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Abstract In this paper, we study the regularity of the solution of the initial-boundary value
problem with Dirichlet boundary conditions for second-order divergence parabolic equa-
tions in a domain of polyhedral type. We establish several results on the regularity of the
solution in weighted Lp-Sobolev spaces.
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1 Introduction

The Lp-theory of second-order parabolic equations has been studied widely under various
regularity assumptions on the coefficients and the domains. Let us mention some works
related to this topic. For the case of continuous leading coefficients and smooth domains, the
W

2,1
p -solvability has been known for a long time, see, for example, [7]. In [2], Bramanti and

Cerutti established the W
2,1
p -solvability of the Cauchy-Dirichlet problem for second-order
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parabolic equations with VMO coefficients in domains being of the C1,1 class. For the case
of nonsmooth domains, let us mention the works [3] and [1] in which the unique existence of
weak solutions in W 1

p-Sobolev spaces was established. In [8], coercive estimates for strong
solutions to the Dirichlet problem and to the Neumann problem for the heat operator in a
dihedral angle were obtained.

In this paper, we are concerned with the regularity of the weak solution obtained in
[1] in the case the domain is of polyhedral type. For elliptic boundary value problems in
domains of this type, many results on the solvability and the regularity in weighted Lp-
Sobolev spaces are known (see the monograph [6] and the references therein). Basing on the
regularity results for elliptic boundary value problems in [6] together with the solvability
result for the Cauchy-Dirichlet problem for parabolic equations in [1], we will establish
several results on the regularity of the weak solution in weighted Lp-Sobolev spaces. Our
method has similarities with [4] in which the authors considered only the case of weighted
Sobolev spaces with the L2-norms.

Our paper is organized as follows. In Section 2, we introduce some notations and pre-
liminaries. Section 3 is devoted to studying the regularity in time of the weak solution. This
is an intermediate step to investigate the global regularity of the solution in Section 4.

2 Notations and Preliminaries

Let G be a bounded convex domain of polyhedral type in R
3, i.e., the following conditions

hold (see [6, Chapter 4]):

(i) the boundary ∂G consists of smooth (of class C∞) open two-dimensional manifolds
�j (the faces of G), j = 1, . . . , N , smooth curves Mk (the edges), k = 1, . . . , d , and
vertices x(1), . . . , x(d ′).

(ii) for every ξ ∈ Mk there exists a neighborhood Uξ and a diffeomorphism (a C∞ map-
ping) κξ which maps G∩Uξ onto Dξ ∩B1, where Dξ is a dihedron and B1 is the unit
ball.

(iii) for every vertex x(j) there exists a diffeomorphism κj mapping G∩Uj onto Kj ∩B1,
where Kj is a cone with edges and vertex at the origin.

Let T be a positive real number. Set Q = G × (0, T ) and S = ∂G × [0, T ]. For each
multi-index α = (α1, . . . , αn) in N

n, set |α| = α1 + · · · + αn, and ∂α = ∂α
x = ∂

α1
x1 . . . ∂

αn
xn

.

For a function u = u(x, t) defined on Q, we write utk instead of ∂ku
∂tk

for each k ∈ N.
In this paper, the letter p stands for some real number, 1 < p < ∞, and q denotes its

conjugate exponent, i.e.,
1

p
+ 1

q
= 1.

Let l be a nonnegative integer. By Wl
p(G), we denote the usual Sobolev space of

functions defined in G with the norm

‖u‖Wl
p(G) =

⎛
⎝

∫
G

∑
|α|�l

|∂α
x u|pdx

⎞
⎠

1
p

.

We denote the distance from x to the edge Mk by rk(x), the distance from x to the corner
x(j) by ρj (x). Furthermore, we denote by Xj the set of all indices k such that the vertex
x(j) is an end point of the edge Mk . Let U1, . . . ,Ud ′ be domains in R

3 such that

U1 ∪ . . . ∪ Ud ′ ⊃ G, x(i) /∈ U j if i 	= j, and U j ∩ Mk = ∅ if k /∈ Xj .
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We define V l
p,β,δ(G) as the weighted Sobolev space with the norm

‖u‖V l
p,β,δ(G) =

⎛
⎝

d ′∑
j=1

∫
G∩Uj

∑
|α|�l

ρ
p(βj −l+|α|)
j

∏
k∈Xj

(
rk

ρj

)p(δk−l+|α|)|∂α
x u|pdx

⎞
⎠

1
p

,

where β = (β1, . . . , βd ′) ∈ R
d ′

, δ = (δ1, . . . , δd) ∈ R
d , and l is a nonnegative integer.

It follows readily from [6, Lemma 4.1.3] that V l
p,β,δ(G) is continuously imbedded in

V l′
p,β ′,δ′(G) provided that l′ � l, βk − l ≤ β ′

k − l′, δj − l ≤ δ′
j − l′ for k = 1, . . . , d, j =

1, . . . , d ′.
By

◦
W 1

p(G), we denote the closure of C∞
0 (G) in W 1

p(G). The norm in the space
◦
W 1

p(G)

is the same one as in W 1
p(G). We denote by W−1

p (G) the dual space of
◦
W 1

q(G). The pairing

between W−1
p (G) and

◦
W 1

q(G) is denoted by 〈., .〉. By identifying the dual space of Lp(G)

with Lq(G), we have the continuous imbeddings Lq(G) ⊂ W−1
p (G) by setting

〈f, v〉 =
∫

G

f vdx

iff ∈ Lq(G) and v ∈ ◦
W 1

p(G).
Let X be a Banach space. We denote by Lp((0, T );X) the space of measurable functions

f : (0, T ) → X with

‖f ‖Lp((0,T );X) =
(∫ T

0
‖f (t)‖p

Xdt

) 1
p

< ∞.

For shortness, we set V
l,0
p,β,δ(Q) = Lp((0, T );V l

p,β,δ(G)).

Finally, we introduce the Sobolev space W 1
p,∗(Q) which consists of all functions u

defined on Q such that u ∈ Lp((0, T ); ◦
W 1

p(G)) and ut ∈ Lp((0, T ); W−1
p (G)) with the

norm

‖u‖W 1
p,∗(Q) = ‖u‖

Lp((0,T ); ◦
W 1

p(G))
+ ‖ut‖Lp((0,T );W−1

p (G))
.

In this paper, we consider the following Cauchy-Dirichlet problem for a second-order
parabolic equation in divergence form

ut − div(A∇u) = f in Q, (1)

u = 0 on S, (2)

u|t=0 = 0 on G, (3)

where A = A(x, t) = (ajk(x, t))nj,k=1 is a symmetric matrix of real bounded measurable

functions defined in Q satisfying the following condition: there exists a positive constant
μ0 such that

A(x, t) ξ · ξ � μ0|ξ |2 (4)

for all ξ ∈ R
n and all (x, t) ∈ Q. Since we are paying attention to the influence of the

singularity of the domain on the regularity of the solution, we assume that the coefficients
ajk are infinitely smooth on Q.
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Definition 1 Let f ∈ Lp((0, T ); W−1
p (G)). A function u ∈ W 1

p,∗(Q) is called a weak
solution of the problem (1)–(3) if and only if u(., 0) = 0 and the equality

〈ut , v〉 + B(t, u, v) = 〈f (t), v〉 (5)

holds for a.e. t ∈ (0, T ) and all v ∈ ◦
W 1

q(G), where

B(t, u, v) =
∫

G

A(x, t)∇u · ∇vdx =
n∑

j,k=1

∫
G

ajk(x, t)
∂u

∂xk

∂v

∂xj

dx.

Theorem 1 If f ∈ Lp((0, T ); W−1
p (G)), then there exists a unique weak solution u ∈

W 1
p,∗(Q) of the problem (1)–(3) which satisfies

‖u‖W 1
p,∗(Q) � C‖f ‖

Lp((0,T );W−1
p (G))

, (6)

where C is a constant independent of f and u.

This theorem is deduced directly from Theorem 1 in [1]. In fact, a weak solution of the

problem (1)–(3) in the sense of [1] means a function u ∈ ◦
W

1,0
p (Q) = Lp((0, T );W 1

p(G))

satisfying

−
∫ T

0
(u, vt )dt +

∫ T

0
B(t, u, v)dt =

∫ T

0
〈f, v〉dt (7)

for all smooth test functions v in Q vanishing in a neighborhood of the lateral surface and
the upper base of the cylinder Q, where (u, v) = ∫

G
uvdx. However, from (7), we obtain (5)

with ut ∈ Lp(0, T ,W−1
p (G)) and

‖ut‖Lp(0,T ,W−1
p (G))

� C
(
‖u‖Lp(0,T ,W 1

p(G)) + ‖f ‖
Lp(0,T ,W−1

p (G))

)
,

where C is a constant independent of u and f , i.e., the function u in fact belongs to W 1
p,∗(Q).

Thus, Theorem 1 follows directly from [1, Theorem 1].

3 The Regularity in Time

To investigate the regularity of weak solutions for initial−boundary value problems for
parabolic equations in non-smooth domains, it is reasonable to study, as an intermediate
step, the regularity with respect to the time variable of those solutions in Sobolev spaces in
which they are attained. So, the present section is devoted to this intermediate step.

We start by proving the following auxiliary lemma.

Lemma 1 Assume that for each t ∈ [0, T ], F(t, ·, ·) : ◦
W 1

p(G)× ◦
W 1

q(G) → C is a bilinear
map satisfying

|F(t, u, v)| � C‖u‖W 1
p(G)‖v‖W 1

q (G) (8)

for all u ∈ ◦
W 1

p(G) and v ∈ ◦
W 1

q(G), where C is a constant independent of u, v and

t . Assume further that F(., u, v) is measurable on [0, T ] for each pair u ∈ ◦
W 1

p(G) and
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v ∈ ◦
W 1

q(G). Suppose that u ∈ W 1
p,∗(Q) satisfies u|t=0 = 0 and

〈ut (·, t), v〉 + B(t, u(·, t), v) =
∫ t

0
F(s, u(·, s), v)ds (9)

for a.e. t ∈ [0, T ] and all v ∈ ◦
W 1

q(G). Then u ≡ 0 on Q.

Proof It follows from (8) that the function g : [0, T ] → W−1
p (G) defined by

〈g(t), v〉 =
∫ t

0
F(s, u(·, s), v)ds, t ∈ [0, T ], v ∈ ◦

W 1
q(G),

is a member of Lp((0, τ ); W−1
p (G)) for each τ ∈ (0, T ] with

‖g‖p

Lp((0,τ );W−1
p (G))

� C

∫ τ

0

∫ t

0
‖u(·, s)‖p

W 1
p(G)

dsdt. (10)

Hence, according to Theorem 1, it follows from (9) that, for each τ ∈ (0, T ],

‖u‖p

W 1
p,∗(Qτ )

� C

∫ τ

0

∫ t

0
‖u(·, s)‖p

W 1
p(G)

dsdt. (11)

Especially,

‖u‖p

Lp((0,τ );W 1
p(G))

� C

∫ τ

0

∫ t

0
‖u(·, s)‖p

W 1
p(G)

dsdt � Cτ‖u‖p

Lp((0,τ );W 1
p(G))

. (12)

Taking τ = 1
2C

, it follows from (12) that u ≡ 0 on [0, 1
2C

]. Repeating these arguments
leads to u ≡ 0 on intervals [ 1

2C
, 1

C
], [ 1

C
, 3

2C
], . . . and, consequently, u ≡ 0 on Q.

Now, we state and prove the main theorem of this section.

Theorem 2 Let h be a nonnegative integer. Assume the function f has weak derivatives
with respect to t up to order h and the following conditions are fulfilled.

(i) ftk ∈ Lp((0, T );W−1
p (G)) for k = 0, . . . , h,

(ii) ftk (x, 0) = 0 for k = 0, . . . , h − 1.

Then the weak solution u in the space W 1
p,∗(Q) of the problem (1)–(3) has derivatives

with respect to t up to order h with

utk ∈ W 1
p,∗(Q) for k = 0, 1, . . . , h (13)

and
h∑

k=0

‖utk‖W 1
p,∗(Q) � C

h∑
k=0

‖ftk‖Lp((0,T );W−1
p (G))

, (14)

where C is a constant independent of u and f .

Proof This theorem can be proved by application of Lemma 1 and by an argument analo-
gous to that used for the proof of Theorem 3.1 in [4]. We will show by induction on h that
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not only the assertions (13), (14) but also the following equalities hold:

utk |t=0 = 0, k = 1, . . . , h, (15)

and

〈
uth+1 , η

〉 +
h∑

k=0

(
h

k

)
Bth−k (t, utk , η) = 〈

fth , η
〉

for all η ∈ ◦
W 1

q(G). (16)

The case h = 0 follows from Theorem 1. Assuming now that they hold for h − 1, we
will prove them for h (h � 1). We consider first the following problem: find a function

v ∈ ◦
W 1

p,∗(Q) satisfying v|t=0 = 0 and

〈vt , η〉 + B(t, v, η) = 〈
fth , η

〉 −
h−1∑
k=0

(
h

k

)
Bth−k (t, utk , η) (17)

for all η ∈ ◦
W 1

q(G) and a.e. t ∈ [0, T ].
Let F : [0, T ] → W−1

p (G) be a function defined by

〈F(t), η〉 = 〈
fth , η

〉 −
h−1∑
k=0

(
h

k

)
Bth−k (t, utk , η), η ∈ ◦

W 1
q(G). (18)

From the inductive hypothesis, we see that F ∈ Lp((0, T );W−1
p (G)) with

‖F‖
Lp((0,T );W−1

p (G))
� ‖fth‖Lp((0,T );W−1

p (G))
+ C

h−1∑
k=0

‖utk‖Lp((0,T );W 1
p(G))

� C

h∑
k=0

‖ftk‖Lp((0,T );W−1
p (G))

,

where C is a constant independent of f . Hence, according to Theorem 1, the problem (17)

has a solution v ∈ ◦
W 1

p,∗(Q) with

‖v‖W 1
p,∗(Q) � C

h∑
k=0

‖ftk‖Lp((0,T );W−1
p (G))

,

where C is a constant independent of f .
We put now

w(x, t) =
∫ t

0
v(x, τ )dτ, x ∈ G, t ∈ [0, T ].

Then, we have w|t=0 = 0, wt = v, wt |t=0 = 0. We rewrite (17) as follows

〈wtt , η〉 + B(t, wt , η) = 〈
fth , η

〉 −
h−1∑
k=0

(
h

k

)
Bth−k (t, utk , η). (19)
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It is noted that

B(t, wt , η) = ∂

∂t
B(t, w, η) − Bt(t, w, η),

and

∂

∂t

h−2∑
k=0

(
h − 1

k

)
Bth−1−k (t, utk , η)

=
h−2∑
k=0

(
h − 1

k

) (
Bth−k (t, utk , η) + Bth−1−k (t, utk+1 , η)

)

= Bth(t, u, η) +
h−2∑
k=1

((
h − 1

k

)
+

(
h − 1
k − 1

))
Bth−k (t, utk , η) + (h − 1)Bt (t, uth−1 , η)

= Bth(t, u, η) +
h−2∑
k=1

(
h

k

)
Bth−k (t, utk , η) + (h − 1)Bt (t, uth−1 , η)

=
h−1∑
k=0

(
h

k

)
Bth−k (t, utk , η) − Bt(t, uth−1 , η).

Hence, we get from (19) that

〈wtt , η〉 + ∂

∂t
B(t, w, η) = 〈

fth , η
〉 + Bt(t, w − uth−1 , η)

− ∂

∂t

h−2∑
k=0

(
h − 1

k

)
Bth−1−k (t, utk , η). (20)

Now by integrating equality (20) with respect to t from 0 to t and using the assumption
(ii) and the inductive hypothesis (15), we arrive at

〈wt, η〉 + B(t, w, η) = 〈
fth−1 , η

〉 +
∫ t

0
Bt(τ,w − uth−1 , η)dτ

−
h−2∑
k=0

(
h − 1

k

)
Bth−1−k (t, utk , η). (21)

Put z = w − uth−1 . Then z|t=0 = 0. It follows from the inductive assumption (16) with
h replaced by h − 1 and (21) that

〈zt (t), η〉 + B(t, z(t), η) =
∫ t

0
Bt(τ, z(., τ ), η)dτ for all η ∈ ◦

W 1
q(G). (22)

Now by applying Lemma 1, we can see from (22) that z ≡ 0 on Q. This implies uth =
wt = v ∈ ◦

W 1
p,∗(Q). The proof is complete.

4 The Global Regularity

Firstly, let us review some notations and results on elliptic boundary value problems in
domains of polyhedral type (see [6, Chapter 4]).

Let ξ be a point on the edge Mk , and let �k+ , �k− be the faces of G adjacent to ξ . Then
by Dξ we denote the dihedron which is bounded by the half-planes �◦

k± tangent to �k± at ξ
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and the edge M◦
ξ = �̄◦

k+ ∩ �̄◦
k− . Let r, ϕ be polar coordinates in the plane perpendicular to

M◦
ξ such that

�◦
k± = {x ∈ R

3 : r > 0, ϕ = ±θξ /2}.
We define the operator Aξ (λ, t) as follows:

Aξ (λ, t)U = r2−λ∇(A(ξ, t)∇u),

where u(x) = rλU(ϕ), λ ∈ C. The operator Aξ (λ, t) realizes a continuous mapping from

W 2
2 (Iξ )∩

◦
W 1

2(Iξ ) into L2(Iξ ) for every λ ∈ C, where Iξ denotes the interval (−θξ /2, θξ /2).
A complex number λ0 is called an eigenvalue of the pencil Aξ (λ, t) if there exists a nonzero

function U ∈ W 2
2 (Iξ ) ∩ ◦

W 1
2(Iξ ) such that Aξ (λ0, t)U = 0. We denote by δ+(ξ, t) and

δ−(ξ, t) the greatest positive real numbers such that the strip

−δ−(ξ, t) < Reλ < δ+(ξ, t)

is free of eigenvalues of the pencil Aξ (λ, t). Furthermore, we define

δ
(k)
± = inf

ξ∈Mk,t∈[0,T ] δ±(ξ, t)

for k = 1, . . . , d.
Let x(i) be a vertex of G, and let Ji be the set of all indices j such that x(i) ∈ �̄j . By

assumption, there exist a neighborhood U of x(i) and a diffeomorphism κ mapping G ∩ U
onto Ki ∩ B1 and �k ∩ U onto �◦

k ∩ B1 for k ∈ Ji , where

Ki = {x ∈ R
3 : x/|x| ∈ �i}

is a cone with vertex at the origin, �◦
k = {x ∈ R

3 : x/|x| ∈ γk}, �i is a domain of polygonal
type on the unit sphere S2 with the sides γk , and B1 is the open unit ball. We introduce
spherical coordinates ρ = |x|, ω = x/|x| in Ki and define

Ui (λ, t)U = ρ2−λ∇(A(x(i), t)∇u)

where u(x) = ρλU(ω). The operator Ui (λ, t) realizes a continuous mapping

W 2
2 (�i) ∩ ◦

W 1
2(�i) → L2(�i).

An eigenvalue of Ui (λ, t) is a complex number λ0 such that Ui (λ0, t)U = 0 for some

nonzero function U ∈ W 2
2 (�i) ∩ ◦

W 1
2(�i).

For the following lemma on the regularity of the solutions to elliptic boundary value
problems in domains of polyhedral type, we refer to Corollary 4.1.10 and Theorem 4.1.11
of [6].

Lemma 2 Let l, l′ be nonnegative integers, l, l′ � 1, and let β = (β1, . . . , βd), β ′ =
(β ′

1, . . . , β
′
d), δ = (δ1, . . . , δd ′), δ′ = (δ′

1, . . . , δ
′
d ′) be tuples of real numbers. Let us fix

some t ∈ [0, T ]. Let u ∈ V l
p,β,δ(G) be a solution of the following elliptic boundary problem

div(A(x, t)∇u) = f in G, (23)

u = 0 on ∂G, (24)

where f ∈ V l−2
p,β,δ(G) ∩ V l′−2

p,β ′,δ′(G). Suppose that the following conditions are satisfied.

(i) The closed strip between the lines Reλ = l − βj − 3/p and Reλ = l′ − β ′
j − 3/p

does not contain eigenvalues of the operator pencils Uj (λ, t), j = 1, . . . , d ′,
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(ii) −δ
(k)
+ < δk − l + 2/p < δ

(k)
− and −δ

(k)
+ < δ′

k − l′ + 2/p < δ
(k)
− for k = 1, . . . , d .

Then u ∈ V l′
p,β ′,δ′(G) and

‖u‖
V l′

p,β′,δ′ (G)
≤ C‖f ‖

V l′−2
p,β′,δ′ (G)

(25)

with a constant C independent of u and f .

We now state the main theorem of this section.

Theorem 3 Let m, h be nonnegative integers, m � 2, and β = (β1, . . . , βd), δ =
(δ1, . . . , δ

′
d) be real tuples, −1 � βj , δk � 1. Let �m be the greatest integer less than m−1

2 .
Assume that the following conditions are satisfied.

(i) ftk ∈ V
m−2,0
p,β,δ (Q) for k = 0, 1, . . . , h,

(ii) fth+k ∈ V
2�m−2k,0
p,β,δ (Q) for k = 0, 1, . . . , �m,

(iii) fth+�m+1 ∈ Lp((0, T ); W−1
p (G)),

(iv) ftk (x, 0) = 0 for k � h + �m.

Additionally, suppose that the closed strip between the lines Reλ = 1 − 3/p and
Reλ = m − βj − 3/p does not contain eigenvalues of the operator pencils Uj (λ, t), j =
1, . . . , d, t ∈ [0, T ], and

−δ
(k)
+ < 2/p − 1 < δ

(k)
− , −δ

(k)
+ < δk − m + 2/p < δ

(k)
− , k = 1, . . . , d ′.

Let u ∈ W 1
p,∗(Q) be the weak solution of the problem (1)–(3). Then

utk ∈ V
m,0
p,β,δ(Q) for k = 0, 1, . . . , h, (26)

and, if �m � 1,

uth+1+k ∈ V
2�m−2k,0
p,β,δ (Q) for k = 0, . . . , �m. (27)

Moreover, the following estimate holds

h∑
k=0

‖utk‖V
m,0
p,β,δ(Q)

+
�m∑
k=0

‖uth+1+k‖
V

2�m−2k,0
p,β,δ (Q)

� C

(
h∑

k=0

‖ftk‖V
m−2,0
p,β,δ (Q)

+
�m∑
k=0

‖fth+k‖
V

2�m−2k,0
p,β,δ (Q)

+ ‖fth+�m+1‖Lp((0,T );W−1
p (G))

)
, (28)

where C is a constant independent of u and f .

Proof According to [6, Lemma 4.1.3], we obtain V 0
p,β,δ(G) ⊂ W−1

p (G) for all δk, βj ≤ 1.
Then it follows from (i), (ii), and (iii) that

ftk ∈ Lp((0, T ); W−1
p (G)) for k = 0, . . . , h + �m + 1.

Thus, by Theorem 2, we have utk ∈ W 1
p,∗(Q) for k = 0, . . . , h + �m + 1. Moreover,

since
◦
W 1

p(G) ⊂ V 0
p,β,δ(G) for all δk, βj ≥ −1, it holds that

utk ∈ V
0,0
p,β,δ(Q) for k = 0, . . . , h + �m + 1. (29)

Now we prove the assertions of the theorem by induction on m. Firstly, let us consider
the case m = 2. In this case, �m = 0. We will use induction on h. From the hypothesis
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and (29), we have f − ut ∈ V 0
p,β,δ(G), for a.e. t ∈ [0, T ] . Thus, we can apply Lemma 2

(for l = 1, βj = δk = 0, l′ = 2, β ′
j = βj , δ

′
k = δk) to the following problem

− div(A(x, t)∇u) = f − ut in G, (30)

u = 0 on ∂G, (31)

to deduce that u(·, t) ∈ V 2
p,β,δ(G), for a.e. t ∈ [0, T ], and

‖u‖V 2
p,β,δ(G) ≤ C‖f − ut‖V 0

p,β,δ(G) ≤ C(‖f ‖V 0
p,β,δ(G) + ‖ut‖ ◦

W 1
p(G)

).

Integrating with respect to t from 0 to T and using Theorem 2 again, we arrive at

‖u‖
V

2,0
β,δ (Q)

≤ C

(
‖f ‖

V
0,0
β,δ (Q)

+ ‖ft‖Lp(0,T ,W−1
p (G))

)
, (32)

where C stands for constants independent of u, f , and t . Thus, the assertions of the theorem
hold for h = 0 (in the case of m = 2). Assume inductively that they are true for h − 1.
Differentiating both sides of (30), (31) h times with respect to t , we have

− div(A∇uth) = f̂ ≡ fth − uth+1 +
h−1∑
k=0

(
h

k

)
div(Ath−k∇utk ) in G, (33)

uth = 0 on ∂G. (34)

From the inductive assumption, we see that

‖
h−1∑
k=0

(
h

k

)
∇(Ath−k∇utk )‖V

0,0
β,δ (Q)

� C

h−1∑
k=0

‖utk‖V
2,0
β,δ (Q)

� C

h∑
k=0

‖ftk‖V
0,0
β,δ (Q)

,

where C is a constant independent of f and u. This fact, together with (29) and the hypoth-
esis (i) imply that f̂ ∈ V

0,0
β,δ (Q). Thus, we can use the same arguments as above to get

from (33), (34) that uth ∈ V
2,0
β,δ (Q) and

‖uth‖V
2,0
β,δ (Q)

� C‖f̂ ‖
V

0,0
β,δ (Q)

� C

(
h∑

k=0

‖ftk‖V
0,0
β,δ (Q)

+ ‖uth+1‖
Lp((0,T ); ◦

W 1
p(G))

)

� C

(
h∑

k=0

‖ftk‖V
0,0
β,δ (Q)

+ ‖fth+1‖Lp(0,T ,W−1
p (G))

)

with the constants C independent of u and f . Thus, the assertions of the theorem hold for
the case of m = 2 and h ∈ N.

Now assuming that the claims of theorem are true for m − 1 and for arbitrary h, we will
prove them for m. Firstly, we will prove (27). From (29), we see that (27) holds for k = �m.
Suppose that it holds for k = �m, �m − 1, . . . , d + 1 (1 � d � �m − 1). Differentiating both
sides of (30), (31) h + d times with respect to t , we have

− div(A∇uth+d ) = fth+d − uth+d+1 +
h+d−1∑

k=0

(
h + d

k

)
div(Ath+d−k∇utk ) in G, (35)

uth+d = 0 on ∂G. (36)

Notice that fth+d ∈ V
2�m−2d,0
β,δ (Q) by the hypothesis (ii). From the inductive assumption,

we see that if h + 1 ≤ k ≤ h + 1 + d − 1, then uk = uth+1+j ∈ V
2�m−1−2j,0
β,δ (Q) ⊂

V
2�m−2d+2,0
β,δ (Q) for j = 0 . . . , d − 2, and if 0 ≤ k ≤ h, then utk ∈ V

m−1,0
β,δ (Q) ⊂
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V
2�m−2d+2,0
β,δ (Q). Therefore, the right-hand side of (35) belongs to V

2�m−2d,0
β,δ (Q). Thus, we

can apply Lemma 2 to get from (35), (36) that uth+d ∈ V
2�m−2d+2,0
β,δ (Q), and therefore, (27)

follows.
Finally, it remains to show (26). We will use again induction on h. If h = 0, from (27),

we have ut ∈ V
2�m,0
β,δ (Q) ⊂ V

m−2,0
β,δ (Q), since m − 2 � 2�m. Thus, applying Lemmas 2 to

problem (30), (31) leads to u ∈ V
m,0
β,δ (Q). This means (26) holds for h = 0. Assume that it is

true for h−1. To prove it for h, we use again (33), (34). There, the last term of f̂ belongs to
V

m−2,0
β,δ (Q) by the inductive assumption. On the other hand, we have uth+1 ∈ V

2�m,0
β,δ (Q) ⊂

V
m−2,0
β,δ (Q) by (27) and fth ∈ V

m−2,0
β,δ (Q) by the hypothesis (i). Thus, f̂ ∈ V

m−2,0
β,δ (Q), and

therefore, we can apply Lemma 2 to the problem (33), (34) to conclude that uth ∈ V
m,0
β,δ (Q).

So (26) holds for h. The estimate (28) follows from the estimates (25) and (14). The proof
is complete.

5 An Example

To illustrate Theorem 3, in this section, we consider as example the case of operator
div(A∇) = �. For the following information concerning the eigenvalues of pencils Aξ (λ, t)

and Uj (λ, t) introduced in the previous section, we refer to [5, Chapter 2]. The eigenvalue
of the operator pencil Aξ (λ, t) are

λk = kπ/θξ , k = ±1, ±2, . . . ,

where θξ is the inner angle at the edge point ξ (see [5, Section 2.1.1]). We see that δ+(ξ) =
δ−(ξ) = π/θξ are the greatest positive real numbers such that the strip

−π/θξ < Reλ < π/θξ

is free of eigenvalues of the pencils Aξ (λ, t). Set

θk = sup
ξ∈Mk

θξ ,

then we get
δ
(k)
± = inf

ξ∈Mk

δ±(ξ) = π/θk.

Let λ̂ be the eigenvalues of the Laplace-Beltrami operator −δ (with the Dirichlet condi-
tion) on the subdomain �j of the unit sphere (�j is defined in the previous section). Then
the eigenvalues of the pencils Uj (λ, t) are given by

�±k = −1

2
±

√
λ̂ + 1/4.

It is well-known that the spectrum −δ is a countable set of positive eigenvalues (see
[5, Section 2.2.1]). Hence, the interval [−1, 0] is free of eigenvalues of the pencils Uj (λ, t)

for all j = 1, . . . d ′. We denote the smallest positive eigenvalue of the Uj (λ, t) by �+
j .

Then the interval [−1−�+
j ,�+

j ] does not contain eigenvalues of the pencils Uj (λ, t). Now,
the conditions about the eigenvalues of pencils Aξ (λ, t) and Uj (λ, t) in Theorem 3 can be
written down simply as follows

−1 − �+
j < 1 − 3/p, m − βj − 3/p < �+

j , j = 1, . . . d,

and
|2/p − 1| < π/θk, |2/p + δk − m| < π/θk, k = 1, . . . , d ′.
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