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Abstract In this paper, we introduce the generalized convolution with a weight function for
the Hartley and Fourier cosine transforms. Several algebraic properties and applications of
this generalized convolution to solving a class of integral equations of Toeplitz plus Hankel
type and a class of systems of integral equations are presented.
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1 Introduction

Convolutions and generalized convolutions for many different integral transforms have
interesting applications in several contexts of science and mathematics ([2, 3, 5, 7-10, 12,
16-18]). In 1997, Kakichev ([4]) proposed a general definition of polyconvolution for n 41
arbitrary integral transforms T, T1, T», ..., T,, with the weight function y (x) of functions
f1, f2, ..., fn for which the factorization property holds

7[5 i Lo D] ) =7 O T G) T f2) 0 (T fi) ).

An application of this notion to three integral transforms as Fourier, Fourier cosine,
Fourier sine, or Hartley and types of Fourier transforms has been presented ([6, 11]). The
generalized convolution generated by the Fourier cosine transform and the Laplace trans-
form has been studied in [13—15]. Following these authors, in this paper, we construct and
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550 N. M. Khoa

study a new polyconvolution with a weight function for a bunch of integral transforms:
Fourier cosine and Laplace transforms.

We note that from the above factorization equality, the general definition of convolutions
has the form

¥(f1s f2r e )@ = T Iy Q@ fOOTf) O T f) (O] ()

with 7! being the inverse operator of T. Although it looks quite simple, it is not easy to
have an explicit form of convolutions when applied to concrete integral transforms. Fur-
thermore, to obtain explicit formulas for convolutions of different integral transforms, one
should answer the question in which function spaces the convolutions live and which prop-
erties they own. We will approach these goals for a new polyconvolution with a weight
function for two Fourier cosine transforms and one Laplace transform. As a by-product, we
will apply this new notion to solving some non-standard integral equations and systems of
integral equations. We note that for such systems of integral equations, a representation of
their solution in a closed form is an interesting and open problem [2, 7].

The paper is organized as follows. In Section 2, we recall some known convolutions and
generalized convolutions. In Section 3, we define a new polyconvolution with a weight func-
tion y (y) = e~ of three functions for Fourier cosine and Laplace transforms and prove
the existence of this polyconvolution in certain function spaces as well as the factorization
equality and algebraic properties of this polyconvolution operator. In Section 4, the bound-
edness property of the polyconvolution operator is considered. In Section 5, we study an
integral transform related to this polyconvolution. Finally, in Section 6 with the help of the
new polyconvolution, we study a class of Toeplitz plus Hankel integral equations and some
systems of integral equations and prove that they can be solved in a closed form.

2 Preliminaries

In this section, we recall some known convolutions and generalized convolutions. The con-
volution of two functions f and g in L (R) for the Fourier integral transform is well known
[8] as
1 +00
f*g>(x)=7 fx—y)gndy, xeR, 6]
( F V21 J—o

for which the following factorization property holds:

F<f?g> M=FHOMF»), yeR, @
where the Fourier integral transform is defined by

(Ff)(y) = f(x)e Vdx, yeR.

1 +oo
kY 2w /;oo
The convolution of two functions f and g for the Laplace transform is that of the form

(8]

(ffg>(X)=/O fx—=ygdy, x>0, 3)

which satisfies the factorization identity

L (f? g) M =LHO Ly (), y=>0. “)
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A Polyconvolution with a Weight Function 551

Here L denotes the Laplace integral transform [8]

Lh) () = /0 f e dx, y >0,

The convolution of two functions f and g in L (R4 ) for the Fourier cosine transform is
defined by [16]

1 +00
s (?027/ Mgx+y)+gUx—yDldy, x>0, (5)
<thg> m_wfyg »+g yDldy
with the factorization equality
Fe <f;*< g) M=) F (), y=>0. (6)
Here, the Fourier cosine integral transform is defined by [16]

2 +o00
(Fef)(y) =4/ f/ f (x)cos (xy)dx.
T Jo

The generalized convolution for the Fourier sine and Fourier cosine transforms is defined
by [8]

1 +00
* (X)Zif M glx—yh—gx+yldy, x>0, N
<f 1g) Nl F g yh—g )ldy
for the which the factorization equality holds:

Fy (fT g) M=EHUFL G, y>0, figeLiRy), (8

where F denotes the Fourier sine integral transform [8]

2 +0o0
(Fof)(3) =/ = / £ () sin (yx) .
T Jo

The generalized convolution for the Fourier cosine and Fourier sine transforms is defined
by [12]

(f;g) (x) = \/% /OOO FO[g&+y) +sign(y —x)g(y—xD]dy, x>0, (9
which satisfies the factorization identity
Fe <f>2k g) ) =EFEf ) Feg) (), y=>0. (10)

The convolution with the weight function y; (y) = cos y for the Fourier cosine transforms
is defined by [9]

7 1 ~+00
(o) = Wl f(y)[g(|x+y+ DD +g(x —y+ DD +g(x +y— 1D
+g(lx —y — 1)|)}dy, x>0, (1n

which satisfies the factorization identity

F. (f:% g) (y) = cosy(F. fY(»)(Feg)(y), vy > 0. (12)

Fus &\ Springer



552 N. M. Khoa

3 The Polyconvolution with the Weight Function y (y) = ¢~ for Fourier
Cosine and Laplace Transforms

Definition 3.1 The polyconvolution with the weight function y(y) = e of three
functions f, g, h for Fourier cosine and Laplace transforms is defined by

L(fg ) () = — fm/wfwﬂmg(v)h(y)[ yt1
w2z Jo Jo Jo O+ D>+ (x+u+v)?

y+1 y+1
2 2+ 2 2
O+D"+(x+u—v) O+D"+&x—u+v)
1
2y+ 2i|dudvdy, x > 0. (13)
G+D"+x—u—v)

Theorem 3.2 If the functions f, g, h are given in L1(Ry), then the polyconvolution (13)
belongs to L1(R.) and satisfies the factorization identity

Folk (ham| )= FH O Fe) A ), y>0.  (14)

Moreover, when f, g, h € Lo(R;) N L1(R.), the Parseval type identity holds:
4 2 [ B
* (f, g, h) (x) = ;/0 (Fef) () (Feg) () (L) (y) e™ Y cos (xy)dy.  (15)

Proof We have

/‘+°°’ y+1 N y+1
0o 1O+D*+@x+u+v)? G+DP+@x+u—v)?
y+1 y+1

dx

+
O+D*+ @ —u+v)? O+ D+ —u—v)?

+o00 1 +o00 1 +o00 1
< / %dw[ %dw[ %m
utv (v + 1"+ 12 u—v (y+ 1" +12 —ugv Y+ D+ 12

+0o0o 1
Y S
—u—v (Y D=+ 12
= 2. (16)

From (13) and (16), we have

2 o0 o0 o0
]i(f,g,h)m\s\/;fo i wldn [ “igwiav [T holdy

2
=/ ;||f||L1(R+)||g||L1(R+)”h||L1(R+)'

Therefore,

4 2
[ (f, & W ILyry) < \ ;||f||L1(R+)||g||L1(R+)||h||L1(R+) < 0.

Thus
Y(f g h) e Li(Ry). (17)
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On the other hand, using (13) and the formula fooo e *cosxydx = Yzi—yz, s > 0, we

obtain

5 (f.8 ) ()
2 [ 2 [® 5 [ 0o B )
= \/jf {\/»/ f (u)cosutdu\/jf g(v)costvdvf h(y)e ’ydy}e ! cos xtds
T Jo 7 Jo T Jo 0

2 o0
= \/j/ (F.f) (t) (F.g) (t) (Lh) (t) e~ cos xtdt.
7 Jo
Thus the Parseval type identity (15) holds. Combining with (17), we get the factorization
identity (14). The theorem is proved. O

Proposition 3.3 Let f,g,h,l € Li(Ry). Then the polyconvolution (13) satisfies the
following equalities

@) *(f g h)=5%(g. fh),
Y

Y
b Lh| = l h
o (rge) n] <3 (rp1)00)
© Yl(rxg).tn|=%(1xg),fn
ch s by = Fvg s Jo .
Proof First, we show (a). Indeed, from the factorization equality (14), we have

eV (Fe f)(3)(Feg)(») (L) (y)
eV (Feg) ) (Fe /(0 (LA)(y)

Felx(g, £, ().

Folx(f, g M1(y)

Thus % (f, g, h) = % (g, f, h).
(b) Using the factorization properties (6) and (14), we can write

e F(f * QMED (LA (Y)

e Y (Fe YD (FD () (Fe) (L) (y)
= e Fe(f # DOFL) () (L))

F. {i[cf 8.1, h]} »

F. {i[(f; D, g, h]} », y>0.

So. we get ¥ [(f % ). 1. h] = *[(f * 1), g. hl.
Similarly, we can prove (c). O

Theorem 3.4 (Tichmarch type theorem) Let f € L1(R4+, e*),a > 0,g,h € L1(Ry).
Ifi (f,g,h)(x) =0, x > 0, then either f(x) =0, x > 0orgx) =0, x > 0or
h(x) =0,x > 0.

R
)
e @ Springer
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Proof We have

n

dym

‘f (x) x" cos (yx + ng)‘

{(cos yx) f (X)}‘ >

IA

|
|e—axxn| |eax]r(x)’ < :7 ’eaXf(x)|_

Here, we used the estimation

nog ! !
0 < =X yh _ pmx (ax)" n! e n!  nl

nl ot~ o ot

Since f € L1 (R4, e*"), we get jynn [cosyxf (x)] € L1 (Ry).

Since L1 (R4, e**) C L1 (R4), (F.f) (y) is analytic in Ry. Similarly we obtain (F,g)
is analytic in R. On the other hand, (L%)(y) is analytic in R, . By using the factorization

property (14) for lll< (f, g, h) (x) =0, we have

(Fef) () (Feg) (v) (L) (y) =0,y > 0.

It implies that, either f(x) =0,x >0org(x) =0,x > Qor h(x) =0,x > 0.
The theorem is proved. O

4 Inequalities for the Polyconvolution

In this section, we present the norm inequalities for the polyconvolution (13) in Lj(R4)
and L,(R4, p) with 1 < p < oo and p being a weight function. The standard norms are
defined as follows

||f||L1<R+>=fO 1 @)l dx; ||f||L1<R+,p)=fo 1 ()] p (x)dx;

1
10y = [/0 If(x)I"dX]p: 1 ey = [/0 If(x)lp(x)dx]p-

Theorem 4.1 If f, g, h belong to L1(R..), then the following inequality holds

Y 2
o h H < |z h . 18
% r.g P N e A PR PR LI (18)

Proof From Definition 3.1 and the proof of Theorem 3.2, we obtain
y ®y
Cen, o= [ Giem ol
H UL Li(Ry) 0 )8

2
= oMo lgl, ol .-

So, we obtain (18). O

Next, we study the polyconvolution on the function space Ly (R4, e~*¥) and estimate its
norm.

@ Springer i ms
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Theorem 4.2 Let f € L,(Ry), g € Ly(Ry), h € L,(Ry), be such that p,q,r > 1
and L + 1 4 % = 2. Then the polyconvolution (13) is bounded in Ly(R4, e=*") when
s > 1, a > 0 and the following estimation holds

Hl (f. &

4
< — h . 19
Ly (Reemex) — an\/ﬂ”f”L"(R+)||g||Lq(R+)” ||L,(]R+) (19)

Proof From the proof of Theorem 3.2, we have the following estimation

4 00 P00 OO
ﬂm/o /0 /(; If g WIlh ()ldxdydz, xe€R;.

Let p1, q1, r1 be the conjugate exponentials of p, g, r and

‘i (f, g, h) (X)‘ <

4 s

U@, v,y)=1g)|"11h (|7 € L1 Ry x Ry xRy),
i 2

Vi, v,y) =M |f @ € Li Ry x Ry x Ry),
7 4

W, v,y)=f@]1|lg)l" € L1 Ry xRy xRy).

Weseethat UVW = | f ()| |g ()| |k (¥)].
Using Fubini’s theorem, we get

R e a rp
||U||L1(R+><R+><R+) /0 /o {lg(v)l”llh(y)l”l} dvdy

=f |g<v)|‘f(/ |h(y>|rdy)dv
0 0
/0 £ I 1Al ., dv

— q
= 1181, @, 1117,y -

Similarly, we get

q
IVIE, oy = IF1 ey WAL, o

p
”W”L, RyxRy) — ”f” Ly(Ry) ||g||Lq(R+) (20)

Since % + é + % = 2, we have E + q—l + H = 1. Using Holder’s inequality and (20),
we obtain

y 4 o o0 oo
* (f,g,h)| < / / / UV Wdudvdy
‘ ‘ a2m Jo Jo Jo
4 o0 OO OO ﬁ o0 OO OO ﬁ
< (/ / / Up‘dudvdy) (/ / / V‘“dudvdy)
a/2x \Jo Jo Jo o Jo Jo
o0 oo o0 %
X </ / / W”dudvdy)
o Jo Jo

o 1L, ®xroxROIVIL, ® xR xROIWIL, ® xR xR

4 q r P r 9
— n n
R (IIgllL ®,) Il (R+)> (IIfIILp(R+) 70! (R+)) (IIfIILq(R+) IIgIILq(R+)>

4
ﬁ||f||Lp(R+)||g||Lq(R+)||h||L,(]R+)-

mee &\ Springer
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Since fooo e ¥dx = é, a > 0, we have

Y (fogoh)y )| dx

o0

_ 4

_/ o
L®rew)  Jo

o0 4
< / e —— ||f||SL R )”g”i R )”h”i R )dx
0 T /27.[ p B+ q N+ r R4

1
iy e ALY L e LI MRS

So, we obtain

y 4
< — h .
H ey S e N W8l WAl
Thus, we have (19). The theorem is proved. O

5 The Integral Transform Related to this Polyconvolution

Now, we study an integral transform related to the polyconvolution (13), namely the
transforms of the form

f) = g(x) = (Tiy kp SHX) 2D
dz
= (1- 7)[*(f»k17k2)](x)

nf dx)f / / F ks () k2 ()

[ y+1
X 2 2
O+D"+&x+u+v)
y+1 y+1
2 7t 2 2
O+D"+x+u—v) O+D"+x—u+v)
y+1

dudvdy, x > 0.
(y+1>2+(x—u—v)2}
Similarly to [15], we can prove the following result.

Theorem 5.1 (Watson type theorem) Suppose that f, k1, ko € Lo(R1)NL1(R4) are given
functions. Then the condition

, 1
le™ (Fek) () (Lk2) ()| = T2 Y7 0 (22)

is a necessary and sufficient condition for the operator Ty i, to be unitary on L(Ry).
Moreover, the inverse operator of Ty, k, takes the form

d? -
F) = (T4 96) = (1 - de) (£, K1 R)100), (23)

where ki, ko are the complex conjugate functions of ki, k respectively. So, we obtain

(T 4,9 @) = (T;, ,9)@). x> 0.

@ Springer h{pm
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6 Integral Equations and Systems of Equations

The polyconvolution (13) allows us to obtain the solutions for integral equations and

systems of integral equations in closed form.

6.1 Consider the Following Integral Equation

+ h
A 77«/277/0 /0 fo Fe®) (y)[(y—l—l)z—i-()c—i—u—i-v)2
y+1 y+1
G+D2+Gx+u—v)2  +D>+ @ —u+v)?

y+1
+ 2
O+D "+ (x—u—v)

2i| dudvdy = k(x), x>0,

(24)

where A is a complex constant; g, h, k are functions in L{(R4); andf(x) is an unknown

function in L1 (R).

Theorem 6.1 Assume that 1 +Xxe™> (F.g) (y) (Lh) (y) # 0VYy > 0. Then the integral (24)

has a unique solution in L1(R.) in the form
f &) =kx) - (k;k l) (x),

wherel € L1(Ry) is defined by

re™ (Feg) (y) (Lh) (¥)
L+ 2e™ (Feg) (v) (Lh) ()

(Fh) (y) =

Proof Using Definition 3.1, (24) can be rewritten in the form

Fo+a[k(fem]m=kw.

Because f and 1 (f, g, h) (x) and k are functions in L1 (R ), one can apply the factorization

property (14) to get

(Fef) () +re™ (Fe f) (v) (Feg) () (L) (y) = (Fek) (v) .
Thus
(Fef) ) [1+ 2e™ (Feg) () (Lh) ()] = (Fek) (v) .

With the condition 1 + Ae™ (F,.g) (y) (Lh) (y) # 0 Vy > 0, we have
_ AeTV(Feg) () (Lh) () }

1+xe™ (Feg) (v) (Lh) () |
Due to the Wiener-Lévy theorem [1], there exists a function / € L1 (R4 ) such that

re Y (Feg) (y) (Lh) ()

1+ xe™ (Feg) () (L) (y)

(Fef) (y) = (Fck) () |:1

(FeD) (y) =
From (25), (26), and (8), we obtain
(Fe ) () = (Fek) (0) [1 = (Fel) (0]
= (Fck) (y) — Fe (k;‘fcl> -

(25)

(26)

Fus &\ Springer
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Therefore
fx)=kx)— (k;s 1) x) e LRyY).
The proof is complete. O

6.2 Consider the System of Two Integral Equations

e — /m/w/mw(u)g(vwo)[ y+1
a2z Jo Jo Jo : 2 O+ D>+ (x+u+0v)?
y+1 y+1
O+D*+@+u—v)? O+ D+ —u+v)?
y+1
dudvdy = ,
(y+1)2+(x—u—v)2} vty = e
g(x>+%f0 F ) [03 (4 ) + 93 (u — xD]du = g (), @7

where A1, A, are complex constants, @1, ¢2, ¢3, p, g are functions in L (Ry), andf, g are
unknown functions.

Theorem 6.2 If the following condition is satisfied

Y
1+ rAFe [* (p1, @3, wz)] M #0 Vy=>0,

then there exists a unique solution in L1(R) of system (27), which is defined by

FO =p@ = [k @nae]@+ (p;f l) () = A [i (61.4.92) * l} (0

§x) =g (x) =42 (p;fc<p3> () + <1;EC61) (x) =22 |:l;‘fc (P;‘fr ws)] ().
Proof Using Definition 3.1 and (9), the system (27) can be rewritten in the form
F@+u[* g e]m=pw,
A2 (f;; <p3> () +g(x) =g (x). (28)

Due to the factorization properties (6), (14) we obtain the linear system of algebraic
equations

(Fe ) () + 2™ (Fepr) (») (Feg) (v) (Lg2) (v) = (Fep) (¥),
Ay (Fe ) () (Feps) (v) + (Feg) (v) = (Feg) (¥) -
The inverse of the determinant of this system has the form
| M [k (g1 g5 92| )

— =1+ .
Y
A I — A Fe [* (o1, @3, wz)] )

@ Springer i ms
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According to the Wiener-Lévy theorem [1], there exists a function / € L (R, ) such that

AMArFe [1 (o1, @3, wz)] )

Y
L= haFe [% (g1 03, 0] )

(FD () = , Vy>0.

Hence
1
A =1+ (FD)(y).

Therefore, using (6), we have
(Fef) ) = (Fep) () = M Fe [ (1.0, 92| () + . <P;§C l) »
—MFe [Zk (<p1,q,<pz);l] ).
It follows that

f&x)=p) -2 [1 (wl,q,wz)] (x) + (p;ﬂ l) (x) —

v
—Ai [* (@1.4.92) * l] (x) € Li (Ry).
Similarly, we obtain the formula for g as stated in the theorem. O

6.3 A System of Three Integral Equations

Al 00 OO OO y+1
ﬂm/() /0 /0 f(bt)qm(v)(pz(y)[(erl)sz(erquv)2

y+1 n y+1
O+D?+x4+u—v)?  G+D2+@—u+v)?
y+1

G+D2+(x—u-— v)z] dudvdy + g(x) + h(x) = p(x),

S+ % /(;oo g3 (u + x) + @3(lu — x)]dx + h(x) = q(x),

FOO +200) + 2;;7fo h(v)[mx F14o) et 1—o)
a(lx — 1+ o)+ allx — 1 - v|)]dv — ), xeR. 29)

Here, 11, X2, A3 are complex constants; ¢1, @2, @3, ¢4, p, ¢, r are functions from L;(R);
and f, g, h are unknown functions.

Theorem 6.3 Under the condition

Jr2rsFe {1 [wl, 03 % oa), @2:| } () +2 = Aa(Fegs)(y)

—re Y (Feo)(0) (L) (y) — Azcos y(Feps)(y) #0 Vy e R,

Fus &\ Springer
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there exists a unique solution in L1(Ry) of (29) given by

f@) = Az[p (o3 ¥ w}(x) +q(0) + () = p) + 22 {[p * (g3 ¢4)] P l} &)

c

—a(r ;EC%)(X) + (g ;Ecl)(x) + ;Ecl)(x) -3 {(61 ;J% ¢4) ;f(l} (x)

—kz[(r X ©3) ¥ l](X) —(p El)(x)’

8(x) = )»1)»3|: SONTEN §02)](X) +p() +r() =g () = (p ¥ g)

_)¥1

h(x) = A\

e e,

—A

[\S}

% (g1, 1, wz)] (x),

JORCED! <P2)] x 1} () + (P # D)+ (g D) = (% D)

(p;k ws);ﬁ l](x) -\ {l;k [i(¢1,q,¢2)]} (xX) + p(x) +gqx) —r(x)

—h2(p x @3)(x) = A [ * (91,9, W)](X)- (30)

Proof The system (29) can be rewritten in the form

Al [ 4 (fs o1, soz)] (xX) +g(x) + h(x) = p(x),
fx) +2a(g * ©3)(x) + h(x) = q(x),

J@x) +g&x) + A3(h EEI @4)(x) = r(x). (€29

Using the factorization identities (6), (11), and (14), we obtain

re TV (Fe Y (Fep) (0) (L) (v) + (Feg)(y) + (Feh) (y) = (Fep)(y),
(Fe () + A (Fe) () (Fep3) (y) + (Feh) () = (Feq)(y),
(Fe f)() + (Feg)(y) + Az cos y(Feh) () (Fepa) (y) = (Fer)(y). (32)

The determinant of this system is

14 Y
A = MM F {*[wl, (3 ;El ©4), 902]} (y) +2 — Az cos y(Feps)(y)

@ Springer
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A Polyconvolution with a Weight Function 561

Thus,

1

A
=1+ [Mkzks F. {i[sol, (@3 g ©4), <.02]] () +2 — Az cos y(Fepa)(y) — Aa(Fe3)(y)

—Me’y(chl)(y)(sz)(y)] [ — 1= MhasFe {1&01, (03 % a). (.02]} 8

_1
+213 08 y(Fepa) (y) + Ao (Fe3) () + Kle_y(chl)(y)(sz)(y)] .

According to the Wiener-Lévy’s theorem ([1]), there exists a function / € L (R) such that

(FeD(y)

= [mzxch {sﬁwl, 03 % oa), wz]} (3) = 23 008 Y(Fega) () = A2 (Fe3) ()
+2 - Me*«V(ch)(y)(sz)(y)} [ — 1=k {1[@, (03 % a). 902]} 8

-1
+A3 08 y(Fepa)(¥) + A2 (Fep3)(y) + Me_y(chl)(y)(Lgoz)(y)} , Yy>0.

So, we obtain

1
X =1+ (FD).

From this we arrive at (30). O
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