1, x ≥ 0} ∀p ∈ R
n+, (1)

(as usual, we use the convention 1
+∞ = 0).
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Since f is continuous and f (x) > 0 for every x ∈ R
n++, we have

sup{f (x) : pT x ≤ 1, x ≥ 0} > 0

for every p ≥ 0, so f ∗(p) is again a nonnegative finite-valued function on R
n+ satisfying

f ∗(p) > 0 for every p ∈ R
n++.

In [13], we have established the following property:
If f is a polyhedral concave increasing and positively homogeneous function defined on

R
n then so is f ∗ and f is the quasiconjugate of f ∗ on Rn+, i.e., (f ∗)∗ = f.

We now extend this property to a larger class of functions f.

Proposition 1 If f is positively homogeneous, then so is f ∗.

Proof For x0 > 0, we have pT (kx0) = 0 ≤ 1 for all k = 1, 2, . . . and f (kx0) = kf (x0) →
+∞ as k → +∞. So,

f ∗(0) = 1

sup{f (x) : x ≥ 0} = 1

+∞ = 0.

If p 	= 0, then for every θ > 0, we have

sup{f (x) : θpT x ≤ 1, x ≥ 0} = sup

{
f (

1

θ
x′) : pT x

′ ≤ 1, x′ ≥ 0

}

= 1

θ
sup

{
f (x′) : pT x′ ≤ 1, x′ ≥ 0

}
,

and so f ∗(θp) = θf ∗(p).

A set X ⊂ R
n is said to be conormal if x′ ∈ X whenever x′ ≥ x ∈ X (see [16]). For

γ ∈ R+, let Fγ denote the upper levels of f :

Fγ = {x ∈ R
n+ : f (x) ≥ γ }.

Lemma 1 (see [16]) If f (x) is an increasing function on R
n then the set Fγ is conormal.

Lemma 2 Let F be a conormal set. If qT x ≥ γ for all x ∈ F then q ∈ R
n+.

Proof If we had qi < 0 for some i ∈ {1, 2, . . . n}, then x0 ∈ F would imply that xk =
(x0

1 , . . . , x
0
i + k, . . . , x0

n) ∈ F for all k (because xk ≥ x0) while qT xk → −∞ as k →
+∞.

Let X be an arbitrary set in R
n. A set X∗ is said to be the upper conjugate of X if

X∗ =
{
p ∈ R

n+ : pT x ≥ 1 ∀x ∈ X
}

.

Let F
�
γ denote the upper levels of f ∗: F

�
γ = {p ∈ R

n+ : f ∗(p) ≥ γ }. In [13], it has been
shown that when f is a polyhedral concave increasing and positively homogeneous function
defined on Rn then F

�
1 and F1 are upper conjugate of each other, i.e.,

F
�
1 =

{
p ∈ R

n+ : pT x ≥ 1 ∀x ∈ F1

}
, (2)

F1 =
{
x ∈ R

n+ : pT x ≥ 1 ∀p ∈ F
�
1

}
. (3)

More generally, we have the following theorem.
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Theorem 1 If f is a continuous quasiconcave strictly increasing function on R
n+ then F

�
1
γ

and Fγ are upper conjugate of each other for any γ > 0 such that Fγ 	= ∅.

Proof For p ∈ F
�
1
γ

, we have p ≥ 0 and

f ∗(p) ≥ 1

γ

⇔ 1

sup{f (x) : pT x ≤ 1, x ≥ 0} ≥ 1

γ

⇔ f (x) ≤ γ ∀x ≥ 0 such that pT x ≤ 1

⇔ pT x > 1 ∀x ≥ 0 such that f (x) > γ . (4)

Also, it is easily seen that pT x ≥ 1 for every x ≥ 0 satisfyingf (x) = γ . Indeed, let
x ≥ 0 satisfy f (x) = 1. Since f is positive on R

n++ and strictly increasing on R
n+, {x ∈

R
n+| f (x) > γ } 	= ∅. Take any sequence {xl} ⊂ {x ∈ R

n+| f (x) > γ } such that xl → x.
By (4), pT xl > 1 for all l,so letting l → +∞ we get pT x ≥ 1. Thus, pT x ≥ 1 for every
x ≥ 0 such thatf (x) ≥ γ, i.e., pT x ≥ 1 for every x ∈ Fγ . Hence,

F
�
1
γ

⊂
{
p ∈ R

n+ : pT x ≥ 1 ∀x ∈ Fγ

}
.

Conversely, for any p ≥ 0. we can write

pT x ≥ 1 ∀x ∈ Fγ

⇔ pT x ≥ 1 ∀x ≥ 0 such that f (x) ≥ γ

⇔ f (x) < γ ∀x ≥ 0 such that pT x < 1

⇒ f (x) ≤ γ ∀x ≥ 0 such that pT x ≤ 1

⇔ sup{f (x) : pT x ≤ 1, x ≥ 0} ≤ γ

⇔ 1

sup{f (x) : pT x ≤ 1, x ≥ 0} ≥ 1

γ

⇔ f ∗(p) ≥ 1

γ

⇔ p ∈ F
�
1
γ

.

Hence, F�
1
γ

is the upper conjugate of Fγ .

Next, we show that conversely Fγ is the upper conjugate of F
�
1
γ

. Set

A =
{
x ∈ R

n+ : pT x ≥ 1 ∀p ∈ F
�
1
γ

}
.

Since F
�
1
γ

is the upper conjugate of Fγ , it is obvious that Fγ ⊆ A. Suppose that x ≥ 0

and x /∈ Fγ . Since f is continuous quasiconcave and increasing, Fγ is a closed convex and
conormal set. So Fγ does not intersect the line segment [0, x]. By the separation theorem,
there are q ∈ R

n \ {0} and number α ∈ R such that

qT x ≥ α ∀x ∈ Fγ , (5)

qT x < α ∀x ∈ [0, x]. (6)
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From (5), we have q ≥ 0 by Lemma 2, and from (6) it follows that α > 0. Setting p = 1
α
q,

we can then write

pT x ≥ 1 ∀x ∈ Fγ , (7)

pT x < 1. (8)

From (7), it follows that p ∈ F
�
1
γ

. This together with (8) implies that x /∈ A.

The above theorem exhibits a polarity correspondence between the level sets of the
function f and those of its quasiconjugate. It is easily seen that the function f can be
defined via its level sets, namely f (x) = sup{γ > 0| x ∈ Fγ } (as usual, we use the

convention sup∅ = 0). Similarly, we have f ∗(p) = sup{γ > 0| p ∈ F
�
γ }. Hence,

f ∗(p) = sup{γ > 0| p ∈ (F 1
γ
)∗} for any continuous quasiconcave and strictly increasing

function f.

We now examine an important case when the equality (f ∗)∗ = f extends to nonconcave
functions f.

Proposition 2 Let f be a Cobb-Douglas function on R
n+, that is

f (x) =
n∏

i=1

xi
αi ,

where αi > 0 for every i = 1, 2, . . . , n. Then, f ∗ is also a Cobb-Douglas function on R
n+

and (f ∗)∗ = f.

Proof If p = (p1, p2, . . . , pn) and pi = 0 for some i = 1, 2, . . . , n then pT xk ≤ 1 for
every xk = (x1, x2, . . . , kxi, . . . , xn), where x > 0 satisfies pT x ≤ 1. Since f (x) >

0, f (xk) = kαi f (x) → +∞ as k → +∞ it follows that f ∗(p) = 0. If p > 0 then
sup{f (x)|pT x ≤ 1, x ≥ 0} = αα

∏n
i=1(

αi

pi
)αi , α = ∑n

i=1 αi (see [7, Example 4.9]). Hence,

f ∗(p) = ( 1
α
)α

∏n
i=1(

pi

αi
)αi for every p ∈ R

n+. By an argument similar to the above, we can
show that (f ∗)∗ = f .

Note that Cobb-Douglas production functions are quasiconcave but may not be concave
(for example for αi = 2 for all i). This raises the question: What is the largest class of
functions f for which we eliminate the gap between f and (f ∗)∗ ?

The following proposition provides a necessary condition for a function f to belong to
this class .

Proposition 3 The function f ∗, quasiconjugate of f , is quasiconcave and increasing on
R

n+.

Proof Let p, p′ ∈ R
n+. For each t ∈ [0; 1], we have

{x ≥ 0 : (tp + (1 − t)p′)T x ≤ 1} ⊂ {x ≥ 0 : pT x ≤ 1} ∪ {x ≥ 0 : (p′)T x ≤ 1}.
It follows that

0 < sup{f (x) : (tp + (1 − t)p′)T x ≤ 1, x ≥ 0}
≤ max{sup{f (x) : pT x ≤ 1, x ≥ 0}; sup{f (x) : (p′)T x ≤ 1, x ≥ 0}}.

This occurs if and only if f ∗(tp+(1−t)p′) ≥ min{f ∗(p); f ∗(p′)}. So, f ∗ is quasiconcave.
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Furthermore, let 0 ≤ p ≤ p′. Clearly, {x ∈ R
n+ : (p′)T x ≤ 1} ⊂ {x ∈ R

n+ : pT x ≤ 1},
and so sup{f (x) : pT x ≤ 1, x ≥ 0} ≥ sup{f (x) : (p′)T x ≤ 1, x ≥ 0} > 0. This implies
that f ∗(p) ≤ f ∗(p′), proving that f ∗ is increasing.

Next, we give a sufficient condition for f to be also quasiconjugate of f ∗.

Theorem 2 If f is a continuous quasiconcave and increasing function on R
n+, then f is

also the quasiconjugate of f ∗ on Rn+, i.e.,

f (x) = 1

sup{f ∗(p) : pT x ≤ 1, p ≥ 0} ∀x ∈ R
n+.

Proof Set

f (x) = 1

sup{f ∗(p) : pT x ≤ 1, p ≥ 0} .
For γ > 0, let Fγ , F γ denote the upper levels of f and f ∗ respectively, i.e.,

Fγ = {x ∈ R
n+ : f (x) ≥ γ }, F γ = {x ∈ R

n+ : f (x) ≥ γ }.
To prove the equality f (x) = f (x) for every x ∈ R

n+, it suffices to show that Fγ = Fγ for
any γ > 0. Let x ∈ Fγ . If x /∈ Fγ , then we have f (x) < γ , or

1

sup{f ∗(p) : pT x ≤ 1, p ≥ 0} < γ,

hence, there exists p ≥ 0, pT x ≤ 1 such that

f ∗(p) >
1

γ

⇔ 1

sup{f (x) : pT x ≤ 1, x ≥ 0} >
1

γ

⇔ sup{f (x) : pT x ≤ 1, x ≥ 0} < γ

⇔ f (x) < γ ∀x ≥ 0 such that pT x ≤ 1.

It follows that f (x) < γ . This conflicts with the fact x ∈ Fγ . Hence, Fγ ⊂ Fγ .

Conversely, let x ∈ Fγ . We can write

f (x) ≥ γ

⇔ 1

sup{f ∗(p) : pT x ≤ 1, p ≥ 0} ≥ γ

⇔ f ∗(p) ≤ 1

γ
∀p ≥ 0 such that pT x ≤ 1

⇔ 1

sup{f (x) : pT x ≤ 1, x ≥ 0} ≤ 1

γ
∀p ≥ 0 such that pT x ≤ 1

⇔ sup{f (x) : pT x ≤ 1, x ≥ 0} ≥ γ ∀p ≥ 0 such that pT x ≤ 1. (9)

For p̃ > 0 such that p̃T x ≤ 1, the set {x ∈ R
n+ : p̃T x ≤ 1} is compact. Since f is

continuous, by (9) there exists a vector x̃ ≥ 0, p̃T x̃ ≤ 1 such that f (x̃) ≥ γ . This implies
that x̃ ∈ Fγ . Hence, Fγ is nonempty.

Suppose now that x /∈ Fγ . The function f is quasiconcave continuous and increasing on
R

n+, so Fγ is a closed convex and conormal set. Since Fγ does not intersect the line segment
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[0, x], by the strong separation theorem, there exist a vector q 	= 0 and real number α such
that

qT x > α ∀x ∈ Fγ ; (10)

qT x < α ∀x ∈ [0; x]. (11)

From (10), we have q ≥ 0 by Lemma 2. Furthermore, from (11), it follows that α > 0 and
there exists t > 0 sufficiently small such that (q + te)T x ≤ α, where e = (1, 1, . . . , 1).
Setting p = 1

α
(q + te), we have p > 0 and

pT x ≥ 1

α
pT x > 1 ∀x ∈ Fγ ; (12)

pT x ≤ 1. (13)

Consequently,

pT x > 1 ∀x ≥ 0 such that f (x) ≥ γ (14)

⇔ f (x) < γ ∀x ≥ 0 such that pT x ≤ 1. (15)

From (9) and (13), it follows that

sup{f (x) : pT x ≤ 1, x ≥ 0} ≥ γ.

Since {x ∈ R
n+ : pT x ≤ 1} is a compact set and f is continuous, there exists a vector

x̂ ≥ 0, pT x̂ ≤ 1 such that f (̂x) ≥ γ . This conflicts with (15). Hence, Fγ = Fγ .

Remark 1 The property f = (f ∗)∗ has been established earlier in [13] for polyhedral
concave increasing positively homogeneous functions. Theorem 2 thus extends this property
to the substantially larger class of continuous quasiconcave increasing nonnegative finite-
valued functions on R

n+ and positive on R
n++. The latter class includes many important

production or utility functions in mathematical economics, such as:
– Generalized Cobb-Douglas function

f (x) =
k∏

j=1

(fj (x))αj , αj > 0,

where fj (x), j = 1, 2, . . . , k are positive concave and increasing on R
n+. This function is

quasiconcave on Rn+ (see [3]).
– Generalized Leontiev function

f (x) =
(
min

{
xj

cj

|j = 1, 2, . . . , n

})α

,

where cj > 0, j = 1, 2, . . . , n, α > 0. This function is quasiconcave and is concave if and
only if α ≤ 1 (see [3]).

– Constant elasticity of substitution (C.E.S.) function

f (x) =
(
a1x

β

1 + a2x
β

2 + · · · + anx
β
n

) 1
β

,

where aj > 0, i = 1, 2, . . . , n, 0 < β ≤ 1. This function is quasiconcave on Rn+ (see [3]).
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– Posynomial function

f (x) =
m∑

j=1

cj

n∏
i=1

(xi)
aij with cj > 0 and aij ≥ 0.

This function is quasiconcave on R
n+.

It is easy to check that f ∗ is a continuous function on R
n+ if f is polyhedral con-

cave increasing, positively homogeneous, or if f is a Cobb-Douglas function on R
n+. More

generally, the following proposition is true.

Proposition 4 If f (x) is a continuous function on R
n+, then f ∗ is upper semi-continuous

on Rn+ and lower semi-continuous on Rn++.

Proof We define the point-to-set map C : Rn+ ⇒ R
n+ by

C(p) = {x ≥ 0 : pT x − 1 ≤ 0}.
For any p ∈ R

n+, since pT x − 1 is a continuous function on R
n+ × p and R

n+ is closed,
C is usc at p (cf. [8, Proposition 2.2.1]). It is easy to verify that the function pT x − 1 is
continuous on C(p) × p and convex in x for each fixed p ∈ R

n+. This together with the
convexity of Rn+ implies that the map C is lsc at p (cf. [8, Proposition 2.2.2]). Hence, C is
continuous on Rn+. Furthermore, from the continuity of f , it follows that the function

p �→ sup{f (x) : pT x ≤ 1, x ≥ 0}
is lsc at any p ≥ 0 (cf. [8, Theorem 4.1.1]). Noting that f ∗ is finite-valued, this implies that
the function f ∗(p) is usc at any p ≥ 0.

We now show that f ∗(p) is lsc on Rn++. For any p > 0, then C(p) is uniformly compact
near p, i.e., there is a neighborhood U of p such that the closure of the set ∪p∈UC(p) is
compact. Indeed, since p > 0, there is a closed ball B with center p such that p > 0
for every p ∈ B. If cl(∪p∈BC(p)) were not compact, there would exist a sequence {xn}
in cl(∪p∈BC(p)) satisfying ||xn|| → +∞, so, for every p ∈ B, pT xn → +∞ as n →
+∞,contradicting the fact that pT xn ≤ 1 for some p ∈ B. Hence, C(p) is uniformly
compact near p. This together with the continuity of f implies that the function

p �→ sup{f (x) : pT x ≤ 1, x ≥ 0}
is usc at p (cf. [8, Theorem 4.1.1]). Noting that f ∗ is finite-valued, the lower semicontinuity
of f ∗(p) at p > 0 follows.

Next, we introduce the concept of quasi-supdifferential for quasiconcave functions.
Using this concept, we will obtain in the next section an optimality condition in the form of
a generalized KKT for a quasiconcave maximization problem.

Let f : R
n → R ∪ {±∞} be an arbitrary function. In [10], with the quasiconjugate of

f (x) defined by

f H (p) =
{ − inf{f (x) : pT x ≥ 1} if p 	= 0,

− sup{f (x) : x ∈ R
n} if p = 0,

(16)

a vector p is called a quasi-subgradient of f at x if

pT x = 1 and f H (p) + f (x) ≤ 0.
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In a similar way, with f ∗(p) now defined by (1), we call a vector p ∈ R
n+ a quasi-

supgradient of f at x if
pT x = 1 and f (x)f ∗(p) ≥ 1.

The quasi-supdifferential of f at x, denoted by ∂∗f (x), is then defined to be the set of all
quasi-supgradients of f at x. If ∂∗f (x) is nonempty, f is said to be quasi-supdifferentiable
at x.

An immediate consequence of the definition of quasiconjugate is the following:

f (x)f ∗(p) ≤ 1 ∀(x, p) ∈ R
n+ × R

n+ s.t. pT x ≤ 1. (17)

So x ∈ ∂∗f (x) is equivalent to saying that

pT x = 1 and f (x)f ∗(p) = 1.

Theorem 3 If f is quasiconcave continuous strictly increasing on R
n+, then ∂∗f (x) is a

nonempty convex set for any x > 0. Moreover,

p ∈ ∂∗f (x) ⇔ x ∈ ∂∗f ∗(p).

Proof Since f is quasiconcave continuous and increasing on R
n+, Ff (x) is closed convex

and conormal. Suppose there is an open ball B of center x such that B ⊂ Ff (x). Then, there
exists x̂ ∈ B such that x̂ < x. Since f is strictly increasing this implies that f (x̂) < f (x),
conflicting with x̂ ∈ Ff (x). Hence, x is a boundary point of Ff (x). Consequently, there exist
a vector q 	= 0 and number α ∈ R such that

qT z ≥ α ∀z ∈ Ff (x), (18)

qT x = α. (19)

From (18), by Lemma 2, we have q ≥ 0 and from (19), it follows that α > 0. Setting
p = 1

α
q , we have p ≥ 0 and

pT z ≥ 1 ∀z ∈ Ff (x), (20)

pT x = 1. (21)

From (20), we have, by Theorem 1, p ∈ F
�
1

f (x)

, hence f ∗(p) ≥ 1
f (x)

, i.e., f ∗(p)f (x) ≥ 1.

This together with (21) implies p ∈ ∂∗f (x). The convexity of ∂∗f (x) then follows from
the definition of quasi-supgradient.

By Theorem 2, we have (f ∗)∗ = f . So, p ∈ ∂∗f (x) is equivalent to x ∈ ∂∗f ∗(p).

The above theorem shows that quasiconjugate duality under consideration fits into the
quasigradient duality scheme originally introduced in [9, 10].

From the above proof we also have

Proposition 5 Let f be quasiconcave continuous strictly increasing on R
n+. A sufficient

condition for p ∈ ∂∗f (x) is pT x = 1 and pT z ≥ 1 for all z ∈ Ff (x).

Let f be an arbitrary function on R
n. Recall that a vector p is said to be subgradient

of f at x if pT (x − x) ≤ f (x) − f (x) for every x ∈ R
n. By ∂f (x) denote the set of all

subgradients of f at x.
The following theorem describes the relationships between the two concepts of subgra-

dient and quasi-supgradient.
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Theorem 4 If f is concave continuous and strictly increasing on Rn+, then for every x > 0
satisfying f (x) > 0 we have

−p ∈ ∂ (−f (x)) \ {0} ⇒ 1

pT x
p ∈ ∂∗f (x).

Proof Let −p ∈ ∂(−f (x)) \ {0}. Then
pT (x − x) ≥ f (x) − f (x) ∀x ∈ Ff (x),

hence
pT x ≥ pT x ∀x ∈ Ff (x). (22)

By Lemma 2, p ≥ 0 (because Ff (x) is conormal) and so pT x > 0. This together with (22)
implies 1

pT x
pT x ≥ 1 for every x ∈ Ff (x). Hence, by Proposition 5,

1

pT x
p ∈ ∂∗f (x).

3 Conjugate Duality for Scalar-Maximization Problems

Let f : Rn+ → R be a nonnegative, quasiconcave continuous strictly increasing function,
X ⊂ R

n+ a compact convex normal set with nonempty interior (A set X ⊂ R
n+ is called

normal if for any two points x, x′ ∈ R
n+ satisfying x′ ≤ x ∈ X then x′ ∈ X). Consider the

optimization problem:
max f (x), s.t. x ∈ X. (23)

In this section, we will develop quasiconjugate duality for this problem on the basis of an
optimality condition in the form of generalized KKT condition.

If X represents a set of feasible activities and the production function is f , then this
problem amounts to finding an activity vector x ∈ X with maximal output. Since quasi-
concave functions form a wide class of functions encountered in practice, the problem (23)
has potential applications in various fields. In earlier papers [11, 13], a conjugate duality
for (23) was developed when f is an increasing linear function on R

n+ or f is a polyhedral
concave increasing and positively homogeneous function defined on R

n. However, many
important production or utility functions in mathematical economics are only quasiconcave
but not necessarily concave (see Remark 1). Our next purpose is to extend conjugate duality
for problem (23) to this more general case.

Since f is continuous and X is compact, the problem (23) has a solution; moreover, its
optimal value is positive.

In [10], the quasi-subdifferential was applied to provide a sufficient optimality condition
for a quasiconvex minimization problem. We now use the quasi-supdifferential to develop
a necessary and sufficient optimality condition for (23). For every vector x ∈ X denote by
N(x, X), the normal cone of X at x:

N(x,X) = {p : pT (x − x) ≤ 0 ∀x ∈ X}.

Theorem 5 A vector x ∈ X is a global optimal solution of (23) if and only if it satisfies the
following generalized KKT condition

0 ∈ ∂∗f (x) − N(x,X). (24)
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Proof Suppose x ∈ X and (24) holds. Then there exists a vector p ∈ ∂∗f (x) such that p ∈
N(x, X). Since p ∈ ∂∗f (x), we have pT x = 1 and f ∗(p)f (x) = 1. Since p ∈ N(x,X), it
follows that pT (x − x) ≤ 0 for every x ∈ X or pT x ≤ 1 for every x ∈ X. By (17), we have

f ∗(p)f (x) = max{f ∗(p)f (x) : x ∈ X} = f ∗(p)max
x∈X

f (x),

consequently,
f (x) = max

x∈X
f (x),

so x solves (23).
Conversely, suppose that x solves (23). We show that intX ∩ intFf (x) = ∅. Suppose

there is an open ball B of center x0 such that B ⊂ X ∩ Ff (x). Then f (x) = f (x) for every
x ∈ B and for x∗ ∈ B such that x∗ > x0, one would have f (x∗) > f (x0) = f (x) (because
f is strictly increasing), a contradiction. Hence, intX ∩ intFf (x) = ∅. By the separation
theorem, there are q ∈ R

n+ \ {0} and a real number α such that

qT x ≤ α ∀x ∈ X; (25)

qT x ≥ α ∀x ∈ Ff (x). (26)

From (26) by Lemma 2, we have q ≥ 0 (because Ff (x) is conormal). From (25), we have
α > 0. Setting p = 1

α
q, we can write

pT x ≤ 1 ∀x ∈ X; (27)

pT x ≥ 1 ∀x ∈ Ff (x). (28)

It follows that pT x = 1. This together with (28) implies p ∈ ∂∗f (x) by Proposition 5.
From (27), it follows that p ∈ N(x, X). Hence, 0 ∈ ∂∗f (x) − N(x, X).

Let P be the lower conjugate of X

P = {p ≥ 0 : pT x ≤ 1 ∀x ∈ X}.
It can easily be checked that P is also a compact convex with nonempty interior set in R

n+.
Moreover, X is the lower conjugate of P (see [13]):

X = {x ≥ 0 : pT x ≤ 1 ∀p ∈ P }.
Following [11], we define the dual of the problem (23) to be the following problem

max f ∗(p), s.t. p ∈ P. (29)

By Proposition 4, f ∗ is usc on Rn+, so (29) has a solution. Since X and P are the conjugates
of each other and the conjugate of f ∗ is f , the dual of the dual problem coincides with the
primal problem. So the duality is symmetric.

In [13], strong duality was obtained under the assumption that f is a polyhedral concave
increasing and positively homogeneous function on R

n+. We now extend strong duality to
problems (23) and (29).

Theorem 6 Let x ∈ X and p ∈ P . Then x is optimal to (23) and p is optimal to (29) if and
only if

f (x)f ∗(p) = 1. (30)

Proof Suppose x ∈ X and p ∈ P satisfy the dual relation (30). Then

f (x)f ∗(p) = max{f (x)f ∗(p) : x ∈ X,p ∈ P } = max
x∈X

f (x)max
p∈P

f ∗(p),
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hence,
f (x) = max

x∈X
f (x), f ∗(p) = max

p∈P
f ∗(p).

Thus, x solves (23) and p solves (29).
Conversely, suppose x solves (23) and p solves (29). Since x solves (23), f (x) > 0. By

Theorem 5, we have
0 ∈ ∂∗f (x) − N(x,X),

i.e., there is a vector q ∈ R
n+ such that

qT x = 1, (31)

f (x)f ∗(q) = 1, (32)

qT x ≤ 1 ∀x ∈ X. (33)

From (33), it follows that q ∈ P . Since x ∈ X, xT p ≤ 1 for every p ∈ P . This together
with (31) implies that xT (p − q) ≤ 0 for every p ∈ P, i.e., x ∈ N(q, P ). From (31) and
(32), we have x ∈ ∂∗f ∗(q). Thus,

0 ∈ ∂∗f ∗(q) − N(q, P ).

By Theorem 5, it follows that q is an optimal solution of the problem (29). Since p also
solves (29), we have f ∗(q) = f ∗(p). Therefore, f ∗(p)f (x) = 1.

Corollary 1 Let x ∈ X and p ∈ P . Then, x solves (23) and p solves (29) if and only if

p ∈ ∂∗f (x) or x ∈ ∂∗f ∗(p).

Proof The “if” part is obvious. To prove the “only if” part, suppose that x solves (23) and
p solves (29). By Theorem 6, we have

f ∗(p)f (x) = 1.

We show that pT x = 1. Since x solves (23), we have f (x) > 0. By Theorem 6 again, we
have

f ∗(p) = 1

sup{f (x) : pT x ≤ 1, x ≥ 0} = 1

f (x)
.

Hence,
sup{f (x) : pT x ≤ 1, x ≥ 0} = f (x). (34)

Suppose on the contrary that pT x = α < 1. There exists then a real number t > 0 such that
pT (x + te) = 1 (e = (1, 1, . . . , 1)). Since f is strictly increasing, f (x) < f (x + te). This
conflicts with (34).

4 Duality for Vector-Maximization Problems

Let Rn be represented as the cartesian product of k subspaces Rni i = 1, 2, . . . , k :

R
n =

k∏
i=1

R
ni ,

where n = ∑k
i=1 ni and ni ≥ 1 i = 1, 2, . . . , k. Then for any x ∈ R

n we have x =
(x1, x2, . . . , xk) where xi ∈ R

ni+ for every i = 1, 2, . . . , k.
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Given a compact normal convex setX ⊂ R
n+ with intX 	= ∅ and a function fi : Rni+ → R

for every i = 1, 2, . . . , k, consider the vector-maximization problem

fi(x
i) → max i = 1, 2, . . . , k (35)

s.t. x = (x1, x2, . . . , xk) ∈ X.

This problem arises when one has to maximize the production output or utility under
a given resource constraints. In [13], the conjugate duality was developed for vector-
maximization problems when the objective functions are polyhedral concave increasing
positively homogeneous production functions onRn+. We now develop the conjugate duality
for the vector-maximization problem (35) when the functions fi(x

i) are quasiconcave.
LetC ⊂ R

n be a convex set. A function f : C → R is said to be positively homogeneous
of degree α > 0 if for every x ∈ X one has f (tx) = tαf (x) for every t > 0. When α = 1,
the functions are simply called positively homogeneous. The class of functions positively
homogeneous of degree α > 0 appears frequently in Economics (see Remark 1).

Consider now problem (35) when each function fi : R
ni+ → R+ (i = 1, . . . , k) is

quasiconcave continuous increasing positively homogeneous of degree αi > 0 and satis-

fies fi(x
i) > 0 for every xi > 0. Then it is easily checked that (fi)

1
αi is a quasiconcave

continuous, nonnegative, positively homogeneous, strictly increasing function on R
ni+ and

satisfies (fi(x
i))

1
αi > 0 for every xi > 0. Furthermore, it is immediate that the following

proposition holds true.

Proposition 6 A vector x ∈ X is (weakly) Pareto efficient of (35) if and only if it is (weakly)
Pareto efficient of the problem

(fi(x
i))

1
αi → max i = 1, 2, . . . , k (36)

s.t. x = (x1, x2, . . . , xk) ∈ X.

Under the stated assumption, the problem (35) can be replaced by problem (36). Thus,
we can assume that fi is positively homogeneous for every i = 1, 2, . . . , k. Let p =
(p1, p2, . . . , pk) ∈ R

n with pi ∈ R
ni+ , i = 1, 2, . . . , k. Denote by P the lower conjugate of

X and by f ∗
i the quasiconjugate of fi onR

ni+ . The dual of (35) is defined to be the following
vector-maximization problem

f ∗
i (pi) → max i = 1, 2, . . . , k (37)

s.t. p = (p1, p2, . . . , pk) ∈ P.

Since X and P are lower conjugate of each other and fi is quasiconjugate of f ∗
i for every

i = 1, 2, . . . , k, the above defined duality for vector-maximization problems is symmetric.

Example 1 Consider the vector-maximization problem

fi(x
i) =

ni∏
j=1

(xi
j )

αi
j → max i = 1, 2, . . . , k

s.t. x = (x1, x2, . . . , xk) ∈ X,
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where
∑ni

j=1 αi
j = 1, αi

j > 0, j = 1, 2, . . . , ni . By Proposition 2, the dual problem is

ni∏
j=1

(
pi

j

αi
j

)
αi

j → max i = 1, 2, . . . , k

s.t. p = (p1, p2, . . . , pk) ∈ P.

In [13], we have established the following theorems.

Theorem 7 (Weak duality theorem) For any x ∈ X and p ∈ P , we have

k∑
i=1

fi(x
i)f ∗

i (pi) ≤ 1. (38)

Theorem 8 (Duality relation) Let x ∈ X and p ∈ P . If (x, p) satisfies the equality

k∑
i=1

fi(x
i)f ∗

i (pi) = 1, (39)

then x is primal weakly Pareto efficient and p is dual weakly Pareto efficient.

Next, we establish strong duality for vector-maximization problems.

Theorem 9 If x is primal weakly Pareto efficient, then there is p ∈ P such that (x, p)

satisfies the dual relation (39). Similarly, if p is dual weakly Pareto efficient, then there is
x ∈ X such that (x, p) satisfies (39).

Proof Suppose x is primal weakly Pareto efficient. Set

�x = {z ∈ R
n+ : fi(z

i) ≥ fi(x
i), i = 1, 2, . . . , k}.

Since the function fi quasiconcave continuous increasing for every i = 1, 2, . . . , k, �x is a
closed convex and conormal set in Rn+. We contend that int�x ∩ intX = ∅. In fact, if it were
not so, there would exist an open ball B of center z̄ such that B ⊂ �x ∩ X. Since z̄ ∈ �x ,
we have fi(z̄

i ) ≥ fi(x
i) for every i ∈ {1, 2, . . . , k}. Taking ẑ ∈ B such that ẑ > z̄ yields

fi(ẑ
i ) > fi(z̄

i ) ≥ fi(x
i) for every i ∈ {1, 2, . . . , k} (because fi is strictly increasing),

conflicting with x being weakly Pareto efficient for (35). So, int�x ∩ intX = ∅. By the
separation theorem, there are u ∈ R

n \ {0} and α ∈ R such that

uT z ≤ α ∀z ∈ X, (40)

uT z ≥ α ∀z ∈ �x. (41)

Since �x is conormal, it follows from (41) that u ≥ 0 by virtue of Lemma 2. Also, since
intX 	= ∅, it follows from (40) that α > 0. Setting p = 1

α
u,we can rewrite (40) and (41) as

pT z ≤ 1 ∀z ∈ X, (42)

pT z ≥ 1 ∀z ∈ �x. (43)
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From (42), it follows that p ∈ P . From (42) and (43), we have further pT x = 1 and

min
{
pT z : z ∈ �x

}
=

k∑
i=1

min
{
piT zi : zi ∈ R

ni+ , fi(z
i) ≥ fi(x

i)
}

= pT x = 1. (44)

For each i ∈ {1, 2, . . . , k}, putting αi = min{piT zi : zi ∈ R
ni+ , fi(z

i) ≥ fi(x
i)}, we then

have from (44) that

αi = min
{
piT zi : zi ∈ R

ni+ , fi(z
i) ≥ fi(x

i)
}

= piT xi . (45)

α1 + α2 + · · · + αk = 1. (46)

Setting I = {i ∈ {1, 2, . . . , k} : fi(x
i) > 0, αi > 0} yields

fi(x
i)f ∗

i (pi) = αi = 0 ∀i ∈ {1, 2, . . . , k} \ I, (47)

To see this, let i ∈ {1, 2, . . . , k} \ I . If fi(x
i) = 0 then, noting that fi(0) = 0 because fi

is positively homogeneous, we get from (45):

αi = min
{
piT zi : zi ∈ R

ni+ , fi(z
i) ≥ 0

}
= piT 0 = 0.

If αi = 0 and fi(x
i) > 0 then piT xi = 0. This together with the homogeneity of fi implies

sup
{
fi(x

i) : piT xi ≤ 1, xi ≥ 0
}

= +∞,

hence

f ∗
i (pi) = 1

sup{fi(xi) : piT xi ≤ 1, xi ≥ 0}
= 1

+∞ = 0.

Therefore, as has been asserted in (47),

fi(x
i)f ∗

i (pi) = αi = 0 ∀i ∈ {1, 2, . . . , k} \ I.

Now for i ∈ I , we have fi(x
i) > 0 and αi > 0. On the other hand, by (45),

piT zi ≥ αi ∀zi ∈ {zi ∈ R
ni+ : fi(z

i) ≥ fi(x
i)},

or, equivalently,
1

αi

piT zi ≥ 1 ∀zi ∈ Ffi(x
i ),

where Ffi(x
i ) is an upper level set of fi . By Proposition 5, we then get

1

αi

pi ∈ ∂∗fi(x
i) ∀i ∈ I,

consequently
fi(x

i)f ∗
i (pi) = αi ∀i ∈ I. (48)

From (47), (46), and (48), we obtain

k∑
i=1

fi(x
i)f ∗

i (pi) =
k∑

i=1

αi = 1,

proving the duality relation (39).
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Since the duality sheme is symmetric, by the arguments similar to the above we can show
that if p is primal weakly Pareto efficient then there is x ∈ X such that the duality relation
(39) holds at (x, p).

Theorem 9, which is the main result of this paper, shows that the developed duality
for general quasiconcave vector-maximization problems has zero gap and, moreover, that
the corresponding duality relation (39) helps to characterize weakly efficient solutions of
the primal and the dual problems. Since polyhedral concave nondecreasing and positively
homogeneous function are special cases of quasiconcave continuous increasing nonnega-
tive positively homogeneous functions, the above results have thus extended those earlier
obtained in [13]. Specifically, strong duality theorem for vector-maximization problems
which was established in [13] when the objective functions fi, i = 1, 2, . . . , k, are concave
and polyhedral still remains true when fi are quasiconcave and not necessarily polyhedral.
The proof of strong duality theorem in [13] requires concavity and finiteness of the objective
functions fi onRni . In the present paper, thanks to a different approach, only quasiconcavity
and finiteness on R

ni+ of the objective functions are needed.

5 Optimization over Weakly Pareto Efficient Set

In this last section, as an application of the above results, we present an approach to opti-
mization over weakly Pareto efficient set based on bilevel programming and monotonic
optimization.

Denote byXWE the set of all weakly Pareto efficient of the vector-maximization problem
(35) when each function fi : R

ni+ → R+ (i = 1, . . . , k) is quasiconcave continuous
increasing positively homogeneous and satisfies fi(x

i) > 0 for every xi > 0. Consider the
following optimization problem over the weakly Pareto efficient set

max{q(x)|s.t.x ∈ XWE}, (49)

where q(x) is a continuous concave function defined on R
n+ such that q(x) > 0 for every

x > 0. If q(x) and X represent, respectively, a profit and a set of feasible production
programs, this problem amounts to finding a weakly efficient production program with
maximal profit. For this type of problems, several solution methods are available (see [1,
18]).

By Theorems 7, 8, and 9, a vector x ∈ XWE if and only if x ∈ X and there exists p ∈ P

such that (x, p) is a optimal solution of the following problem

max

{
k∑

i=1

fi(x
i)f ∗

i (pi)| x ∈ X,p ∈ P

}
.

Thus, the problem (49) can be rewritten as the bilevel programming problem

max q(x) s.t. (50)

x ∈ X,p ∈ P, (x, p) solves (51)

max

{
k∑

i=1

fi(x
i)f ∗

i (pi)| x ∈ X, p ∈ P

}
. (52)
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This problem belongs to the class studied in [16]. Using the method proposed in the latter
paper for solving bilevel programs, we define

θ(p) = max

{
q(x)|

k∑
i=1

fi(x
i)f ∗

i (pi) ≥ 1, x ∈ X

}
∀p ∈ R

n+

with the convention max ∅ = 0.
Note that the function

∑k
i=1 fi(x

i)f ∗
i (pi) is quasiconcave in x for fixed p, so the fea-

sible set of the subproblem that defines θ(p) is a convex subset of X. Therefore, the value
of θ(p) is obtained by solving a convex problem (maximizing a concave function over a
convex compact set).

Proposition 7 θ(p) is an usc increasing function on R
n+.

Proof Since q(x) and
∑k

i=1 fi(x
i)f ∗

i (pi) are continuous on R
n+, by an argument similar

to the one in Proposition 4, we can prove that θ(p) is an usc function on R
n+. Suppose

0 ≤ p ≤ p′. Since fi, f ∗
i are nonnegative and f ∗

i is an increasing function on R
ni+ for any

i = 1, 2, . . . , k,we have

k∑
i=1

fi(x
i)f ∗

i (p
′ i
) ≥

k∑
i=1

fi(x
i)f ∗

i (pi) ∀x ∈ X.

This implies that{
x ∈ X :

k∑
i=1

fi(x
i)f ∗

i (p′i ) ≥ 1} ⊂ {x ∈ X :
k∑

i=1

fi(x
i)f ∗

i (pi) ≥ 1

}
.

Hence, θ(p′) ≥ θ(p′).

We now prove that problem (50)–(52) is equivalent to the following monotonic optimiza-
tion problem:

max{θ(p)|p ∈ P }. (53)

Since P is compact and θ(p) is an usc function on R
n+, (53) has an optimal solution.

Theorem 10 The optimal values in problem (53) and problem (50)–(52) are equal, i.e.,
θ∗ = q∗. Moreover, if p is an optimal solution of (53) then x is an optimal solution of
(50)–(52), where x is a maximizer of the function q(x) on {x ∈ X : ∑k

i=1 fi(x
i)f ∗

i (pi) =
1}.
Proof Let x be an optimal solution of (50)–(52), i.e., q(x) = q∗ and there exists p ∈
P such that (x, p) is a maximizer of the function

∑k
i=1 fi(x

i)f ∗
i (pi) on X × P , i.e.,∑k

i=1 fi(x
i)f ∗

i (pi) = 1 by virtue of (38). Then,

q∗ = q(x)

≤ max

{
q(x) :

k∑
i=1

fi(x
i)f ∗

i (pi) ≥ 1, x ∈ X

}

= θ(p)

≤ θ∗.
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This particularly implies θ∗ > 0. Conversely, let p be an optimal solution of (53), i.e.,
p ∈ P and θ(p) = θ∗. We show that {x ∈ X : ∑k

i=1 fi(x
i)f ∗

i (pi) = 1} 	= ∅. In fact,

suppose on the contrary, that {x ∈ X : ∑k
i=1 fi(x

i)f ∗
i (pi) = 1} = ∅. By Theorem 7, we

have {
x ∈ X :

k∑
i=1

fi(x
i)f ∗

i (pi) ≥ 1} = {x ∈ X :
k∑

i=1

fi(x
i)f ∗

i (pi) = 1

}
= ∅.

So,

θ∗ = θ(p)

= max

{
q(x) :

k∑
i=1

fi(x
i)f ∗

i (pi) ≥ 1, x ∈ X

}

= max

{
q(x) :

k∑
i=1

fi(x
i)f ∗

i (pi) = 1, x ∈ X

}

= max∅
= 0

< θ∗,
which is a contradiction.

Let x be a maximizer of the function q(x) on the set{
x ∈ X :

k∑
i=1

fi(x
i)f ∗

i (pi) = 1

}
.

Then x ∈ XWE and

θ∗ = θ(p)

= max

{
q(x) :

k∑
i=1

fi(x
i)f ∗

i (pi) ≥ 1, x ∈ X

}

= max

{
q(x) :

k∑
i=1

fi(x
i)f ∗

i (pi) = 1, x ∈ X

}

= q(x)

≤ q∗.
Consequently, θ∗ = q∗. This particularly implies that x is an optimal solution of the
problem (50)–(52).

6 Conclusions

In an earlier paper [13], we have studied the quasigradient duality for problems of max-
imizing a polyhedral concave increasing positively homogeneous function over a convex
feasible set. In the present article, the quasigradient duality is developed for problems of
maximizing a quasiconcave continuous increasing nonnegative positively homogeneous and
finite-valued, function over a convex feasible set. As we have seen, the main results in
[13] remain true for this more general class of problems. Specifically, the conjugate duality
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scheme is still symmetric and a strong duality theorem is still true. We also present dual-
ity relationships that can help to characterize the (weak) Pareto efficient solutions, and to
derive a sufficient condition for Pareto efficiency. As a result, an optimization problem over
the weakly efficient set reduces to a bilevel optimization problem which can be solved by
an monotonic optimization algorithm.
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