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Abstract We present some recent trace formulas for varieties over valued fields which can
be seen as analogues of Grothendieck’s Lefschetz trace formula for varieties over finite
fields. This involves motivic integration and non-archimedean geometry.

Keywords Milnor fiber · Monodromy · Motivic volume

Mathematics Subject Classification (2010) 03C98 · 14B05 · 14J17 · 32S25 · 32S85

1 Summary

The aim of this lecture is to present some recent trace formulas obtained in [11, 17, 27, 28]
for varieties over valued fields using motivic integration. We start by recalling in Section 2
the trace formula of Grothendieck that provides a cohomological expression for the num-
ber of points of varieties over finite fields. We also review Grothendieck’s function-sheaf
dictionary and briefly present some applications.

Section 3 is devoted to introducing the motivic Serre invariant from Loeser and Sebag
[22], which can be considered as a right substitute for counting point over finite fields;
indeed, for smooth varieties over a valued field with perfect residue field, it provides a mea-
sure of the set of unramified points. The construction proceeds in analogy with an invariant
that Serre defined in [33] for locally analytic p-adic varieties, which we recall first.

We are then in position to state in Section 4 the trace formula of Nicaise and Sebag
[28] that provides a cohomological interpretation for the Euler characteristic of the motivic
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Serre invariant. In the remaining of the section, we explain the connection with monodromy
and the Milnor fiber as expressed in the original trace formula of Denef and Loeser [11].
We then explain the strategy of proof, relying on explicit computations on resolutions and
motivic integration.

In Section 5, we shall present another approach due to Hrushovski and Loeser [17]. It
is based on non-archimedean geometry and avoids explicit computations on resolutions. It
uses the version of motivic integration of Hrushovski and Kazhdan [16], that we review, and
ultimately relies on a classical form of the Lefschetz fixed point formula.

2 Trace Formulas over Finite Fields and Grothendieck’s Function-Sheaf
Dictionary

2.1 The Lefschetz Trace Formula

The classical Lefschetz trace formula expresses the number of fixed points of an endomor-
phism of a topological space in terms of the traces of the corresponding endomorphisms in
the cohomology groups. In its original form [21], it states the following:

Theorem 2.1.1 (Lefschetz, [21]) Let X be a connected orientable n-dimensional com-
pact topological manifold or an n-dimensional finite cell complex, let f : X → X be a
continuous mapping and let

�(f ) = Tr(f ; H •(X,Q)) =
∑

i≥0

(−1)i Tr(f ; Hi(X,Q)) (2.1.1)

be the Lefschetz number of f . Assume that all fixed points of the mapping are isolated. For
each fixed point x of f , denote by ι(x), the local degree of f in a neighborhood of x. Then

∑

f (x)=x

ι(x) = �(f ). (2.1.2)

Note that, it follows in particular that if �(f ) �= 0, then f has at least one fixed point,
which generalizes the Brouwer fixed point theorem.

2.2 Grothendieck’s Trace Formula

Let X0 be an algebraic variety over the finite field Fq . Fix an algebraic closure Fq and set
X = X0 ⊗ Fq . Let Frob : X → X be the geometric Frobenius (which corresponds to
raising the coordinates to the q-th power). Then the fixed points of Frob are exactly the
Fq -rational points, and more generally, for any m ≥ 1, the set of fixed points of Frobm

is exactly X0(Fqm). In this context, Grothendieck proves a Lefschetz trace formula using
�-adic cohomology.

Fix a prime � not equal to the characteristic of Fq .

Theorem 2.2.1 (Grothendieck trace formula, version 1) For any m ≥ 1,

Tr(Frobm, H •
c (X,Q�)) = #(X0(Fqm)), (2.2.1)

where Frob denotes the (geometric) Frobenius and H •
c (X,Q�)) denotes �-adic cohomology

with compact supports.



Trace Formulas for Motivic Volumes 411

More generally, letF0 be a constructible �-adic sheaf on X0, or an object of Db
c (X0,Q�),

the bounded derived category of constructibleQ�-sheaves on X0. Denote byF the pullback
of F0 to X. For any x ∈ X0(Fqm), one may consider Tr(Frobm,Fx), with x the geometric
point attached to x. Let F(X0(Fqm),Q�) be the ring of functions from X0(Fqm) to Q�. One
defines this way an additive morphism

Tr(Frobm) : Db
c (X0,Q�) −→ F(X0(Fqm),Q�) (2.2.2)

by assigning to an object F0 in Db
c (X0,Q�) the function x �→ Tr(Frobm,Fx). Now

if f : X0 → Y0 is a morphism of Fq -varieties, we may define a ring morphism
f! : F(X0(Fqm),Q�) → F(Y0(Fqm),Q�) by sending a function ϕ on X0 to the function
y �→ ∑

x∈X0(Fqm ),f (x)=y ϕ(x). On the other hand, direct image with compact supports pro-

vides a functor f! : Db
c (X0,Q�) → Db

c (Y0,Q�). This allows to state the following relative
form of Grothendieck’s trace formula:

Theorem 2.2.2 (Grothendieck trace formula, version 2) Let f : X0 → Y0 be a morphism
of Fq -varieties. Then, for any m ≥ 1, the diagram

is commutative.

The relative version of Grothendieck’s trace formula provides the basis for the so-called
function-sheaf dictionary. The idea is that in most cases of interest, functions on X0(Fqm)

may be expressed as traces on complexes of sheaves. Thus, if one wants to prove some
equality between two such functions f1 and f2, one may expect it comes from an isomor-
phism between two complexes of sheaves F1 and F2 on X0. This is often more tractable
than the original problem, since this allows to use geometric tools. For instance, in favorable
cases, one may have that F1 and F2 belong to the abelian category of perverse sheaves and
that a natural morphism θ : F1 → F2 is given; instead of proving that f1 and f2 are equal,
which might be a very difficult combinatorial problem, one may consider to take benefit of
geometry to prove that the kernel and cokernel of θ vanish.

Remark 2.2.3 Let K(X0,Q�) be the Grothendieck ring of the category Db
c (X0,Q�). There

is a ring morphism ι : K(X0,Q�) → ∏
m≥1 F(X0(Fqm),Q�) given componentwise by

Tr(Frobm). It is a well-known consequence of Chebotarev’s density theorem, cf. Théorème
1.1.2 in [19], that ι is injective.

2.3 Some Examples

2.3.1 Evaluation of Character Sums

A typical situation where the geometric approach is powerful is the evaluation of compli-
cated character sums. Let us illustrate this with an example in which we were involved.

Let G be a finite subgroup of GLn(R) generated by reflections around hyperplanes �i =
0, 1 ≤ i ≤ N , normalized in such a way that ‖�i‖ = √

2. Set � = (
∏N

i=1 �i)
2 and let d1,
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. . . , dn denote the degrees of the fundamental invariants of the ring of polynomial invariants
of G. In [23], I. Macdonald conjectured the remarkable identity

∫

Rn

�(x)s exp(−(
∑

x2
i )/2)dx = (2π)n

n∏

i=1

	(dis + 1)

	(s + 1)
. (2.3.1)

This was later proved by E. Opdam [30] using the existence of so-called hypergeometric
shift operators. In [8], Denef and Loeser proved a finite field analogue of the Macdonald
identity, using the cohomological interpretation of character sums, together with a detailed
study of the monodromy of the discriminant of a finite Coxeter group, Laumon’s product
formula [19] and Macdonald’s integral formula.

2.3.2 The Fundamental Lemma

One of the most spectacular successes of the function-sheaf dictionary is provided by Ngô’s
celebrated proof of the Fundamental Lemma over a local field F of positive characteristic
[26]. Recall that the Fundamental Lemma is an identity between an orbital integral on a
reductive group G over F and a stable oribital integral on an endoscopic group of G, up to a
transfer factor. These integrals may be reexpressed in purely combinatorial terms involving
counting points in some affine Springer fibers over the finite residue field k of F . One
of Ngô’s main insights was to globalize the problem, switching from local geometry of F

to global geometry over a k-curve and using the Hitchin fibration as the global analogue
of affine Springer fibers. He can then make full use of geometry, reducing the proof of
the Fundamental Lemma to a deep theorem about the support of the perverse cohomology
sheaves of the Hitchin fibration.

3 The Motivic Serre Invariant

3.1 A Toy Model: the Serre Invariant

Let K be a locally compact field for the topology defined by a discrete valuation val. The
residue field k of K is isomorphic to Fq . For instance, one may take K = Qp and then
k = Fp. One defines a norm on K by setting |a| = q− val(a). The valuation ring R of K is
equal to the closed unit disk for this norm.

Let U be an open subset of Kn. A function f : U → K is said to be locally analytic
if for any point a in U , f can be expressed by a converging power series on some open
neighborhood of a. This notion allows to define by glueing the category of locally analytic
varieties over K . Such varieties are locally modeled on open subsets of Kn, for some n. Fix
n ≥ 1. By a compact n-variety, we shall mean a non-empty compact locally analytic variety
over K which is locally of dimension n at each point. The following result was proved by
Serre in [33].

Theorem 3.1.1 (Serre, [33]) (1) Let X be a compact n-variety. Then, for some integer
s ≥ 1, X is isomorphic to sRn = {sa; a ∈ Rn}.

(2) sRn is isomorphic to s′Rn if and only if s ≡ s′ mod (q − 1).

It follows that the class s(X) of the integer s in Theorem 3.1.1 (1) in Z/(q −1)Z depends
only on X; we call it the Serre invariant of X.

The following statement provides a link with p-adic integration:
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Theorem 3.1.2 (Serre, [33]) Let X be a compact n-variety and let ω be a degree n locally
analytic differential form which vanishes nowhere on X (such forms always exist). Then
s(X) is equal to the class of the integral

∫

X

|ω| (3.1.1)

in Z/(q − 1)Z.

3.2 The Motivic Serre Invariant

Consider now a complete discrete valuation ring R with fraction field K and perfect residue
field k.

By analogy with the Serre invariant, Loeser and Sebag introduced in [22] the motivic
Serre invariant for smooth rigid analytic varieties over K .

Rigid analytic varieties were introduced by Tate in [34] to remedy the fact that in the
non-archimedean world, because of total disconnectedness, there do not exist satisfactory
notions of analytic continuation and connectedness in the context of locally analytic func-
tions. They were later reinterpreted by Raynaud [31] as generic fibers of formal schemes
over the valuation ring R. In particular, Raynaud showed that the category of quasi-compact
quasi-separated rigid spaces overK is equivalent to the localization of the category of quasi-
compact admissible formal schemes over R with respect to admissible formal blow-ups. All
the rigid spaces, we shall consider will be assumed to be quasi-compact and quasi-separated.

The construction of the motivic Serre invariant is based on motivic integration. Orig-
inally, say for k of characteristic zero, motivic integration assigns to subsets of the arc
space L(X) of an algebraic variety X over k a volume in (a completion of) the localized
Grothendieck ring K0(Vark)loc cf. [9, 10]. Here, K0(Vark)loc is the localization with respect
to the class of the affine line of K0(Vark), the Grothendieck ring of algebraic varieties over
k. In concrete terms, note that two varieties over k that are stably piecewise isomorphic
(i.e., which become isomorphic after being cut into locally closed pieces and stabilization
by product with a power of the affine line) define the same class in K0(Vark)loc. In general,
when k has positive characteristic, one has to replace K0(Vark) and K0(Vark)loc by their
quotientsK ′

0(Vark) andK ′
0(Vark)loc obtained by trivializing universal homeomorphisms, cf.

[29]. Note that when k has characteristic zero K0(Vark) and K ′
0(Vark) are identical (and so

are K0(Vark)loc and K ′
0(Vark)loc).

Let Y be a smooth rigid K-space of dimension d. In [22], we assign to a gauge form
ω on Y , i.e., a nowhere vanishing differential form of degree d on Y , a motivic integral∫
Y

|ω| with value in K ′
0(Vark)loc. The construction is done by viewing Y as the generic

fiber of some formal R-scheme Y . To such a formal R-scheme, by means of the Greenberg
functor Y �→ Gr(Y), one associates a certain k-scheme Gr(Y). When R = k[[t]], and Y
is the formal completion of X ⊗ k[[t]], for X an algebraic variety over k, is nothing else
than the arc space L(X) of X. We may then use the general theory of motivic integration
on schemes Gr(Y) which is developed in [32]. Of course, for the construction to work,
one needs to check that it is independent of the chosen model. This is done by using two
main ingredients. The first is the theory of weak Néron models for smooth rigid varieties
developed in [5] and [6]. A weak Néron model for Y is a smooth quasi-compact formal R-
scheme U , whose generic fiberU is an open rigid subspace of Y , and which has the property
that the canonical map U(R′) → Y (K ′) is bijective for every finite unramified extension R′
of R with quotient field K ′. The second ingredient is the analogue for schemes of the form
Gr(Y) of the change of variable formula from [9] which is proven in [32].
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Definition 3.2.1 Let Y be a smooth rigid K-space of dimension d. One defines its motivic
Serre invariant S(Y ) in K ′

0(Vark)/(L − 1)K ′
0(Vark) as follows (sketch). Assume first Y

admits a gauge form. If ω and ω′ are two gauge forms on Y , one shows that
∫

Y

|ω| −
∫

Y

|ω′| ∈ (L − 1)K ′
0(Vark)loc. (3.2.1)

Thus, one can define S(Y ) as the class of
∫
Y

|ω| in
K ′

0(Vark)loc/(L − 1)K ′
0(Vark)loc 
 K0(Vark)/(L − 1)K ′

0(Vark). (3.2.2)

In general, Y admits a gauge form on some non-empty open affinoid, and one reduces to
the former case by additivity.

Note that the class of a variety in K ′
0(Vark)/(L − 1)K ′

0(Vark) still contains a lot of
information about it.

Example 3.2.2 In case Y admits a smooth formalR-model with good reduction, S(Y ) is just
the class of the fiber of that model. More generally, if U is a weak Néron model of Y , S(Y )

is equal to the class of the special fiber of U in K ′
0(Vark)/(L − 1)K ′

0(Vark). In particular,
one obtains that this class is independent of the choice of the weak Néron model U .

Remark 3.2.3 From the above example, one sees that one can interpret S(Y ) as a measure
of the set of non ramified points of Y .

To conclude, let us note that the motivic Serre invariant is a refinement of the classical
Serre invariant in the following sense. Let K be a finite extension of Qp with residue field
k = Fq . Counting rational points in k yields a canonical morphism

K ′
0(Vark)/(L − 1)K ′

0(Vark) −→ Z/(q − 1)Z, (3.2.3)

and one may show that the image of S(Y ) by this morphism is equal to s(Y (K)).

Variant 3.2.4 Let Y be a formal model of Y with special fiber Ys . For Z, a locally closed
subscheme of Ys , one defines the tube ]Z[ as the preimage sp−1(Z) of Z under the special-
ization morphism sp : Y → Ys . By integrating over ]Z[ instead of over the whole Y , one
defines a localized version SZ(Y ) of S(Y ), cf. [28].

4 A Trace Formula for the Motivic Serre Invariant

4.1 The Trace Formula of Nicaise and Sebag

In this section, we will present a trace formula due to Nicaise and Sebag [28], which
can be seen as an analogue over the field C((t)) of Grothendieck’s trace formula Theo-
rem 2.2.1. For simplicity, we shall assume from now on that K = C((t)) and R = C[[t]].
The algebraic closure of C((t)) is the field of Puiseux series C((t))alg = ∪m≥1C((t1/m)),

we shall denote by Ĉ((t))alg its completion. The Galois group G = Aut(Ĉ((t))alg/C((t))) =
Aut(C((t))alg/C((t))) is canonically isomorphic to the group μ̂ = lim←− μn of roots of unity,

namely, (ζn)n≥1 ∈ μ̂ sends the series
∑

amti/m to
∑

amζ i
mti/m. Let ϕ = (exp 2πi/n)n≥1 ∈

μ̂. It is a topological generator of the profinite group μ̂, and for any m ≥ 1, K(m) :=
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C((t1/m)) is the field fixed by ϕm. Thus, ϕ can be considered as an analogue of the Frobenius
element Frob.

Let Y be a smooth rigid K-variety with formal model Y . For any m ≥ 1, we can consider
the variety Y (m) obtained by extending the scalars from K to K(m). Thus, Y (m) has a
formal model Y(m) := Y⊗̂RC[[t1/m]].

The Euler characteristic with compact supports for complex algebraic varieties factorizes
as a ring morphism

χc : K0(VarC)/(L − 1)K0(VarC) → Z. (4.1.1)

Theorem 4.1.1 (Nicaise-Sebag, [28]) AssumeX is a generically smooth flat algebraic vari-
ety over R. Denote by Y its t-adic completion with rigid generic fiber Y . Let Z be a proper
subvariety of the special fiber of Y . Then, for any m ≥ 1,

χc(SZ(Y (m))) = Tr(ϕm,H •(]Z[an,Q�)). (4.1.2)

In this statement, ]Z[an stands for ]Z[an⊗̂Ĉ((t))alg with ]Z[an the Berkovich analytifica-
tion of ]Z[, and H •(]Z[an,Q�)) for the corresponding �-adic étale cohomology groups as
defined by V. Berkovich in [4].

Theorem 4.1.1 can be considered as a satisfactory analogue of Theorem 2.2.1. Assume
for simplicity, X is proper and that Z is equal to the special fiber. Then SZ(Y (m)) =
S(Y (m)) and χc(S(Y (m)) can be seen as a reasonable substitute for the number of rational
points in the degree m extension of a finite field.

Remark 4.1.2 We refer to [28] for the original, more general, statement of Theorem 4.1.1.
Note also that it has been extended in [27] beyond the algebraic case.

4.2 The Trace of the Monodromy

Let X be a smooth complex algebraic variety of dimension d and let f : X → A1
C
be a

non-constant morphism to the affine line. Let x be a closed point of f −1(0).
Fix a distance function δ on an open neighborhood of x induced from a local embedding

of this neighborhood in some complex affine space. For ε > 0 small enough, one may
consider the corresponding closed ball B(x, ε) of radius ε around x. For η > 0, we denote
by Dη the closed disk of radius η around the origin in C.

By Milnor’s local fibration Theorem (see [12, 25]), there exists ε0 > 0 such that, for
every 0 < ε < ε0, there exists 0 < η < ε such that the morphism f restricts to a fibration,
called the Milnor fibration,

B(x, ε) ∩ f −1(Dη \ {0}) −→ Dη \ {0}. (4.2.1)

The Milnor fiber at x,

Fx = f −1(η) ∩ B(x, ε), (4.2.2)

has a diffeomorphism type that does not depend on δ, η and ε. The characteristic mapping
of the fibration induces on Fx an automorphism which is defined up to homotopy, the mon-
odromy Mx . In particular, the singular cohomology groups Hi(Fx,Q) are endowed with an
automorphism Mx , and for any integer m, one can consider the Lefschetz numbers

�(Mm
x ) = Tr(Mm

x ; H •(Fx,Q)) =
∑

i≥0

(−1)i Tr(Mm
x ; Hi(Fx,Q)). (4.2.3)
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Theorem 4.2.1 (A’Campo, [1]) Assume x is a singular point of f −1(0), that is, df (x) = 0.
Then

�(Mx) = 0. (4.2.4)

A’Campo’s initial proof uses resolution of singularities, but in [20], Lê Dũng Tráng con-
structed geometrically a representative of the monodromy with no fixed points, providing a
proof without resolution of Theorem 4.2.1.

This was later generalized by Deligne to the statement

Theorem 4.2.2 (Deligne, cf. [2]) Let μ denote the multiplicity of f at x. Then

�(Mm
x ) = 0 for 0 < m < μ. (4.2.5)

In [11], Denef and Loeser proved that �(Mm
x ) can be expressed in terms of Euler char-

acteristics of arc spaces as follows. For any integer m ≥ 0, let Lm(X) denote the space of
arcs modulo tm+1 on X: a C-rational point of Lm(X) corresponds to a C[t]/tm+1-rational
point of X, cf. [9]. Consider the locally closed subset Xm,x of Lm(X)

Xm,x = {ϕ ∈ Lm(X); f (ϕ) = tm mod tm+1, ϕ(0) = x}. (4.2.6)

Note that Xm,x can be viewed in a natural way as the set of closed points of a complex
algebraic variety.

Theorem 4.2.3 (Denef-Loeser, [11]) For every m ≥ 1,

χc(Xm,x) = �(Mm
x ). (4.2.7)

Note that one recovers Theorem 4.2.2 as a corollary sinceXm,x is empty for 0 < m < μ.

Remark 4.2.4 The statement of Theorem 4.2.3 emerged at a time F. Loeser had discus-
sions with P. Seidel on the analogy between the use of arcs in motivic integration and
that of symplectic disks in Floer theory. In particular, P. Seidel noted the close analogy
between Theorem 4.2.3 and the fact that, in symplectic Floer homology, the Lefschetz num-
ber of a symplectomorphism is equal to the Euler characteristic of the corresponding Floer
homology groups, cf. [13].

4.3 Sketch of Proof of Theorem 4.2.3

By a log-resolution h : Y → X of (X, f −1(0)), we mean a proper morphism h : Y →
X with Y smooth such that the restriction of h: Y \ h−1(f −1(0)) → X \ f −1(0) is an
isomorphism, and h−1(f −1(0)) is a divisor with simple normal crossings. We denote by Ei ,
i in A, the set of irreducible components of the divisor h−1(f −1(0)). Hence, by definition,
the Ei’s are smooth and intersect transversally. For I ⊂ A, we set EI := ⋂

i∈I Ei and
E◦

I := EI \ ⋃
j /∈I Ej . We denote by Ni the order of vanishing of f ◦ h along Ei , and we

define the log discrepancies νi by the equality of divisors

KY = h∗KX +
∑

i∈A

(νi − 1)Ei. (4.3.1)

We shall use ideas coming from motivic integration to compute the left hand side of
(4.2.7) on a log-resolution. Let us denote by L(X) the arc space of X. As a scheme
L(X) = lim←−Lm(X) and there is a natural bijection between C-rational points of L(X)

and C[[t]]-rational points of X. The following statement is a special case of Lemma 3.4 of
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[9] (corresponding to the case when X is smooth), which is the key geometric statement
underlying the change of variables formula for motivic integration proved in [9].

Proposition 4.3.1 (Denef-Loeser, [9]) Let X be a smooth complex algebraic variety of
dimension d. Let h : Y → X be a proper birational morphism with Y smooth. For e in N,
set

�e :=
{
ϕ ∈ L(Y )

∣∣∣ ord h∗(�d
X)(ϕ) = e

}
, (4.3.2)

where ord h∗(�d
X)(ϕ) denotes the order of vanishing of the Jacobian of h at ϕ. Then, for

n ≥ 2e, the image �e,n of �e in Ln(Y ) is a union of fibers of hn, the morphism induced by
h, and the morphism hn : �e,n → hn(�e,n) is a piecewise Zariski fibration with fiber Ae

C
.

Consider a log-resolution h : Y → X of f −1(0) such that h−1(x) is a union of compo-
nents Ei , i ∈ A0. It is not difficult to deduce from Proposition 4.3.1, the following equality
in K0(VarC):

[Xm,x] = Lmd
∑

I∩A0 �=∅
(L − 1)|I |−1[Ẽ◦

I ]
( ∑

ki≥1,i∈I,
∑

I kiNi=m

L− ∑
kiνi

)
(4.3.3)

with Ẽ◦
I → E◦

I an étale cover of degree gcd(Ni)i∈I .
Taking χc of both sides, all terms with |I | ≥ 2 cancel out, and one gets

χc(Xm,x) =
∑

Ni |m,i∈A0

Ni χc(E
0{i}). (4.3.4)

On the other hand, by a result of A’Campo [2], which is an easy consequence of the
Leray-Serre spectral sequence associated to the direct image of nearby cycles, the right
hand side of (4.3.4) is equal, for m ≥ 1, to the Lefschetz number �(Mm

x ). In conclusion,
the proof of Theorem 4.2.3 in [11] consists in computing explicitly both sides of (4.3.4)
and checking both quantities are equal. Such a proof is not very enlightening. In Section 5,
we shall present another approach, based on non-archimedean geometry, that is more con-
ceptual, avoids explicit computations on resolutions and allows to see Theorem 4.2.3 as a
consequence of some Lefschetz fixed point formula.

4.4 Back to Non-Archimedean Geometry

We shall now explain how one can see Theorem 4.2.3 as a special case of Theorem 4.1.1.
Let X be a smooth complex algebraic variety of dimension d and let f : X → A1

C
=

SpecC[t] be a non-constant morphism to the affine line. Via f , we can see X as a C[t]-
scheme. Let Y be its t-adic completion and Y the corresponding rigid space. For any closed
point x of f −1(0), we can consider the tube ]x[ in Y . The authors of [28] call this tube the
analytic Milnor fiber at x and denote it by Fx .

As in Section 4.1, we shall write Fx
an

for F an
x ⊗̂Ĉ((t))alg and H •(Fx

an
,Q�) for the cor-

responding �-adic étale cohomology groups in the Berkovich sense. Note that the Galois
element ϕ acts on H •(Fx

an
,Q�).

Using a comparison theorem of Berkovich, Nicaise, and Sebag show in [28] that, for
every i ≥ 0, there is an isomorphism

Hi(Fx
an

,Q�) 
 Hi(Fx,Q) ⊗Q Q� (4.4.1)
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such that the action of ϕ on the left hand side corresponds to the action of the monodromy
Mx on the right hand side. Thus, it follows that the right-hand sides of (4.1.2) and (4.2.7)
are equal, for Z = {x}.

It remains to see the connection between S{x}(Y (m)) and Xm,x . For this, let us observe
that a C((t1/m))-point of Fx is nothing but a morphism ψ : SpecC[[t1/m]] → X such that
f (ψ) = t and ψ(0) = x. Since there is no harm in reparameterizing ψ by t , we may
identify Fx(C((t1/m))) with the set of arcs ψ : SpecC[[t]] → X such that f (ψ) = tm

and ψ(0) = x. One can check that the motivic volume of this set, taken in an appropriate
Greenberg scheme, is equal to the class Xm,x in K0(VarC) up to a power of L, from which
it follows that in this case the left-hand sides of (4.1.2) and (4.2.7) are equal too.

Remark 4.4.1 The proof of Theorem 4.1.1 follows similar lines to that of Theorem 4.2.3,
relying ultimately on explicit computations on a resolution.

5 Trace Formulas via Non-Archimedean Geometry

In this section, we present the new approach to the previous results developed with E.
Hrushovski in the paper [17].

5.1 Hrushovski-Kazhdan Motivic Integration

For the convenience of the reader, we shall present now some of the main results of [16], in
a simplified form adapted to the needs of the present survey. We shall work in the setting
of valued fields that is of fields L endowed with a valuation val : L× → 	(L) with 	(L)

an ordered abelian group. Setting val(0) = ∞, one extends val to val : L → 	∞(L) :=
	(L) ∪ {∞}. We will mostly consider K = C((t)) and K = C((t))alg with their standard
valuation satisfying val(tγ ) = γ , thus there is an inclusion 	(K) = Z ⊂ 	(K) = Q.

We define semi-algebraic subsets of K
n
as elements of the Boolean algebra generated by

subsets of K
n
defined by conditions of the form val(f ) ≥ val(g) with f and g polynomials

with coefficients in K . More generally, if X is a K-algebraic variety, a subset Z of X(K)

is called semi-algebraic if there is a cover by affine K-varieties Ui , such that Z ∩ Ui(K) is
semi-algebraic for each i. We define a category VFK whose objects are semi-algebraic sub-
sets of someK-algebraic variety, morphisms being functions whose graph is semi-algebraic.
In the terminology of [16], VFK is (equivalent to) the category of K-definable sets in the
VF-sort.

Let L be a valued field. Denote by ML the maximal ideal of its valuation ring. The
quotient RV(L) := L×/1 + ML plays a central role in the Hrushovski-Kazhdan approach.
It fits in a short exact sequence

1 −→ k(L)× −→ RV(L) −→ 	(L) −→ 0 (5.1.1)

with k(L) the residue field of L. We denote by rv : L× → RV(L), and more generally
rv : (L×)n → RV(L)n, the quotient morphism and by val : RV(L) → 	(L) the morphism
induced by val.

We will say a subset of 	(K)n is semi-algebraic if it belongs to the Boolean algebra
generated by subsets of 	(K)n of the form

∑n
i=1 aixi + b ≥ 0 with ai in Z and b ∈ 	(K).

Semi-algebraic subsets of 	(K)n, for variable n, form a category that we denote by 	K . For
n ≥ 0, we denote by 	K [n] the subcategory of semi-algebraic subsets of 	(K)n.
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Similarly, one may define a notion of semi-algebraic subsets of RV(K)n (K-definable
sets in the RV-sort in the terminology of [16]). We will not give a precise definition here,
but here are some properties that should allow to get some feeling about them:

(a) If X is a semi-algebraic subset RV(K)n, its projection to 	(K)n is semi-algebraic and
its intersection with (k(K)×)n is the set of C-points of a C-constructible set.

(b) The image, resp. preimage, under rv : (L×)n → RV(L)n of a semi-algebraic set is
semi-algebraic.

Semi-algebraic subsets of RV(K)n, for variable n, form a category that we denote by
RVK . For n ≥ 0, we denote by RVK [n] the category of morphisms f : X → RV(K)n in
RVK with finite fibers.

For each of the category VFK , RVK , . . . , one denotes by K(VFK), K(RVK), . . . , the
corresponding Grothendieck ring. It is the free abelian group on isomorphism classes of
objects modulo the cut and paste relation.

Given a semialgebraic subset X of RV(K)n, one may consider its preimage rv−1(X)

in VF(K)n, which one denotes by L(X) (L stands for “lifting”). More generally, given
f : X → RV(K)n in RVK with finite fibers, one may consider the set L(X) = {(x, y) ∈
X ×VF(K)n; f (x) = rv(y)}. With some thought, one may identify L(X) with an object of
VFK well defined up to isomorphism. The assignment X → L(X) gives rise to a morphism

L : K(RVK [n]) −→ K(VFK). (5.1.2)

Setting K(RVK [∗]) = ⊕nK(RVK [n]), one gets a morphism

L : K(RVK [∗]) −→ K(VFK). (5.1.3)

Hrushovski and Kazhdan proved the following remarkable result:

Theorem 5.1.1 (Hrushovski-Kazhdan, [16]) The morphism (5.1.3) is surjective.

The morphism (5.1.3) is not injective. Indeed, if [1]n stands for the class of a point
embedded in RV(K)n, L([1]0) is equal to the class of a point, while L([1]1) is equal to the
class of the open ball 1+MK . On the other hand, if [RV>0]1 denotes the class of the subset
defined by the condition val(x) > 0 in RV(K), one notices that L([RV>0]1) is the class of
the punctured open ball MK � {0}. Thus, [RV>0]1 + [1]0 − [1]1 belongs to the kernel of L.
An important result of Hrushovski and Kazhdan states that this is the only relation, namely:

Theorem 5.1.2 (Hrushovski-Kazhdan, [16]) The kernel of the morphism (5.1.3) is exactly
the ideal I generated by [RV>0]1 + [1]0 − [1]1.

Putting together Theorem 5.2.1 and Theorem 5.1.2 and inverting L, one gets an
isomorphism

HK : K(VFK) −→ K(RVK [∗])/I. (5.1.4)

Remark 5.1.3 In fact, the aforementioned results of Hrushovski-Kazhdan are already true
at the semi-ring level, cf. [16].

5.2 Construction of a Morphism K(VFK) → Kμ̂(VarC)/(L − 1)Kμ̂(VarC)

From the short exact sequence (5.1.1), one may expect that K(RVK [∗]) can be expressed
in terms of data defined over 	 and over the residue field. This is in fact the case, but
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to achieve this one needs to introduce the subcategory RESK of RVK consisting of semi-
algebraic subsets of some RV(K)n whose image in 	(K)n under val is finite. Objects in
RESK correspond to twisted forms of C-constructible sets, like, for instance, the set defined
by the equation 2 val(x) = val(t). For n ≥ 0, we denote by RESK [n] the subcategory of
RVK [n] consisting of morphisms f : X → RV(K)n with finite fibers, with X in RESK .

The last category we will have to consider is the subcategory 	fin
K [n] of 	K [n] consisting

of finite semi-algebraic sets. Note that we have a functor 	fin
K [n] → RESK [n] sending a

finite set S ⊂ 	n to val−1(S) in RESK [n]. We set K(RESK [∗]) = ⊕nK(RESK [n]) and
K(	fin

K [∗]) = ⊕nK(	fin
K [n]). Thus, K(RESK [∗]) is endowed with the structure of a graded

K(	fin
K [∗])-algebra induced by the previous functor.

Theorem 5.2.1 (Hrushovski-Kazhdan, [16]) The morphism

� : K(RESK [∗]) ⊗K(	fin
K [∗]) K(	K [∗]) −→ K(RVK [∗]) (5.2.1)

sending [X] ⊗ [Y ] to [X × val−1(Y )] is an isomorphism.

Thus, one can rewrite the isomorphism HK from (5.1.4) as an isomorphism K(VFK) →
K(RESK [∗]) ⊗K(	fin

K [∗]) K(	K [∗])/I ′ with I ′ the ideal corresponding to I under the iso-
morphism �. In [17], we made use of the combinatorial Euler characteristic on 	K to “kill”
the 	-part and to get a morphism

� : K(VFK) −→ K(RESK)/I ′′ (5.2.2)

with I ′′ some explicit ideal of K(RESK).
In fact, the quotient K(RESK)/I ′′ can be reinterpreted in terms of varieties with μ̂-

action. Let us say a μ̂-action on a complex quasi-projective is good if it factorizes through
some μn-action, for some n ≥ 1. We denote by Kμ̂(VarC) the quotient of the abelian
group generated by isomorphism classes of complex quasi-projective varieties with a good
μ̂-action by the standard cut and paste relations and the following additional relations: for
every complex quasi-projective variety X with good μ̂-action, for every finite dimensional
complex vector space V endowed with two good linear actions � and �′, the class of X ×
(V , �) is equal to the class of X × (V , �′).

Proposition 5.2.2 (Hrushovski-Loeser, [17]) There is a canonical isomorphism between
K(RESK)/I ′′ and Kμ̂(VarC)/(L − 1)Kμ̂(VarC). Here, L is the class of the affine line, say
with trivial μ̂-action.

Putting (5.2.2) and Proposition 5.2.2 together, we get a canonical morphism

EU	 : K(VFK) −→ Kμ̂(VarC)/(L − 1)Kμ̂(VarC) (5.2.3)

which plays a major role in our approach.

5.3 Equivariant Euler Characteristics

Let X be a K-algebraic variety of dimension d. We denote by Xan its Berkovich analyti-
fication. Now let U be a semi-algebraic subset of X(K). It is defined Zariski locally by
some finite Boolean combination of inequalities between valuations of functions, with data
defined over K . We denote by U an the subset of Xan defined by the same conditions. We set
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X
an = Xan⊗̂Ĉ((t))alg and we denote by U

an
the preimage of U an in X

an
under the canonical

morphism X
an → Xan.

When U an is locally closed in Xan, the theory of germs in [4] allows to
define cohomology groups Hi

c (U
an

,Q�) endowed with an action of the Galois group

Aut(Ĉ((t))alg/C((t))) = μ̂. Furthermore, Florent Martin proved in [24] that they are finite
dimension Q�-vector spaces and that they are zero for i > 2d.

Let K(μ̂−Mod) be the Grothendieck ring of the category of Q�[μ̂]-modules that are
finite dimensional as Q�-vector spaces. When U an is locally closed in Xan, one defines
EUét(U) as the class of ∑

i

(−1)i[Hi
c (U

an
,Q�)] (5.3.1)

in K(G−Mod).
Using further results from [24], one proves the existence of a unique morphism

EUét : K(VFK) −→ K(μ̂−Mod) (5.3.2)

extending the previous construction.
Let now Y be a complex quasi-projective variety endowed with a μ̂-action factoring for

some n through a μn-action. The �-adic étale cohomology groups Hi
c (Y,Q�) are endowed

with a μ̂-action, and we may consider the element

euét(Y ) :=
∑

i

(−1)i[Hi
c (Y,Q�)] (5.3.3)

in K(μ̂−Mod). Note that euét([V, �]) = 1 for any finite dimensional C-vector space V

endowed with a μ̂-action factoring for some n through a linear μn-action. Thus, euét factors
give rise to a morphism

euét : Kμ̂(VarC)/(L − 1)Kμ̂(VarC) −→ K(μ̂−Mod). (5.3.4)

We have the following fundamental compatibility property between EUét and euét.

Theorem 5.3.1 (Hrushovski-Loeser, [17]) The diagram

(5.3.5)

is commutative.

5.4 A Fixed Point Formula

We shall use the following version of the Lefschetz fixed point theorem. It is classical and
follows in particular from Theorem 3.2 of [7]:

Proposition 5.4.1 Let Y be a quasi-projective variety over an algebraically closed field of
characteristic zero. Let T be a finite order automorphism of Y . Let YT be the fixed point set
of T and denote by χc(Y

T ,Q�) its �-adic Euler characteristic with compact supports. Then

χc(Y
T ,Q�) = Tr(T ; H •

c (Y,Q�)). (5.4.1)
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Remark 5.4.2 In general, one cannot expect to have a fixed point theorem for non proper
varieties without a good control of the behaviour of the automorphism at infinity. Thus, in
the above statement, the condition that T is of finite order is crucial.

5.5 A Proof of Theorem 4.2.3 using Non-Archimedean Geometry

We are now in position to explain the proof of Theorem 4.2.3 given in [17].
Fix m ≥ 1. By (4.4.1), one may write

�(Mm
x ) = Tr(ϕm; H •(Fx

an
,Q�)). (5.5.1)

One deduces easily from Poincaré Duality that

Tr(ϕm; H •(Fx
an

,Q�)) = Tr(ϕm; H •
c (Fx

an
,Q�)). (5.5.2)

By definition, we have

Tr(ϕm; H •
c (Fx

an
,Q�)) = Tr(ϕm;EUét([Xt,x])), (5.5.3)

with Xt,x the semi-algebraic subset of X(OK) defined by f (ϕ) = t and ϕ(0) = x. On the
other hand, by Theorem 5.3.1,

Tr(ϕm;EUét([Xt,x])) = Tr(ϕm; euét ◦EU	([Xt,x])). (5.5.4)

Using the Lefschetz fixed point formula provided by Proposition 5.4.1, we get

Tr(ϕm; euét ◦EU	([Xt,x])) = χc(EU	([Xt,x])ϕm

), (5.5.5)

where EU	([Xt,x])ϕm
denotes the fixed point set of ϕm acting on the virtual object

EU	([Xt,x]). Finally, one proves that EU	([Xt,x])ϕm
) and Xm,x have the same class in

K0(VarC)/(L − 1)K0(VarC). In particular,

χc(EU	([Xt,x])ϕm

) = χc(Xm,x), (5.5.6)

which finishes the proof of Theorem 4.2.3.

Remark 5.5.1 As explained in Section 7 of [17], one can give by a similar argument a new
proof of Theorem 4.1.1 when the algebraic generic fiber XK is proper. This is proved in
[17] when Z is the entire special fiber, but the proof should extend to any Z. In fact, with the
notation of Theorem 4.1.1, we prove that the Serre invariant S(Y (m)) and EU	([XK ])ϕm

have the same class inK0(VarC)/(L−1)K0(VarC). This provides a geometric interpretation
of the motivic Serre invariant as a fixed point set.

5.6 Final Remarks

In view of Grothendieck’s function-sheaf dictionary recalled in Section 2, it is natural
to expect that there should exist an appropriate categorisation of the isomorphism HK
of (5.1.4). Such a categorisation should provide a lift of the isomorphism HK between
Grothendieck rings to an equivalence between actual localized (higher?) categories of
objects over VF and RES. [In fact, Hrushovski and Kazhdan also construct a version of HK
involving volume forms and it would certainly be also very interesting to try to categorify
that version.] Note that although we consider here only valued fields of equicharacter-
istic zero, this might already provide interesting results for local fields of large residue
characteristic.

We now briefly present some recent partial results going into the direction of categorising
the isomorphism HK. In our work with Hrushovski [18], to any algebraic variety X over a
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valued field K , with no restriction on the rank of the valuation nor on characteristics, we
assign its stable completion X̂ which is defined as the space of stably dominated types on
X in the sense of [15]. It is endowed with a topology coming from the value group 	. When
K is of rank 1, it is closely related to the Berkovich analytification of X. A key feature in
our approach is the fact that X̂ can in a natural way be endowed with the structure of a pro-
definable set in the geometric language of [14]. The main result of [18] is the existence,
for any algebraic variety or definable set X over a valued field, of a strong deformation
retraction of X̂ onto a definable set ϒ sitting inside X̂ which is definably homeomorphic to
a definable set in the sort 	. This can be rephrased as an equivalence between a homotopy
category HCVF of definable objects in the VF-sort whose construction involves the stable
completion and a homotopy category HC	 of definable sets in the 	-sort. Thus, keeping
in mind that RV roughly consists of a 	-part and a RES-part, this equivalence solves “one
half” of the categorisation problem, namely the 	-part.

In [3], Ayoub extends the theory of motives to the framework of rigid geometry in the
sense of Tate and Raynaud. For any complete non-archimedean field K , he constructs a sta-
ble homotopy category RigSH(K) using the Nisnevich site of smooth rigid varieties with
interval the closed unit ball. Under the assumption that K = k((t)), with k a field of charac-
teristic zero, he proves that RigSH(K) can be naturally identified with a full subcategory of
the category SH(Gm,k), the stable homotopy category of schemes over the torus Gm,k . This
is quite suggestive since varieties over Gm,k are closely related to varieties with μ̂-action,
that are connected to twisted varieties in the RES-sort.
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