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Abstract This survey paper discusses some new results on vector variational inequali-
ties. It can serve as an elementary introduction to vector variational inequalities and vector
optimization problems. The focus point is made on the results about connectedness struc-
ture of the solution sets, which are obtained by a scalarization method and properties of
semi-algebraic sets. The first major theorem says that both Pareto solution set and weak
Pareto solution set of a vector variational inequality, where the constraint set is polyhe-
dral convex and the basic operators are given by polynomial functions, have finitely many
connected components. The second major theorem asserts that both proper Pareto solu-
tion set and weak Pareto solution set of a vector variational inequality, where the convex
constraint set is given by polynomial functions and all the components of the basic oper-
ators are polynomial functions, have finitely many connected components, provided that
the Mangasarian-Fromovitz Constraint Qualification is satisfied at every point of the con-
straint set. In addition, it has been established that if the proper Pareto solution set is dense
in the Pareto solution set, then the latter also has finitely many connected components.
Consequences of the results for vector optimization problems are shown.

Keywords Vector variational inequality · Vector optimization problem · Fermat’s rules ·
Solution set · Scalarization · Semi-algebraic set · Connectedness structure

Mathematics Subject Classification (2010) 90C31 · 90C29 · 49J40 · 49J53 · 49K40

� Nguyen Dong Yen
ndyen@math.ac.vn

1 Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet,
Hanoi 10307, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s40306-015-0168-2-x&domain=pdf
mailto:ndyen@math.ac.vn


506 N. D. Yen

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 The Fermat Rule and Vector Variational Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Some Classes of VVIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Scalarization Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Sets Having Finitely Many Connected Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Semi-Algebraic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7 VVIs under Linear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 VVIs under Polynomial Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1 Introduction

The notion of vector variational inequality (VVI for short) was introduced by F. Giannessi
[9]. As the most important vector equilibrium model, it has received a lot of attention from
researchers; see, e.g., [3, Chapter 3], [10, 16–18, 28, 50]. Among the large collection of pa-
pers [10], we would like to draw readers’ special attention to the article [11], where different
solution concepts were discussed and separation techniques were applied to studying VVIs.

It is well known (see, e.g., [28]) that VVI is both a unified model and an effective
tool to address various questions (solution existence, optimality conditions, structure of the
solution sets, solution stability, solution sensitivity, solution methods, etc.) about vector
optimization problems (VPs for short). As far as we understand, the importance of VVIs for
vector optimization is the same as that of variational inequalities for scalar optimization.

Solution sensitivity and topological properties of the solution sets of strongly monotone
VVIs and monotone VVIs with applications to vector optimization problems have been
considered in [28, 48]. Connectedness structure of the solution sets and solution stability of
affine VVIs have been investigated, for instance, in [16, 50].

This survey paper is aimed at discussing some new results on vector variational inequali-
ties. We hope that it can serve as an elementary introduction to vector variational inequalities
and vector optimization problems. The focus point is made on the results of [17, 18] about
connectedness structure of the solution sets, which are obtained by a scalarization method
and properties of semi-algebraic sets. In [17], it has been proved that both Pareto solution
set and weak Pareto solution set of a VVI, where the constraint set is polyhedral convex
and the basic operators are given by polynomial functions, have finitely many connected
components. In [18], it has been shown that both proper Pareto solution set and weak
Pareto solution set of a VVI, where the convex constraint set is given by polynomial func-
tions and all the components of the basic operators are polynomial functions, have finitely
many connected components, provided that the Mangasarian-Fromovitz Constraint Qualifi-
cation [33, p. 44] is satisfied at every point of the constraint set. It has been also established
in [18] that if the proper Pareto solution set is dense in the Pareto solution set, then the latter
has finitely many connected components.

Although finiteness of the numbers of connected components in the solution sets of a
VVI is a remarkable fact, our knowledge about VVIs can be enlarged by other facts, like
unboundedness of the connected components if the solution set in question is disconnected,
and stability of the solution set when the VVI problem undergoes perturbations. Up to now,
the later properties have been obtained just for monotone affine VVIs. The interested reader
is referred to the research paper [50] and also to the survey [47] for a series of related
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results and proofs, which are based not on the properties of semi-algebraic sets [2], but on
Robinson’s stability theorem for monotone generalized equations [36, Theorem 2].

Since vector variational inequalities can serve as a tool for studying vector optimization
problems, consequences of the above-mentioned results for the latter can be discussed in
details. In fact, throughout this paper, we will consider VPs in parallel with VVIs.

To make the paper easy for reading, we will use the finite-dimensional setting and keep
our writing as elementary as possible. Also, for the ordering cone, we will use the most
standard one, that is the nonnegative orthant of an Euclidean space.

Observe that infinite-dimensional settings (see, e.g., [39, 40, 48]) and general ordering
cones (see, e.g., [11]) have been used widely in the study of VVIs.

In what follows, we denote the scalar product of two vectors x, y in an Euclidean space
by 〈x, y〉. The nonnegative orthant in R

n is denoted by R
n+. The interior and the relative

interior (see [37, p. 44] for definition) of a convex set D ⊂ R
n are denoted respectively by

intD and riD. For a matrix M , the symbol MT indicates the transpose of M .

2 The Fermat Rule and Vector Variational Inequalities

About the fundamental role of Fermat’s Rule in history of mathematics, Hiriart-Urruty [12,
p. 34] wrote: “In 1629, (that is thirteen years before the birth of Newton), Fermat conceived
his method “De maximis et minimis” that could be applied to the determination of values
yielding the maximum or the minimum of a function, as well as tangents of curves, which
boiled down to the foundations of differential calculus...”.

Let us recall the two modern forms of Fermat’s Rule. The first one addresses scalar
optimization problems under geometrical constraints. The second one applies to vector
optimization problems under geometrical constraints.

From now on, if not otherwise stated, let K ⊂ R
n be a non-empty closed convex set

and �K ⊂ R
n an open set containing K . Given a continuously differentiable function

f : �K → R, one considers the optimization problem
min {f (x) : x ∈ K} . (1)

The necessary optimality condition in the next theorem is a generalization of the classical
Fermat Rule which dealt with unconstrained scalar optimization problems.

Theorem 1 (Fermat’s Rule) The following assertions are valid:

(i) For a point x̄ ∈ K to be a local solution of (1), it is necessary that
〈∇f (x̄), y − x̄〉 /∈ −R+ \ {0} ∀y ∈ K, (2)

where ∇f (x) stands for the gradient vector of f at x. Condition (2) can be rewritten
as

〈∇f (x̄), y − x̄〉 ≥ 0 ∀y ∈ K. (3)

(ii) If f is convex on K , i.e., the inequality f ((1 − t)x + ty) ≤ (1 − t)f (x) + tf (y)

holds for any x, y ∈ K , and t ∈ (0, 1), then (3) is sufficient for a point x̄ ∈ K to be a
global solution of (1).

Assertion (i) is a special case of the first assertion of Theorem 2 below. Assertion (ii) can
be easily obtained. Indeed, suppose that (3) is fulfilled, f is convex on K , and y ∈ K is
chosen arbitrarily. By the convexity of f on K , we have f ((1− t)x̄ + ty) ≤ (1− t)f (x̄) +
tf (y) for any t ∈ (0, 1). Hence, t−1[f (x̄ + t (y − x̄)) − f (x̄)] ≤ f (y) − f (x̄) for all
t ∈ (0, 1). Letting t → 0+ yields f ′(x̄; y − x̄) ≤ f (y) − f (x̄), where f ′(x̄; y − x̄) is the
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directional derivative of f at x̄ in the direction y − x̄. As 〈∇f (x̄), y − x̄〉 = f ′(x̄; y − x̄),
from (3), it follows that 0 ≤ f (y) − f (x̄). The fulfillment of this inequality for all y ∈ K

shows that x̄ ∈ K is a global solution of (1).
Setting F(x) = ∇f (x) for all x ∈ K , one can transform the necessary optimality con-

dition (3) to the next variational inequality (VI in brief) in the classical sense [25]: Find
x̄ ∈ K such that

〈F(x̄), y − x̄〉 ≥ 0 ∀y ∈ K. (4)

The solution set of this problem is abbreviated to Sol(VI). In general, the variational
inequality (4) can be defined for any vector function F : K → R

n. As concerning the case
F(x) = ∇f (x), it is worthy to stress that if f : �K → R is a twice continuously differ-

entiable function, then the Hessian ∇2f (x) =
(

∂2f (x)

∂xj ∂xi

)
is symmetric for all x ∈ K by

Clairaut’s Theorem; hence
∂Fi(x)

∂xj

= ∂Fj (x)

∂xi

∀x ∈ K, ∀i, j ∈ J (5)

with J := {1, . . . , n}, Fi(x) being the i-th component of F(x), and
∂Fi(x)

∂xj

denoting the

partial derivative of Fi at x with respect to xj . If condition (5) is satisfied, then one says that
(4) is a symmetric VI. Thus, C2-smooth optimization problems correspond to symmetric
VIs.

If x̄ ∈ K satisfies (3), then we call it a stationary point of (1). In the above notation, the
stationary point set of (1) coincideswith Sol(VI), provided that F(x) = ∇f (x) for all x ∈K .

The transformation of (1) to (4), whose solution is easier, is a fundamental idea in
optimization theory. To solve (4), one can apply the projection method, the Tikhonov regu-
larization method, the proximal point method, the extragradient method, the modifications
and improvements of these methods, and so on; see [8, 23, 24, 26, 27, 34, 38, 42–44] and
the references therein.

It is worthy to stress that not only optimization problems but also minimax problems can
be effectively studied (see, e.g., [20]) by using VIs.

Next, let us consider a general differentiable vector optimization problem and recall sev-
eral solution concepts in vector optimization. More details can be found in [21, Chapter 4]
and [32, Chapter 2]. Suppose now that f = (f1, . . . , fm) : �K → R

m is a continuously
differentiable function defined on �K . The vector optimization problem with the constraint
set K and the vector objective function f is written formally as follows:

(VP) Minimize f (x) subject to x ∈ K.

Definition 1 A point x ∈ K is said to be an efficient solution (or a Pareto solution) of (VP)
if (f (K) − f (x)) ∩ (−R

m+ \ {0}) = ∅.
In other words, x ∈ K is an efficient solution of (VP) if and only if one cannot find any

feasible point y such that fi(y) ≤ fi(x) for all i = 1, . . . , m and there is at least one index
i0 ∈ {1, . . . , m} such that fi0(y) < fi0(x).

Definition 2 One says that x ∈ K is a weakly efficient solution (or a weak Pareto solution)
of (VP) if (f (K) − f (x)) ∩ (−intRm+

) = ∅.
Clearly, x ∈ K is a weakly efficient solution of (VP) if and only if one cannot find

any feasible point y such that fi(y) < fi(x) for all i = 1, . . . , m. We will denote the
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efficient solution set and the weakly efficient solution set of (VP) respectively by Sol(VP)
and Solw(VP).

Example 1 Let n = m = 2, f (x) = x for all x ∈ R
2, and

K =
{
x = (x1, x2)

T ∈ R
2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1

}
.

It is easy to verify by definitions that Sol(VP) = {x : x1 + x2 = 1, 0 ≤ x1 ≤ 1} and
Solw(VP) = {x : x1 + x2 = 1, 0 ≤ x1 ≤ 1} ∪ ([1, +∞) × {0}) ∪ ({0} × [1, +∞)) .

We are going to formulate the Fermat Rule for vector optimization problems. For the
convenience of the reader, the “sufficiency” part is also included and a proof [28, p. 749] is
provided.

Theorem 2 (Fermat’s Rule for vector optimization problems) The following assertions are
valid:

(i) For a point x̄ ∈ K to be a weakly efficient solution of (VP), it is necessary that

∇f (x̄)(y − x̄) /∈ −intRm+ ∀y ∈ K, (6)

where ∇f (x)(u) := (〈∇f1(x), u〉, . . . , 〈∇fm(x), u〉)T stands for the value of the
derivative mapping ∇f (x) : Rn → R

m of f at x at an element u ∈ R
n. Condition (6)

can be rewritten as
∇f (x̄)(y − x̄) �intRm+ 0 ∀y ∈ K, (7)

where the inequality v �intRm+ 0 for v ∈ R
m means that −v /∈ intRm+.

(ii) If f is convex on K with respect to the cone R
m+, i.e., the inequality (1 − t)f (x) +

tf (y) ∈ f ((1 − t)x + ty) + R
m+ holds for any x, y ∈ K and t ∈ (0, 1), then (7) is

sufficient for a point x̄ ∈ K to be a weakly efficient solution of (VP).

Proof (i) On the contrary, suppose that x̄ ∈ K is a weakly efficient solution of (VP), but (6)
fails to hold. Then there exists x̂ ∈ K with 〈∇fi(x̄), x̂ − x̄〉 < 0 for i = 1, . . . , m. Setting
xt = x̄ + t (x̂ − x̄), we have

fi(xt ) − fi(x̄) = t〈∇fi(x̄), x̂ − x̄〉 + o(t) = t

[
〈∇fi(x̄), x̂ − x̄〉 + o(t)

t

]
for t ∈ (0, 1). Hence, we can find δ ∈ (0, 1) such that fi(xt ) − fi(x̄) < 0 for all t ∈ (0, δ)
and for all i = 1, . . . , m. This is impossible because xt ∈ K for every t ∈ (0, δ) and x̄ is a
weakly efficient solution of (VP).

(ii) It is clear that f is convex on K with respect to the cone Rm+ if and only if, for every
i ∈ {1, . . . , m}, the function fi is convex on K . To obtain a contradiction, suppose that (7)
is fulfilled, but there exists x̂ ∈ K such that fi(x̂) < fi(x̄) for all i = 1, . . . , m. Then,
invoking the convexity of the functions fi on K , we have

0 > fi(x̂) − fi(x̄) ≥ 〈∇fi(x̄), x̂ − x̄〉 ∀i ∈ {1, . . . , m}.
From this, we obtain ∇f (x̄)(x̂ − x̄) ∈ −intRm+, which contradicts (7).

The proof is complete.

It is reasonable to expect that a rule similar to that one in the first assertion of Theorem 2
is valid for efficient solutions of (VP). However, the claim “If x̄ ∈ K is an efficient solution
of (VP), then

∇f (x̄)(y − x̄) /∈ −R
m+ \ {0} (8)
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for every y ∈ K” is wrong! To justify this remark, let us consider an example of an uncon-
strained strongly convex quadratic vector optimization problem proposed by one of the two
referees of [50].

Example 2 Let n = 1, m = 2, K = R, and f (x) = (x2, (x − 1)2) for every x ∈ R. It is
easy to show that Sol(VP2) = [0, 1]. For the efficient point x̄ = 0, one has

{∇f (x̄)(y − x̄) : y ∈ R} = {0} × R;
hence condition (8) cannot be fulfilled for every y ∈ K . (The same effect is attained if one
chooses x̄ = 1.)

Meanwhile, if f is convex on K with respect to the cone Rm+ then, for any x̄ ∈ K , the
property

∇f (x̄)(y − x̄) /∈ −R
m+ \ {0} ∀y ∈ K (9)

is strong enough to guarantee that x̄ is an efficient solution of (VP). The proof of this claim,
which can be done similarly as that of the second assertion of Theorem 2, is left after the
reader.

The above consideration of optimality conditions for vector optimization problems
shows some strong motivations for the introduction of the concept of vector variational
inequality of [9] in the form we are going to recall.

Givenm vector-valued functions Fi : K → R
n, i = 1, . . . , m, we put F = (F1, . . . , Fm)

and
F(x)(u) = (〈F1(x), u〉, . . . , 〈Fm(x), u〉)T ∀x ∈ K, ∀u ∈ R

n.

Consider the set

� =
{

ξ = (ξ1, . . . , ξm)T ∈ R
m+ :

m∑
l=1

ξl = 1

}
,

whose relative interior is given by ri� = {ξ ∈ � : ξl > 0 for all l = 1, . . . , m} .

Vector variational inequality [9, p. 167] defined by F , K and the cone C := R
m+ is the

problem:

(VVI) Find x ∈ K such that F(x)(y − x) �C\{0} 0 ∀y ∈ K,

where the inequality v �C\{0} 0 for v ∈ R
m means that −v /∈ C \ {0}. To this problem, one

associates [4] the following one:

(VVI)w Find x ∈ K such that F(x)(y − x) �intC 0 ∀y ∈ K,

where intC denotes the interior of C and the inequality v �intC 0 indicates that −v /∈
intC. The solution sets of (VVI) and (VVI)w are abbreviated respectively to Sol(VVI) and
Solw(VVI). The elements of the first set (resp., of the second one) are said to be the Pareto
solutions (resp., the weak Pareto solutions) of (VVI). For a better understanding of the
adjective “weak” either in “weak Pareto solution” or in “weak Pareto problem”, we would
like to quote a remark of Professor F. Giannessi [11, p. 155]: “the term “weak” is misleading
and in contrast with its use in other branches of Mathematics; “relaxed” would be a more
appropriate term.”

For m = 1, one has F = F1 : K → R
n and C = R+, hence, both problems (VVI) and

(VVI)w coincide with the classical variational inequality problem

(VI) Find x ∈ K such that 〈F(x), y − x〉 ≥ 0 ∀y ∈ K

(see (4)), whose solution set has been denoted by Sol(VI).
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For each ξ ∈ �, consider the variational inequality

(VI)ξ Find x ∈ K such that

〈
m∑

l=1

ξlFl(x), y − x

〉
≥ 0 ∀y ∈ K,

and denote its solution set by Sol(VI)ξ . The following definition has been suggested in [18].

Definition 3 If x ∈ K and there exists ξ ∈ ri� such that x ∈ Sol(VI)ξ , then x is said to be
a proper Pareto solution of (VVI).

The proper Pareto solution set of (VVI) is abbreviated to Solpr (VVI). Clearly, by taking
the union of Sol(VI)ξ on ξ ∈ ri�, we find whole the set Solpr(VVI).

Following [37, p. 170], a polyhedral convex set in R
n is a set which can be expressed as

the intersection of some finite collection of closed half-spaces, i.e., as the set of solutions to
some finite system of inequalities of the form

〈ci, x〉 ≤ γi, i = 1, . . . , k,

with ci ∈ R
n and γi ∈ R for all i = 1, . . . , k. It is clear that any polyhedral convex set is a

closed convex set, but the converse is not true.
Later, we will see that Solpr (VVI) ⊂ Sol(VVI), and the inclusion becomes an equality

if K is a polyhedral convex set; otherwise, it may be strict.
To have an idea about computing the above solution sets of (VVI), let us consider an

example.

Example 3 (cf. Example 1) Let n = m = 2, F1(x) = (1, 0)T , F2(x) = (0, 1)T for all
x ∈ R

2, and

K =
{
x = (x1, x2)

T ∈ R
2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≥ 1

}
.

Since F(x)(y − x) = y − x and
〈∑2

l=1 ξlFl(x), y − x
〉
= 〈ξ, y − x〉 for all x, y ∈ K and

ξ ∈ �, one can easily verify that

Solpr (VVI) = Sol(VVI) = {x : x1 + x2 = 1, 0 ≤ x1 ≤ 1}
and

Solw(VVI) = {x : x1 + x2 = 1, 0 ≤ x1 ≤ 1} ∪ ([1, +∞) × {0}) ∪ ({0} × [1, +∞)) .

We say that (VVI) is a symmetric vector variational inequality if for each l ∈ {1, . . . , m}
the vector-function Fl satisfies (5) with F being replaced by Fl , i.e.,

∂Fli(x)

∂xj

= ∂Flj (x)

∂xi

∀x ∈ K, ∀i, j ∈ J, (10)

where J = {1, . . . , n} and Fli(x) is the i-th component of Fl(x). Similarly, we say
that (VVI) is an anti-symmetric vector variational inequality if the following property is
available for each l ∈ {1, . . . , m}:

∂Fli(x)

∂xj

= −∂Flj (x)

∂xi

∀x ∈ K, ∀i, j ∈ J. (11)

As noted in [47, 50], quadratic vector optimization problems lead to symmetric VVIs.
Comparing the Fermat Rule in Theorem 2 with the definition of VVI, we can assert that

the necessary optimality condition for weakly efficient solutions of (VP) is a VVI, and if f
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is convex on K with respect to the cone Rm+ then Solw(VVI) = Solw(VP), provided that Fl

is taken as ∇fl for each l ∈ {1, . . . , m}. In addition, if f is C2-smooth, then the problem
(VVI) corresponding to (VP) is a symmetric VVI.

As it has been shown in [49] (see also [47, 50]), by using the special necessary and
sufficient optimality conditions (not in the form of Fermat’s Rule!) for efficient solutions
and weakly efficient solutions of a linear fractional vector optimization problem [5, 35] (see
also [29, Chap. 8]), one can treat the problem as an anti-symmetric VVI.

3 Some Classes of VVIs

Convex (resp., strongly convex, quadratic, and polynomial) optimization problems (of both
scalar and vector types) form four important special classes of problems in optimization the-
ory. Likewise, monotone (resp., strongly monotone, affine, and polynomial) VVIs deserve
a special attention. The first three classes were highlighted in [28, pp. 750-751]. The fourth
one has been studied quite recently, in [17, 18]. By R[x1, . . . , xn], we denote the ring of
polynomials in the variables x1, . . . , xn with coefficients from R.

Definition 4 (i) One says that (VVI) is a monotone vector variational inequality if for
each l ∈ {1, . . . , m} the problem VI(Fl,K) is a monotone VI. The latter means that
〈Fl(y) − Fl(x), y − x〉 ≥ 0 for all x, y ∈ K.

(ii) If for each l ∈ {1, . . . , m}, the problem VI(Fl, K) is a strongly monotone VI, i.e.,
there exists ρl > 0 such that 〈Fl(y) − Fl(x), y − x〉 ≥ ρl‖y − x‖2 for all x, y ∈ K , then
(VVI) is called a strongly monotone vector variational inequality.

(iii) Problem (VVI) is said to be an affine vector variational inequality if K is a polyhe-
dral convex set and there exist matrices Ml ∈ R

n×n and vectors ql ∈ R
n (l = 1, . . . , m)

such that Fl(x) = Mlx + ql for all l = 1, . . . , m and x ∈ K .
(iv) One calls (VVI) a polynomial vector variational inequality under polynomial con-

straints if all the components of Fl, l = 1, . . . , m, are polynomial functions in the variables
x1, . . . , xn (i.e., for each l one has Fl = (Fl1, . . . , Fln) with Flj ∈ R[x1, . . . , xn] for all
j = 1, . . . , n), and K is the solution set of a finite system of inequalities and equations
given by polynomial functions. If the latter system is given by affine functions, then (VVI)
is called a polynomial vector variational inequality under linear constraints.

Going back to scalar functions, we now recall the notion of strong convex function. A
function ϕ : �K → R is said to be strongly convex on K if there exists a constant ρ > 0
such that the inequality

ϕ((1 − t)x + ty) ≤ (1 − t)ϕ(x) + tϕ(y) − ρt (1 − t)‖x − y‖2

holds for any x, y ∈ K and t ∈ (0, 1). According to [45, Lemma 1, p. 184], the last condition
is fulfilled if and only if the function

ϕ̃(x) := ϕ(x) − ρ‖x‖2

is convex on �. By a result in [46, Prop. 4.10] (see also [45]), a continuously differentiable
function ϕ : �K → R is strongly convex on K with a constant ρ > 0 if and only if

〈∇ϕ(y) − ∇ϕ(x), y − x〉 ≥ 2ρ‖y − x‖2 ∀x, y ∈ K.
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It is also well known [46, Prop. 4.10] (see also [45]) that a continuously differentiable
function ϕ : �K → R is convex on K if and only if

〈∇ϕ(y) − ∇ϕ(x), y − x〉 ≥ 0 ∀x, y ∈ K.

Combining these facts with Theorem 2, we see at once that the VVI corresponding to a
smooth convex (resp., smooth strongly convex) vector optimization problem is monotone
(resp., strongly monotone).

As mentioned in Section 1, various results on solution sensitivity and topological prop-
erties of the solution sets of strongly monotone VVIs and monotone VVIs with applications
to vector optimization problems can be found in [28, 48]. We refer to [16, 50] for several
results on connectedness structure of the solution sets and solution stability of AVVIs.

4 Scalarization Formulae

First, we recall some basic facts on scalarization of vector optimization problems, which
can be derived from Theorem 2 by the help of the Separation Theorem [37, Theorem 11.3]
and a property of differentiable convex functions. A detailed proof of the next theorem was
given in [28].

Theorem 3 (Scalarization of vector optimization problems) Let x̄ ∈ K . The following
assertions are valid:

(i) If x̄ ∈ Solw(VP), then there exists ξ ∈ �, where � is as in Section 2, such that〈
m∑

l=1

ξl∇fl(x̄), y − x̄

〉
≥ 0 ∀y ∈ K. (12)

(ii) If all the components of f are convex on K and there exists ξ ∈ � satisfying (12),
then x̄ ∈ Solw(VP).

(iii) If all the components of f are convex on K and there exists ξ ∈ ri� satisfying (12),
then x̄ ∈ Sol(VP).

Consider problem (VP) and put Fl(x) = ∇fl(x). For each ξ ∈ �, we consider the
parametric variational inequality (VI)ξ , which now becomes

Find x ∈ K such that

〈
m∑

l=1

ξl∇fl(x), y − x

〉
≥ 0 ∀y ∈ K. (13)

In connection with Theorem 3, the forthcoming definitions have been considered in [17,
18].

Definition 5 If x ∈ K and there is ξ ∈ � such that x is a solution of (13), then we call x a
stationary point of (VP).

Definition 6 If x ∈ K and there is ξ ∈ ri� such that x is a solution of (13), then we call x
a proper stationary point of (VP).

The stationary point set and the proper stationary point set of (VP) are abbreviated
respectively to Stat(VP) and Pr(VP). By Theorem 3, one can find the whole set Stat(VP) by
solving the variational inequality (13) and taking the union of the solution sets Sol(VI)ξ ,
ξ ∈ �. A similar procedure applies to Pr(VP), for which we have to find the union of the
solution sets of (13) on ξ ∈ ri�.
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Summing up the above, we have⋃
ξ∈ri�

Sol(VI)ξ = Pr(VP) ⊂ Sol(VP) ⊂ Solw(VP) ⊂ Stat(VP) =
⋃
ξ∈�

Sol(VI)ξ , (14)

where the first inclusion is valid if all the functions fl are convex. In addition, under
fulfillment of the latter, the third inclusion in (14) becomes equality.

Now, we are in a position to formulate scalarization formulae for VVIs. The detailed
proofs can be found in [28] and [30].

Theorem 4 (Scalarization of vector variational inequalities; see [28, Theorem 2.1] and [30,
Theorem 2.1]) It holds that⋃

ξ∈ri�
Sol(VI)ξ = Solpr(VVI) ⊂ Sol(VVI) ⊂ Solw(VVI) =

⋃
ξ∈�

Sol(VI)ξ . (15)

If K is a polyhedral convex set, i.e., K is the intersection of finitely many closed half-spaces
of Rn (the intersection of an empty family of closed half-spaces is set to be Rn), then⋃

ξ∈ri�
Sol(VI)ξ = Solpr (VVI) = Sol(VVI). (16)

The next example was designed [18, Example 2.2] to show that the inclusion
Solpr (VVI) ⊂ Sol(VVI) can be strict even if K is given by a unique strongly convex
polynomial inequality. Here, both components of F are constant vector functions that are
monotone, but not strongly monotone.

Example 4 Consider problem (VVI) with m = n = 2, F1(x) = (1, 0)T and F2(x) =
(0, 1)T for every x = (x1, x2)

T ∈ R
2, and

K =
{
x = (x1, x2)

T ∈ R
2 : x2

1 + x2
2 − 1 ≤ 0

}
.

By (15), x ∈ Solw(VVI) if and only if there exists ξ ∈ � such that x ∈ Sol(VI)ξ , or

〈ξ1F1(x) + ξ2F2(x), y − x〉 ≥ 0 ∀y ∈ K.

This condition can be written equivalently as

0 ∈ ξ1F1(x) + ξ2F2(x) + NK(x), (17)

where

NK(x) := {x∗ ∈ R
2 : 〈x∗, y − x〉 ≤ 0 ∀y ∈ K} (18)

for x ∈ K and NK(x) := ∅ for x /∈ K denotes the normal cone to K at x. Since ξ1F1(x) +
ξ2F2(x) =

(
ξ1
ξ2

)
and NK(x) = {0} for every x ∈ intK , Sol(VI)ξ ∩ intK = ∅. If x is taken

from the boundary of K , then NK(x) = {λx : λ ≥ 0}; hence (17) is satisfied if and only if

x1 = − ξ1√
(ξ1)2 + (ξ2)2

, x2 = − ξ2√
(ξ1)2 + (ξ2)2

.

It follows that Solw(VVI) = �, where

� :=
{
x ∈ R

2 : −1 ≤ x1 ≤ 0, x2 = −
√
1 − x2

1

}
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is a closed circle-arc. As a by-product of the above calculations, we have

Solpr(VVI) =
{
x ∈ R

2 : −1 < x1 < 0, x2 = −
√
1 − x2

1

}
.

It is easy to show that the end-points x̄ := (−1, 0)T and x̂ := (0,−1)T of � belong to
Sol(VVI). So we have Sol(VVI) = Solw(VVI) = �, while Solpr (VVI) = � \ {x̄, x̂}.

We refer to [28, Section 6] for another interesting example of (VVI) with K being a
closed ball in R

2, F1, and F2 strongly monotone affine operators, where the weak Pareto
solution set coincides with the Pareto solution set, which is a closed circle-arc, and the
proper Pareto solution set Solpr (VVI) is obtained by eliminating the end-points from that
circle-arc.

We conclude this section with an example of a polynomial vector optimization problem,
where Pr(VP) is different from Sol(VP).

Example 5 (See [18, Example 4.6]) Consider problem (VP) with m = n = 2, f1(x) = x1
and f2(x) = x2 for every x = (x1, x2)

T ∈ R
2, and

K =
{
x = (x1, x2)

T ∈ R
2 : x2

1 + x2
2 − 1 ≤ 0

}
.

Let �, x̄, and x̂ be defined as in Example 4. It is not difficult to check that Sol(VP) =
Solw(VP) = Stat(VP) = � and Pr(VP) = � \ {x̄, x̂}.

5 Sets Having Finitely Many Connected Components

To discuss the connectedness structure of the sets Sol(VVI) and Solw(VVI), we will need
some definitions from general topology and a lemma from [17]. A detailed proof of the
lemma is provided to make our presentation clear.

A topological space X is said to be connected if one cannot represent X = U ∪ V

where U, V are nonempty open sets of X with U ∩ V = ∅. A nonempty subset A ⊂ X

of a topological space X is said to be a connected component of X if A (equipped with the
induced topology) is connected and it is not a proper subset of any connected subset of X.

Lemma 1 (See [17, Lemma 2.2]) Let � be a subset of a topological space X with the
closure denoted by �. If � has k connected components, then any subset A ⊂ X with the
property � ⊂ A ⊂ � can have at most k connected components.

Proof Suppose that � ⊂ A ⊂ � and � has k connected components, denoted by �i, i =
1, . . . , k. It is easy to show that � =

k⋃
i=1

�i, where �i stands for the closure of �i in the

topology of X. On one hand, by the inclusion A ⊂
k⋃

i=1
�i , we have

A =
k⋃

i=1

(�i ∩ A). (19)
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On the other hand, since
k⋃

i=1
�i ⊂ A, we have

�i = �i ∩ A ⊂ �i ∩ A ⊂ �i (20)

for i = 1, . . . , k. Applying a remark after [22, Theorem 20] (see also [31, p. 188]), which
says that if B ⊂ C ⊂ B and B is connected then C is also connected, from (20) and the
connectedness of �i , we can assert that �i ∩A is connected for all i = 1, . . . , k. Thus, (19)
shows that A can have at most k connected components and completes the proof.

One may ask: How many connected components the efficient solution set (resp., the
weakly efficient solution set) of a vector optimization problem can have? Similar question
arises about the number of connected components of the Pareto solution set (resp., the weak
Paretor solution set) of a vector variational inequality. Also, one may be curious to know
whether each connected component of the just mentioned solution sets is simple enough
(say, it is contractible), or not. Answers for these questions were given in [13, 19] where the
authors showed that:

(i) (see [13] and [47, pp. 315–319]) For any positive integer m, there exists a linear
fractional vector optimization problem (which is a C∞-smooth nonconvex vector
optimization problem under linear constraints) whose weakly efficient solution set
coincides with the efficient solution set and has exactly m connected components;

(ii) (see [19] and [47, pp. 319–322]) There exists a linear fractional vector optimization
problem with the number of criteria m = 3 such that the weakly efficient solution set
coincides with the efficient solution set, which is connected by line segments, but not
contractive.

Using the complete reduction of any linear fractional vector optimization problem to an
anti-symmetric monotone affine VVI suggested in [49] (see also [47, p. 313]), from the just
mentioned results we obtain the following ones:

(iii) For any positive integer m, there exists an anti-symmetric monotone affine VVI
whose weak Pareto solution set coincides with the Pareto solution set and has exactly
m connected components;

(iv) There exists an anti-symmetric monotone affine VVI with the number of criteria m =
3 such that the weak Pareto solution set coincides with the Pareto solution set, which
is connected by line segments, but not contractive.

6 Semi-Algebraic Sets

To proceed furthermore with our discussions on VVIs and VPs, we need some theorems on
semi-algebraic sets.

Definition 7 (See [2, Definition 2.1.4]) A semi-algebraic subset of Rn is a subset of the
form

s⋃
i=1

ri⋂
j=1

{
x ∈ R

n : fi,j (x) ∗i,j 0
}
,

where fi,j ∈ R[x1, . . . , xn] and ∗i,j is either < or =, for i = 1, . . . , s and j = 1, . . . , ri ,
with s and ri being arbitrary natural numbers.
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Thus, every semi-algebraic subset of Rn can be represented as a finite union of sets of
the form: {

x ∈ R
n : f1(x) = ... = f�(x) = 0, g1(x) < 0, . . . , gm(x) < 0

}
, (21)

where � and m are natural numbers, f1, . . . , f�, g1, . . . , gm are in R[x1, . . . , xn]. Since
{x : gi(x) ≤ 0} = {x : gi(x) = 0} ∪ {x : gi(x) < 0} ,

it doesn’t matter if one replaces some of the strict inequalities in (21) by non-strict
inequalities.

Open balls, closed balls, spheres, and unions of finitely many of those sets are some
typical examples of semi-algebraic subsets in R

n. Semi-algebraic subsets of R are exactly
the finite unions of points and open intervals (bounded or unbounded).

By induction, from [2, Theorem 2.2.1], we can easily derive the following useful result.

Theorem 5 Let S be a semi-algebraic subset of Rn ×R
m,  : Rn ×R

m → R
n the natural

projection on the space of the first n coordinates, i.e.,

 (x1, . . . , xn, xn+1, . . . , xn+m) = (x1, . . . , xn)
T

for every x = (x1, . . . , xn, xn+1, . . . , xn+m)T ∈ R
n × R

m. Then (S) is a semi-algebraic
subset of Rn.

Let us recall the concept of semi-algebraically connected subset.

Definition 8 (See [2, Definition 2.4.2]) A semi-algebraic subset S of R
n is semi-

algebraically connected if for every pair of disjoint semi-algebraic sets F1 and F2, which
are closed in S and satisfy F1 ∪ F2 = S, one has F1 = S or F2 = S.

The next fundamental theorem from real algebraic geometry describes clearly the
connectedness structure of semi-algebraic sets.

Theorem 6 (See [2, Theorem 2.4.5]) A semi-algebraic subset S of Rn is semi-algebraically
connected if and only if it is connected. Every semi-algebraic set has a finite number of
connected components, which are semi-algebraic.

7 VVIs under Linear Constraints

This section discusses the connectedness structure of the solution sets of vector variational
inequalities of the form (VVI) under two blanket assumptions:

(a1) All the components of Fl, l = 1, . . . , m, are polynomial functions in the variables
x1, . . . , xn, i.e., for every l ∈ {1, . . . , m} one has Fl = (Fl1, . . . , Fln) with Flj ∈
R[x1, . . . , xn] for all j = 1, . . . , n;

(a2) K is a nonempty polyhedral convex set, i.e., there exist a positive integer p, a matrix
A = (aij ) ∈ R

p×n, and a vector b = (bi) ∈ R
p such that K = {x ∈ R

n : Ax ≤ b}.
The main result of [17] is formulated as follows.

Theorem 7 (See [17, Theorem 3.1]) If the assumptions (a1) and (a2) are satisfied, then
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(i) the weak Pareto solution set Solw(VVI) is a semi-algebraic subset of Rn (so it has
finitely many connected components and each of them is a semi-algebraic subset of
R

n), and
(ii) the Pareto solution set Sol(VVI) is a semi-algebraic subset of Rn (so it has finitely

many connected components and each of them is a semi-algebraic subset of Rn).

We now explain the main ideas of the proof of Theorem 7 and refer the readers to [17]
for a detailed proof. To every index set α ⊂ I with I := {1, . . . , p}, we associate the
pseudo-face

Fα :=
⎧⎨
⎩x ∈ R

n :
n∑

j=1

aij xj = bi ∀i ∈ α,

n∑
j=1

aij xj < bi ∀i /∈ α

⎫⎬
⎭

of K , where aij is the element in the i-th row and the j -th column of A, and bi denotes the
i-th component of b. By Theorem 4, we have

Solw(VVI) =
⋃
ξ∈�

Sol(VI)ξ (22)

with (VI)ξ denoting the variational inequality

Find x ∈ K such that 〈F(x, ξ), y − x〉 ≥ 0 ∀y ∈ K,

where F(x, ξ) :=
m∑

l=1
ξlFl(x) for every ξ = (ξ1, . . . , ξm)T ∈ �. Denote the normal cone to

the convex set K at x ∈ R
n by NK(x) and recall that

NK(x) = {x∗ ∈ R
n : 〈x∗, y − x〉 ≤ 0 ∀y ∈ K}

if x ∈ K , and NK(x) = ∅ if x /∈ K . Using the notations F(x, ξ) and NK(x), we can rewrite
the inclusion x ∈ Sol(VI)ξ equivalently as

F(x, ξ) ∈ −NK(x). (23)

We have K = ⋃
α⊂I

Fα , Fα ∩ Fα̃ = ∅ if α �= α̃ and, therefore,

Solw(VVI) =
⋃
α⊂I

[Solw(VVI) ∩ Fα]. (24)

Since a finite union of semi-algebraic subsets of Rn is again a semi-algebraic subset of
R

n, by (24), and by Theorem 6, we see that the proof of the assertion (i) will be completed
if we can establish the following result.

Claim 1 For every index set α ⊂ I , the intersection Solw(VVI) ∩ Fα is a semi-algebraic
subset of Rn.

By the Farkas lemma [37, Corollary 22.3.1], we have

NK(x) = pos
{
aT
i. : i ∈ α

}
(25)

for every x ∈ Fα, where ai. := (ai1, . . . , ain) denotes the i-th row of A and

pos {z1, . . . , zk} := {λ1z1 + · · · + λkzk : λi ≥ 0, i = 1, . . . , k}
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is the convex cone generated by vectors zi ∈ R
n, i = 1, . . . , k. Due to formulas (22), (23),

and (25),

Solw(VVI) ∩ Fα =
⋃
ξ∈�

{
x ∈ Fα : F(x, ξ) ∈ −pos

{
aT
i. : i ∈ α

}}
. (26)

Since pos{aT
i. : i ∈ α} is a convex polyhedral cone, there exists a matrix Cα = (

cij

) ∈
R

nα×n, where nα ∈ N, such that

pos{aT
i. : i ∈ α} = {y ∈ R

n : Cαy ≥ 0}. (27)

By (26) and (27),

Solw(VVI) ∩ Fα =
⋃
ξ∈�

{x ∈ Fα : CαF(x, ξ) ≤ 0} . (28)

The inequality on the right-hand side of (28) can be rewritten as

Cα

(
m∑

l=1

ξlFl(x)

)
≤ 0,

which is the following system of nα polynomial inequalities

n∑
j=1

m∑
l=1

ckj ξlFlj (x) ≤ 0, k = 1, . . . , nα. (29)

Note that expression
n∑

j=1

m∑
l=1

ckj ξlFlj (x) on the right-hand side of (29) is a polynomial in the

variables x1, . . . , xn, ξ1, . . . , ξm. Consider the set

�α := {(x, ξ) ∈ Fα × � : CαF(x, ξ) ≤ 0} .

By (29), we have

�α =
⎧⎨
⎩(x, ξ) ∈ R

n × R
m :

n∑
j=1

aij xj = bi, i ∈ α,

n∑
j=1

aij xj < bi, i /∈ α,

n∑
j=1

m∑
i=1

ckj ξiFij (x) ≤ 0, k = 1, . . . , nα,

m∑
l=1

ξl = 1, ξl ≥ 0, l = 1, . . . , m

}
.

Denote by |α|, the number of elements of α and observe that �α is determined by |α| +
1 polynomial equations, nα + m polynomial inequalities, and p − |α| strict polynomial
inequalities of the variables (x, ξ) = (x1, . . . xn, ξ1, . . . , ξm) ∈ R

n+m. Hence, �α is a
semi-algebraic set.

From (28), it follows that Solw(VVI) ∩ Fα = (�α), where  : R
n × R

m → R
n

is the natural projection on the space of the first n coordinates. According to Theorem 5,
Solw(VVI) ∩ Fα is a semi-algebraic set. This proves Claim 1.
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We have thus seen that Solw(VVI) is a semi-algebraic subset of Rn. Then, thanks to
Theorem 6, Solw(VVI) has finitely many connected components and each of them is a
semi-algebraic subset of Rn.

The assertion (ii) can be proved similarly.
A topological space X is said to be path connected if, for every x, y in X, there is a

continuous mapping γ : [0, 1] → X such that γ (0) = x and γ (1) = y. It is well known
that any path connected topological space is connected, but the converse is not true. For
example, the set

X =
{
(t, sin(1/t))T ∈ R

2 : t �= 0
}

∪ ({0} × [−1, 1])
considered with the induced topology, is connected, but not path connected.

Concerning Theorem 7, the following natural question arises: Is it true that each con-
nected component of the weak Pareto solution set Solw(VVI) (resp., of the Pareto solution
set Sol(VVI)) is a path connected set? Mr. Vu Trung Hieu, a young colleague of the author
of this survey, has given a positive solution for this question. To present his result, we have
to recall two additional notions from real algebraic geometry.

Definition 9 (See [2, Definition 2.2.5]) Let�1 ⊂ R
n1 and�2 ⊂ R

n2 be two semi-algebraic
sets. A mapping � : �1 → �2 is semi-algebraic if its graph is a semi-algebraic subset of
R

n1+n2 .

Definition 10 (See [2, Definition 2.5.12]) A semi-algebraic subset � ⊂ R
n is said to be

semi-algebraically path connected if, for every x, y in X, there exists a continuous semi-
algebraic mapping γ : [0, 1] → � such that γ (0) = x and γ (1) = y.

Clearly, any semi-algebraically path connected set � ⊂ R
n is a path connected

topological space. To see that the converse is not true in general, one can choose

� =
{
(t, t sin(1/t))T ∈ R

2 : t �= 0
}

∪ {(0, 0)T }.
Since � is not a semi-algebraic set, it cannot be semi-algebraically path connected. Note
also that, for any ε > 0, there does not exist any continuous semi-algebraic curve joining
x = (−ε, ε sin(1/ε))T with y = (ε, ε sin(1/ε))T .

Lemma 2 If � ⊂ R
n is a semi-algebraic subset, then the following properties are

equivalent:

(i) � is semi-algebraically path connected;
(ii) � is semi-algebraically connected;
(iii) � is connected.

Proof The equivalence between (i) and (ii) is assured by [2, Prop. 2.5.13], while the
equivalence between (ii) and (iii) follows from [2, Prop. 2.4.5] (see Theorem 6).

Proposition 1 (Vu Trung Hieu; private communication) If the assumptions (a1) and (a2)
are satisfied, then

(i) each connected component of the weak Pareto solution set Solw(VVI) is a semi-
algebraically path connected subset of Rn (so it is path connected), and
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(ii) each connected component of the Pareto solution set Sol(VVI) is a semi-algebraically
path connected subset of Rn (so it is path connected).

Proof To prove the first assertion, observe that each connected component of Solw(VVI)
is connected semi-algebraic set by Theorem 7. Hence, according to Lemma 2, it is a semi-
algebraically path connected subset ofRn. The second assertion can be obtained in the same
way.

Remark 1 By Theorem 7 and the arguments of the proof of Proposition 1, one can see that
each connected component of a semi-algebraic subset of Rn is a semi-algebraically path
connected subset. Applying this property to any solution set to be considered in the sequel,
which is a semi-algebraic set, we can assert that each of its connected components is a
semi-algebraically path connected set (so it is path connected).

It is clear that if Fl(x) = Ml(x) + ql , where Ml is an n × n matrix and ql ∈ R
n, for

l = 1, . . . , m, then each component Flj (x) of the functions Fl , l = 1, . . . , m, is a poly-
nomial function in the variables x1, . . . , xn. Therefore, Theorem 7 solves in the affirmative
Question 1 of [50, p. 66] about the connectedness structure of the solution sets of affine vec-
tor variational inequalities, without requiring the positive semidefiniteness of the matrices
Ml . Moreover, it assures that each connected component of the solution set under consider-
ation is a semi-algebraic subset. Note that, by [50, Theorems 4.1 and 4.2], if the AVVI under
consideration is monotone and if the solution set in question is disconnected, then each of
its connected components is unbounded. The later result cannot be obtained by tools of real
algebraic geometry.

In [16], by a different approach using fractional functions and some properties of deter-
minant, it has been proved that both the Pareto solution set and the weak Pareto solution set
of an AVVI have finitely many connected components, provided that m = 2 and a regularity
condition is satisfied. So, Theorem 7 implies the results of [16].

The problem of finding an upper bound for the numbers of connected components of
Solw(VVI) and Sol(VVI) requires further investigations. In the case m = 2, an explicit
upper bound for the numbers of connected components of Solw(VVI) and Sol(VVI) is given
in [16] under a regularity condition. This result gives a partial solution to Question 2 of [50].

Linear fractional vector optimization problems (or LFVOPs) and quadratic vector
optimization problems (or QVOPs) are two fundamental classes of vector optimization
problems. Both classes contain linear vector optimization problems as an important sub-
class. By using Theorem 7, one can get some facts about the connectedness structure of the
solution sets in LFVOPs. Moreover, a property of the stationary point set of polynomial vec-
tor optimization problems under linear constraints can be obtained and applied to convex
QVOPs.

We now present some basic information about LFVOPs. More details can be found in
[41, 49] and [29, Chap. 8]. Let fl : Rn → R, l = 1, . . . , m be the linear fractional functions
of the form

fl(x) = aT
l x + αl

bT
l x + βl

,

where al ∈ R
n, bl ∈ R

n, αl ∈ R, and βl ∈ R. Let K ⊂ R
n be satisfying assump-

tion (a2). Suppose that bT
l x + βl > 0 for all l ∈ {1, . . . , m} and x ∈ K . Put f (x) =

(f1(x), . . . , fm(x)),

�K :=
{
x ∈ R

n : bT
l x + βl > 0, l = 1, . . . , m

}
,
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and observe that �K is open and convex, K ⊂ �K , and f is continuously differentiable on
�K . Consider the linear fractional vector optimization problem

(VP1) Minimize f (x) subject to x ∈ K.

LFVOPs have been studied intensively for more than three decades; see [5, 6, 13–15, 19,
35, 41, 47, 49, 50] and the references therein.

The efficient solution set and the weakly efficient solution set of (VP1) are denoted by
Sol(VP1) and Sol

w(VP1), respectively. According to [35], x ∈ Sol(VP1) if and only if there
exists ξ = (ξ1, . . . , ξm) ∈ ri� such that〈

m∑
l=1

ξl

[(
bT
l x + βl

)
al −

(
aT
l x + αl

)
bl

]
, y − x

〉
≥ 0 ∀y ∈ K. (30)

Similarly, x ∈ Solw(VP1) if and only if there exists ξ = (ξ1, . . . , ξm) ∈ � such that (30)
holds.

Condition (30) can be rewritten in the form of a parametric affine variational inequality
as follows:

(VI)′ξ 〈M(ξ)x + q(ξ), y − x〉 ≥ 0 ∀y ∈ K,

with

M(ξ) :=
m∑

l=1

ξlMl, q(ξ) :=
m∑

l=1

ξlql,

where

Ml = alb
T
l − bla

T
l , ql = βlal − αlbl (l = 1, . . . , m).

It is well known [49] that (VI)′ξ is an anti-symmetric monotone AVI for every ξ ∈ �. Denote
by �(ξ) the solution set of (VI)′ξ and consider the multifunction � : � ⇒ R

n, ξ �→ �(ξ).
According to the above-recalled necessary and sufficient optimality conditions for (VP1),
we have

Sol(VP1) =
⋃

ξ∈ri�
�(ξ) = �(ri�), (31)

and
Solw(VP1) =

⋃
ξ∈�

�(ξ) = �(�). (32)

By formulas (31), (32), and Theorem 4, Sol(VP1) (resp., Sol
w(VP1)) coincides with the

Pareto solution set (resp., the weak Pareto solution set) of the monotone AVVI defined by
K and Fl(x) = Mlx + ql, l = 1, . . . , m. Hence, the next result is a direct consequence of
Theorem 7.

Theorem 8 (See [17, Theorem 4.5]) It holds that

(i) the Pareto solution set Sol(VP1) is a semi-algebraic subset of Rn (so it has finitely
many connected components and each of them is a semi-algebraic subset of Rn), and

(ii) the weak Pareto solution set Solw(VP1) is a semi-algebraic subset of Rn (so it has
finitely many connected components and each of them is a semi-algebraic subset of
R

n).
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We have seen that both the Pareto solution set and the weak Pareto solution set of (VP1)
are semi-algebraic subsets and have finitely many connected components. As mentioned in
Section 5, Hoa, Phuong, and Yen [13] had proved that, for any natural number m ≥ 1, there
exists a LFVOP with m objective criteria, where the sets Sol(VP1) and Sol

w(VP1) coincide
and have exactlym connected components. The problem of finding an upper estimate for the
number of connected components of Sol(VP1) has been solved in [15] for the case m = 2.

If fl : Rn → R, l = 1, . . . , m, are polynomial functions and K ⊂ R
n is a polyhedral

convex set then (VP), now denoted by (VP2), is called a polynomial vector optimization
problem under linear constraints.

We denote the efficient solution set, the weakly efficient solution set, the stationary point
set, and the proper stationary point set of (VP2), respectively, by Sol(VP2), Sol

w(VP2),
Stat(VP2), and Pr(VP2).

Theorem 9 (See [17, Theorem 4.6]) The following assertions hold:

(i) The set Stat(VP2) (resp., the set Pr(VP2)) is a semi-algebraic subset of Rn (so it has
finitely many connected components and each of them is a semi-algebraic subset of
R

n);
(ii) If all the functions fl are convex, then Solw(VP2) is a semi-algebraic subset of Rn

(so it has finitely many connected components and each of them is a semi-algebraic
subset of Rn);

(iii) If all the functions fl are convex, and the set Pr(VP2) is dense in Sol(VP2), then
Sol(VP2) has a finite number of connected components.

To see how Lemma 1 works for the class of problems in question, we recall here the
proof of the assertion (iii). Since all the functions fl are convex and the set Pr(VP2) is dense
in Sol(VP2), we have

Pr(VP2) ⊂ Sol(VP2) ⊂ Pr(VP2), (33)
where the first inclusion is a special case of the first inclusion in (14), and Pr(VP2) is the
closure of Pr(VP2) in the Euclidean topology of Rn. By (i), we see that Pr(VP2) has finitely
many connected components. Now, from (33) and Lemma 1, it follows that Sol(VP2) has a
finite number of connected components.

If K is a polyhedral convex set and fl(x) = 1
2x

T Mlx + qT
l x, l = 1, . . . , m, where

Ml ∈ R
n×n, l = 1, . . . , m, are symmetric matrices, and ql for l = 1, . . . , m are vectors

in Rn, then (VP) is called a quadratic vector optimization problem (QVOP for short) and is
denoted by (VP3).

Clearly, a quadratic vector optimization problem is a polynomial vector optimization
problem. Hence, Theorem 9 implies the next result on the connectedness structure of the
stationary point set Stat(VP3) and of the weakly efficient solution set Solw(VP3).

Corollary 1 (See [17, Corollary 4.7]) The following properties hold:

(i) The set Stat(VP3) is a semi-algebraic subset of Rn (so it has finitely many connected
components and each of them is a semi-algebraic subset of Rn);

(ii) If all the matrices Ml ∈ R
n×n, l = 1, . . . , m, are positive semidefinite, then

Solw(VP3) is a semi-algebraic subset of R
n (so it has finitely many connected

components and each of them is a semi-algebraic subset of Rn).

We have seen that the stationary point set of a QVOP and the weakly efficient solution set
of a convex QVOP have finitely many connected components. Note that, by [50, Theorem
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4.1], if the weakly efficient solution set of a convex QVOP is disconnected, then each of
its connected components is unbounded. Nevertheless, up to now we are unaware of any
convex QVOP with a disconnected weakly efficient solution set or a disconnected efficient
solution set. We finish this section with two open questions.

Question 1 The weak Pareto solution set (resp., the Pareto solution set) of a symmetric
monotone affine VVI is always connected?

Question 2 The weak Pareto solution set (resp., the Pareto solution set) of any anti-
symmetric monotone affine VVI withm criteria can have at mostm connected components?

8 VVIs under Polynomial Constraints

Throughout this section, we let

K = {x ∈ R
n : gi(x) ≤ 0, i = 1, . . . , p, hj (x) = 0, j = 1, . . . , s

}
, (34)

where gi, hj belong to R[x1, . . . , xn] for all i = 1, . . . , p, j = 1, . . . , s, and assume that
K is convex.

Remark 2 If the functions gi are convex and the functions hj are affine, i.e., hj (x) =
〈aj , x〉+ bj , aj ∈ R

n, bj ∈ R for all j = 1, . . . , s, then the set K given by (34) is convex.

In order to have an explicit formula for computing the normal cone to K at every point
x ∈ K , one has to impose a regularity condition on the functions appeared in (34).

Definition 11 (See [33, p. 44]) One says that the Mangasarian-Fromovitz Constraint
Qualification (the MFCQ for brevity) is satisfied at a point x ∈ K if

(i) the gradient vectors {∇hj (x) : j = 1, . . . , s} are linearly independent;
(ii) there exists v ∈ R

n with 〈∇hj (x), v〉 = 0 for all j = 1, . . . , s, and 〈∇gi(x), v〉 < 0,
for all i ∈ I (x), where I (x) := {i : gi(x) = 0}.

We will discuss the connectedness structure of the solution sets of vector variational
inequalities of the form (VVI) under two assumptions:

(a1) All the components of Fl, l = 1, . . . , m, are polynomial functions in the variables
x1, . . . , xn; i.e., for each l one has Fl = (Fl1, . . . , Fln) with Flj ∈ R[x1, . . . , xn] for
all j = 1, . . . , n;

(a2) The MFCQ is satisfied at every point of K .

The main result of [18] can be formulated as follows.

Theorem 10 (See [18, Theorem 3.3]) If (a1) and (a2) are fulfilled, then it holds that

(i) The weak Pareto solution set Solw(VVI) is a semi-algebraic subset of Rn (so it has
finitely many connected components and each of them is a semi-algebraic subset of
R

n);
(ii) The proper Pareto solution set Solpr (VVI) is a semi-algebraic subset of Rn (so it has

finitely many connected components and each of them is a semi-algebraic subset of
R

n);
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(iii) If the set Solpr (VVI) is dense in Sol(VVI), then Sol(VVI) has a finite number of
connected components.

Let us outline the main arguments for proving this theorem. Put I = {1, . . . , p} and
J = {1, . . . , s}. To every subset α ⊂ I (the case α = ∅ is not excluded) one associates the
(possibly curved) pseudo-face of K:

Fα = {x ∈ R
n : gi(x) = 0 ∀i ∈ α, gi(x) < 0 ∀i /∈ α, hj (x) = 0 ∀j ∈ J

}
.

Using the notation I (x) given in Definition 11, we have I (x) = α for all x ∈ Fα .
By (15), we have

Solw(VVI) =
⋃
ξ∈�

Sol(VI)ξ (35)

with (VI)ξ denoting the variational inequality

Find x ∈ K such that 〈F(x, ξ), y − x〉 ≥ 0 ∀y ∈ K,

where F(x, ξ) := ∑m
l=1 ξlFl(x) for every ξ = (ξ1, . . . , ξm)T ∈ �. Using the notation

F(x, ξ) and the definition of normal cone in (18), we can rewrite the inclusion x ∈ Sol(VI)ξ
equivalently as

− F(x, ξ) ∈ NK(x). (36)

We have K = ⋃
α⊂I

Fα , Fα ∩ Fα̃ = ∅ if α �= α̃ and, therefore,

Solw(VVI) =
⋃
α⊂I

[Solw(VVI) ∩ Fα]. (37)

Since a finite union of semi-algebraic subsets of Rn is again a semi-algebraic subset of
R

n, by (37) and by Theorem 6, we see that the proof of the assertion (i) will be completed
if we can establish

Claim 2 For every index set α ⊂ I , the intersection Solw(VVI) ∩ Fα is a semi-algebraic
subset of Rn.

By virtue of the assumption (a2), the result formulated in [1, Remark on p. 151] gives
us an explicit formula for computing the Clarke tangent cone [7, p. 51] to K at every point
x ∈ K:

TK(x) = {v ∈ R
n : 〈∇gi(x), v〉 ≤ 0 ∀i ∈ I (x), 〈∇hj (x), v〉 = 0 ∀j ∈ J }.

Since K is convex, the normal cone NK(x) defined in (18) coincides ([7, Proposition 2.4.4])
with Clarke normal cone [7, p. 51] to K at x, which is the negative dual cone of the Clarke
tangent cone TK(x). So,

NK(x) = (TK(x))∗ = {x∗ ∈ R
n : 〈x∗, v〉 ≤ 0 ∀v ∈ TK(x)

}
.

This means that a vector x∗ ∈ R
n belongs to NK(x) if and only if the inequality 〈x∗, v〉 ≤ 0

is a consequence of the system

〈∇gi(x), v〉 ≤ 0 ∀i ∈ I (x), 〈∇hj (x), v〉 = 0 ∀j ∈ J.

Hence, by Farkas’ Lemma [37, Corollary 22.3.1], x∗ ∈ NK(x) if and only if there exist
λi ≥ 0, i ∈ I (x), μj ∈ R, j ∈ J , such that

x∗ =
∑

i∈I (x)

λi∇gi(x) +
∑
j∈J

μj∇hj (x).
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It follows that

NK(x) =
⎧⎨
⎩
∑
i∈α

λi∇gi(x) +
∑
j∈J

μj∇hj (x) : λi ≥ 0 ∀i ∈ α, μj ∈ R ∀j ∈ J

⎫⎬
⎭ (38)

for every α ⊂ I and for every x ∈ Fα .
According to the formulas (35), (36), and (38),

Solw(VVI) ∩ Fα

= ⋃
ξ∈�

{
x ∈ Fα : −

m∑
l=1

ξlFl(x) = ∑
i∈α

λi∇gi(x) + ∑
j∈J

μj∇hj (x),

λi ≥ 0 ∀i ∈ α, μj ∈ R ∀j ∈ J

}
.

(39)

The equality in (39) is equivalent to the forthcoming system of polynomial equalities in the
variables x1, . . . , xn, ξ1, . . . , ξm, λi, i ∈ α, μj , j ∈ J :

−
m∑

l=1

ξlFlk(x) =
∑
i∈α

λi

∂gi(x)

∂xk

+
∑
j∈J

μj

∂hj (x)

∂xk

, k = 1, . . . , n. (40)

Denote the power of α by |α| and put

�α =
{
(x, ξ, λ, μ) ∈ Fα × � × R

|α|
+ × R

s : −
m∑

l=1

ξlFl(x) =
∑

i∈α
λi∇gi(x)

+
∑

j∈J
μj∇hj (x)

}
.

By (40), we have

�α = {
(x, ξ, λ, μ) ∈ R

n+m+|α|+s : gi(x) = 0, i ∈ α, gi(x) < 0, i /∈ α,

−
m∑

l=1
ξlFlk(x) = ∑

i∈α

λi
∂gi (x)
∂xk

+
s∑

j=1
μj

∂hj (x)

∂xk
, k = 1, . . . , n,

m∑
l=1

ξl = 1, ξl ≥ 0, l = 1, . . . , m,

λi ≥ 0, i ∈ α
}
.

Since �α is determined by |α| + n + 1 polynomial equations, m + |α| polyno-
mial inequalities, and p − |α| strict polynomial inequalities of the variables (x, ξ, μ) =
(x1, . . . , xn, ξ1, . . . , ξm, μ1, . . . , μs) ∈ R

n+m+s and λi, i ∈ α, it is a semi-algebraic set.
From (39), we get Solw(VVI) ∩ Fα = (�α), where  : R

n+m+|α|+s → R
n is

the natural projection on the space of the first n coordinates. According to Theorem 5,
Solw(VVI) ∩ Fα is a semi-algebraic set. This proves Claim 2.

We have thus shown that the weak Pareto solution set Solw(VVI) is a semi-algebraic
subset of R

n. Then, according to Theorem 6, Solw(VVI) has finitely many connected
components and each of them is a semi-algebraic subset of Rn.

The assertion (ii) can be proved in the same manner.
For (iii), one can observe by the density of Solpr (VVI) in Sol(VVI) that

Solpr (VVI) ⊂ Sol(VVI) ⊂ Solpr (VVI), (41)
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where Solpr (VVI) is the closure of Solpr (VVI) in the Euclidean topology of Rn. Since
Solpr (VVI) has finitely many connected components, from (41) and Lemma 1, it follows
that Sol(VVI) has a finite number of connected components.

Note that, in the problem discussed in Example 4, the assumption “the set Solpr(VVI)
is dense in Sol(VVI)” in Theorem 10 is satisfied.

Let fl : Rn → R, l = 1, . . . , m, be polynomial functions and let K ⊂ R
n be given as

in (34), where gi, hj ∈ R[x1, . . . , xn] for all i = 1, . . . , p, j = 1, . . . , s. In this setting,
(VP) is called a polynomial vector optimization problem under polynomial constraints and
is denoted by (pVP). The Pareto solution set, the weakly Pareto solution set, the station-
ary point set, and the proper stationary point set of (pVP) are abbreviated respectively to
Sol(pVP), Solw(pVP), Stat(pVP), and Pr(pVP).

Theorem 11 (See [18, Theorem 4.5]) If K is convex and the assumption (a2) is fulfilled,
then the following assertions are valid:

(i) The set Stat(pVP) (resp., the set Pr(pVP)) is a semi-algebraic subset of Rn (so it has
finitely many connected components and each of them is a semi-algebraic subset of
R

n);
(ii) If all the functions fl are convex, then Solw(pVP) is a semi-algebraic subset of Rn

(so it has finitely many connected components and each of them is a semi-algebraic
subset of Rn);

(iii) If all the functions fl are convex and the set Pr(pVP) is dense in Sol(pVP), then
Sol(pVP) has a finite number of connected components.

It is clear that the assumption “the set Pr(pVP) is dense in Sol(pVP)” in Theorem 11 is
satisfied for the problem described in Example 5.
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