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Abstract We prove the existence of a global attractor in S2
0 (�)∩L2p−2(�) for a semilinear

strongly degenerate parabolic equation in a bounded domain with the homogeneous Dirich-
let boundary condition, in which the nonlinearity satisfies a polynomial type condition of
arbitrary order and the external force belongs to L2(�). This global attractor is then shown
to have a finite fractal dimension in L2(�). We also study the existence and exponential
stability of the unique stationary solution to the problem.
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1 Introduction

In this paper, we consider the following semilinear strongly degenerate parabolic equation
⎧
⎨

⎩

∂u
∂t

− Pα,βu + f (u) = g(X), X = (x, y, z) ∈ �, t > 0,
u(X, t) = 0, X ∈ ∂�, t > 0,
u(X, 0) = u0(X), X ∈ �,

(1)

where � is a bounded domain in RN = R
N1 ×R

N2 ×R
N3 with smooth boundary ∂�, Pα,β

is a strongly degenerate operator of the form

Pα,βu = �xu + �yu + |x|2α|y|2β�zu, α, β ≥ 0,
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u0 ∈ L2(�) is given, the nonlinearity f and the external force g satisfy the following
conditions:

(F) f : R → R is a continuously differentiable function such that for all s ∈ R,

C1|s|p − C0 ≤ f (s)s ≤ C2|s|p + C0, (2)

f ′(s) ≥ −C3 (3)

for some p ≥ 2, where C0, C1, C2, C3 are positive constants;
(G) g ∈ L2(�).

Under the above conditions, following the approach used in [2], Thuy and Tri [15] proved
the existence and uniqueness of weak solutions to problem (1), and they also proved the
existence of a compact global attractor in L2(�) for the continuous semigroup S(t) gen-
erated by weak solutions to (1). This result was then improved in [13] by showing the
existence of a global attractor in a more regular space, namely in the space S1

0 (�)∩Lp(�).
For other results on the existence and long-time behavior of solutions to semilinear parabolic
equations involving this strongly degenerate operator, we refer the reader to some recent
works of Anh and Tuyet [3, 4], and Anh [1]. In this paper, we will continue studying some
properties, namely the regularity and fractal dimension estimates, of the global attractor
obtained in [15].

The first aim of the present paper is to prove the existence of a global attractor in the
space S2

0 (�) ∩ L2p−2(�) for the semigroup S(t), that is, we study the regularity of the
global attractor obtained in [15]. As is known, the existence of a global attractor in L2(�) is
obtained by showing the existence of a bounded absorbing set in S1

0 (�) ∩ Lp(�) and using
the compactness of the embedding S1

0 (�) ↪→ L2(�). However, when proving the existence
of global attractors in L2p−2(�) and S2

0 (�) ∩ L2p−2(�), we cannot use embedding results
because under the conditions of the problem, the solutions only belong to the space S2

0 (�)∩
L2p−2(�). To overcome this difficulty, we exploit the asymptotic a priori estimate method
introduced in [8, 16]. The regularity result obtained here seems to be optimal because under
the considered conditions, the stationary solutions, which belong to the attractor, in general
cannot belong to a function space smaller than S2

0 (�) ∩ L2p−2(�). In particular, this result
improves the previous results in [13, 15]

The second aim of the paper is to show that the global attractor has a finite fractal
dimension in L2(�). To do this, we will use the method introduced by Ladyzhenskaya.

The third aim of the paper is to study the existence and stability of weak stationary
solutions to problem (1). In particular, we will show that if λ1 > C3, where λ1 > 0 is
the first eigenvalue of the operator −Pα,β , then the global attractor has a very simple form
A = {u∗}, where u∗ is the unique weak stationary solution of problem (1).

The paper is organized as follows. In Section 2, for convenience of the reader, we recall
some concepts and results on function spaces and global attractors which we will use. In
Section 3, we prove the existence of global attractors in various spaces by using the asymp-
totic a priori estimate method. The fractal dimension of the global attractor is estimated in
Section 4. In the last section, we prove the existence, uniqueness, and exponential stabil-
ity of a weak stationary solution to problem (1). It is worthy noticing that, in particular, the
regularity and dimension estimate results obtained in this paper extend and improve some
existing ones in [13, 15] and corresponding results for non-degenerate semilinear parabolic
equations in [5, 9, 10, 12, 16].
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2 Preliminaries

2.1 Function Spaces and Operator

To study problem (1), we use the weighted Sobolev space S1
0 (�) defined as the completion

C∞
0 (�) in the norm

‖u‖2S1
0 (�)

:=
∫

�

(
|∇xu|2 + |∇yu|2 + |x|2α|y|2β |∇zu|2

)
dX.

This is a Hilbert space with respect to the following scalar product

(u, v)S1
0 (�) =

∫

�

(
∇x · u∇xv + ∇yu · ∇yv + |x|2α|y|2β∇zu · ∇zv

)
dX.

We also use the space S2
0 (�) defined as the completion C∞

0 (�) in the norm

‖u‖2S2
0 (�)

:=
∫

�

|Pα,βu|2dX.

We recall some embedding results in [14], see also [7] for more general results related to
the function space S1

0 (�).

Proposition 1 Assume that � is a bounded domain in R
N = R

N1 × R
N2 × R

N3 . Then the
following embeddings hold:

(i) S1
0 (�) ↪→ L

2∗
α,β (�) continuously;

(ii) S1
0 (�) ↪→ Lp(�) compactly if p ∈ [1, 2∗

α,β),

where 2∗
α,β = 2Nα,β

Nα,β−2 , Nα,β = N1 + N2 + (α + β + 1)N3.

The following result follows directly from the definitions of the spaces S1
0 (�), S2

0 (�)

and the compactness of the embedding S1
0 (�) ↪→ L2(�).

Proposition 2 [3] Assume that � is a bounded domain in RN(N ≥ 3). Then the embedding
S2
0 (�) ↪→ S1

0 (�) is compact.

2.2 Global Attractors

We now recall some results in [16] which will be used in Section 3.

Proposition 3 Let {S(t)}t≥0 be a semigroup on Lr(�) and suppose that {S(t)}t≥0 has a
bounded absorbing set in Lr(�). Then for any ε > 0 and any bounded subset B ⊂ Lr(�),
there exist two positive constants T = T (B) and M = M(ε) such that

meas(�(|S(t)u0| ≥ M)) ≤ ε,

for all u0 ∈ B and t ≥ T , where meas(e) denotes the Lebesgue measure of e ⊂ � and
�(|S(t)u0| ≥ M) := {x ∈ �| |(S(t)(u0))(x)| ≥ M}.

Definition 1 Let X be a Banach space. The semigroup {S(t)}t≥0 on X is called norm-to-
weak continuous on X if for any {xn}∞n=1 ∈ X, xn → x and tn ≥ 0, tn → t , we have
S(tn)xn ⇀ S(t)x in X.
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The following result is useful for verifying that a semigroup is norm-to-weak continuous.

Proposition 4 Let X, Y be two Banach spaces and let X∗, Y ∗ be their respective dual
spaces. We also assume that X is a dense subspace of Y , the injection i : X → Y is con-
tinuous and its adjoint i∗ : Y ∗ → X∗ is densely injective. Let {S(t)}t≥0 be a semigroup on
X and Y , respectively, and assume furthermore that S(t) is continuous or weak continuous
on Y . Then {S(t)}t≥0 is norm-to-weak continuous on X if and only if S(t) maps compact
subsets of X into bounded subsets of X.

To prove the existence of a global attractor in the space L2p−2(�) for the semigroup
generated by (1), we will use the following result.

Theorem 1 Let {S(t)}t≥0 be a norm-to-weak continuous semigroup on Lq(�), and be con-
tinuous or weak continuous onLr(�) for some r ≤ q, and have a global attractor inLr(�).
Then {S(t)}t≥0 has a global attractor in Lq(�) if and only if

(i) {S(t)}t≥0 has a bounded absorbing set in Lq(�);
(ii) for any ε > 0 and any bounded subset B of Lq(�), there exist positive constants
M = M(ε, B) and T = T (ε, B) such that

∫

�(|S(t)u0|≥M)

|S(t)u0|qdX ≤ ε,

for any u0 ∈ B and t ≥ T .

Definition 2 The semigroup {S(t)}t≥0 on X is called satisfying condition (C) in X if and
only if for any bounded set B of X and for any ε > 0, there exist a positive constant tB and
a finite dimensional subspace X1 of X, such that {PS(t)x|x ∈ B, t ≥ tB} is bounded and

|(I − P)S(t)x| ≤ ε for any t ≥ tB and x ∈ B,

where P : X → X1 is the canonical projector.

The following result will be used to prove the existence of a global attractor for the
semigroup generated by problem (1) in the space S2

0 (�).

Theorem 2 Let X be a Banach space and let {S(t)}t≥0 be a norm-to-weak continuous
semigroup on X. Then {S(t)}t≥0 has a global attractor in X provided that the following
conditions hold:

(i) {S(t)}t≥0 has a bounded absorbing set in X

(ii) {S(t)}t≥0 satisfies Condition (C) in X

2.3 Fractal Dimensions of Global Attractors

Definition 3 Let M be a compact set in a metric space X. Then its fractal dimension is
defined by

dimf M = lim
ε→0

ln n(M, ε)

ln(1/ε)
,

where n(M, ε) is the minimal number of closed balls the radius ε which cover the set M .

The following result was given in [6].
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Theorem 3 Assume that M is a compact set in a Hilbert space H . Let V be a continuous
mapping in H such that M ⊂ V (M). Assume that there exists a finite dimensional projector
P in the space H such that

‖P(V u1 − V u2)‖H ≤ l‖u1 − u2‖H , u1, u2 ∈ M,

‖(I − P)(V u1 − V u2)‖H ≤ δ‖u1 − u2‖H , u1, u2 ∈ M,

where δ < 1. We also assume that l ≥ 1 − δ. Then the compact set M possesses a finite
fractal dimension, specifically,

dimf (M) ≤ dimP. ln
9l

1 − δ

(

ln
2

1 + δ

)−1

.

3 Regularity of the Global Attractor

It is proved in [15] that problem (1) generates a continuous (nonlinear) semigroup S(t) :
L2(�) → L2(�) defined as follows

S(t)u0 := u(t),

where u(t) is the unique weak solution of the problem (1) with the initial datum u0, and
moreover, S(t) has a compact global attractor A in L2(�). We now prove that the global
attractorA is in fact in S2

0 (�) ∩ L2p−2(�).
In the proof of the following lemmas, for the shake of brevity, we give some formal

calculations, the rigorous proof is done by use of Galerkin approximations and Lemma 11.2
in [10].

3.1 Existence of a Global Attractor in L2p−2(�)

Lemma 1 Assume that (F) and (G) hold. Then for any bounded subset B in L2(�), there
exists a positive constant T = T (B) such that

‖ut (s)‖2L2(�)
≤ ρ1 for any u0 ∈ B and s ≥ T ,

where ut (s) = d
dt

(S(t)u0)|t=s and ρ1 is a positive constant independent of B.

Proof By differentiating (1) in time and denoting v = ut , we get

vt − Pα,βv + f ′(u)v = 0.

Multiplying the above equality by v, integrating over � and using (F), we obtain

1

2

d

dt
‖v‖2

L2(�)
+ ‖v‖2S1

0 (�)
≤ C3‖v‖2

L2(�)
. (4)

Hence
d

dt
‖v‖2

L2(�)
≤ 2C3‖v‖2

L2(�)
. (5)

It is proved in [15] the existence of a bounded absorbing set in S1
0 (�)∩Lp(�), that is, there

exist a constant R and a time t0(‖u0‖L2(�)) such that

‖u(t)‖2S1
0 (�)

+ ‖u(t)‖p

Lp(�) ≤ R for all t ≥ t0
(‖u0‖L2(�)

)
. (6)
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Taking the inner product of (1) with ut , we obtain

‖ut‖2L2(�)
+ 1

2

d

dt

(

‖u‖2S1
0 (�)

+ 2
∫

�

F(u)dX

)

=
∫

�

gutdX ≤ 1

2
‖g‖2

L2(�)
+ 1

2
‖ut‖2L2(�)

,

(7)
where F(u) = ∫ u

0 f (ξ)dξ , thus

‖ut‖2L2(�)
+ d

dt

(

‖u‖2S1
0 (�)

+ 2
∫

�

F(u)dX

)

≤ ‖g‖2
L2(�)

. (8)

Noting that from (F) we get

C4(|u|p − 1) ≤ F(u) ≤ C5(|u|p + 1). (9)

Integrating (7) from t to t + 1 and then using (9), we get
∫ t+1

t

‖ut‖2L2(�)
≤ ‖g‖2

L2(�)
+ 2C5|�| + ‖u(t)‖2S1

0 (�)
+ 2C5‖u(t)‖p

Lp(�).

By (6), there exist a constant C6 which depends on ‖g‖L2(�), C4, C5 and R such that
∫ t+1

t

‖ut‖2L2(�)
≤ C6, for all t ≥ t0(‖u0‖L2(�)). (10)

Combining (5) with (10), and using the uniform Gronwall inequality, we deduce that

‖ut‖2L2(�)
≤ C

(
‖g‖2

L2(�)
, |�|

)

as t large enough. The proof is complete.

Lemma 2 The semigroup {S(t)}t≥0 has a bounded absorbing set in L2p−2(�), i.e., there
exists a positive constant ρ2p−2, such that for any bounded subset B ⊂ L2(�), there is a
number T = T (B ≥ 0) such that

‖u(t)‖L2p−2(�) ≤ ρ2p−2 for any t ≥ T , u0 ∈ B.

Proof Taking |u|p−2u as a test function, we obtain
∫

�

|u|p−2u.utdX +
∫

�

(
|∇xu|2 + |∇yu|2 + |x|2α|y|2β |∇zu|2|u|p−2

)
dX

+
∫

�

f (u)|u|p−2udX =
∫

�

g|u|p−2udX.

Hence, using (2) and the Cauchy inequality, we obtain
∫

�

(
|∇xu|2 + |∇yu|2 + |x|2α|y|2β |∇zu|2|u|p−2dX

)
+ C1

∫

�

|u|2p−2dX

≤ C0

∫

�

|u|p−1dX + 1

C1

∫

�

|g|2dX + C1

2

∫

�

|u|2p−2dX + 1

C1

∫

�

|ut |2dX.

Using the Cauchy inequality once again, we arrive at

C1

4

∫

�

|u|2p−2dX ≤ 1

C1
‖g‖2

L2(�)
+ 1

C1

∫

�

|ut |2dX + C.

By Lemma 1, we have
∫

�

|u|2p−2dX ≤ ρ2p−2, for any t ≥ T , u0 ∈ B,
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where ρ2p−2 depends only on C0, C1, C2, ‖g‖L2(�).

Choosing Y = L2(�), X = L2p−2(�), by Proposition 4, we see that the semigroup
{S(t)}t≥0 is norm-to-weak continuous on L2p−2(�). Thus, by Theorem 1, to prove the
existence of a global attractor in L2p−2(�) for the semigroup S(t), we only need to prove
the following

Lemma 3 For any ε > 0 and any bounded subsetB ⊂ L2(�), there exist positive constants
M = M(B, ε) and T = T (B, ε) such that

∫

�(|u(t)|≥M)

|u(t)|2p−2dX ≤ Cε for any u0 ∈ B as t ≥ T ,

where the constant C is independent of B and ε.

Proof For any fixed ε > 0, by Proposition 3 and (F), there exist M1 = M1(B, ε) > 0 and
T1 = T1(B, ε) > 0, such that the following estimates are valid for any u0 ∈ B and t ≥ T1:

∫

�(|u(t)|≥M1)

|g|2dX < ε and meas(�|u(t)| ≥ M1) < ε,

∫

�(|u(t)|≥M1)

|ut (s)|2dX < Cε for s ≥ T1, (11)

and f (s) ≥ 0 for any s ≥ M1, f (s) ≤ 0 for any s ≤ −M1. Denote �M1 = �(u(t) ≥ M1)

and �2M1 = �(u(t) ≥ 2M1). Multiplying (1) by (u − M1)
p−2
+ (u − M1)+, where

(u − M1)+ =
{

u − M1, u ≥ M1
0, u ≤ M1.

We have
∫

�M1

(u − M1)
p−1
+ utdX

+(p − 1)
∫

�M1

(u − M1)
p−2
+ (|∇xu|2 + |∇yu|2 + |x|2α|y|2β |∇zu|2)dX

+
∫

�M1

f (u)(u − M1)
p−1
+ dX ≤

∫

�M1

|g|2dX

∫

�M1

(u − M1)
2p−2
+ dX.

Using (11), we have ∫

�M1

f (u)(u − M1)
p−1dX ≤ Cε.

Therefore, we have
∫

�2M1

f (u)up−1 1

2p−1
dX ≤

∫

�2M1

f (u)u
p−2

(
1− M1

u

)p−1

dX

≤
∫

�M1

f (u)(u − M1)
p−1dX ≤ Cε.

Noting that meas(�2M1) ≤ ε and (F), the above inequality implies that
∫

�2M1

u2p−2dX ≤ Cε as t ≥ T1. (12)
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Now taking |(u + M1)−|p−2(u + M1)− as a test function, where

(u + M1)− =
{

u + M1, u ≥ −M1
0, u ≤ −M1,

we have in the same fashion as above that
∫

�(u(t)≤−2M1)

|u(t)|2p−2dX ≤ Cε as t ≥ T1. (13)

Combining (12) and (13), we have
∫

�(|u(t)|≥2M1)

|u(t)|2p−2dX ≤ Cε for any u0 ∈ B, t ≥ T1.

This completes the proof.

Theorem 4 Under the condition (F), (G), the semigroup {S(t)}t≥0 generated by problem
(1) has a global attractor AL2p−2 in L2p−2(�), that is, AL2p−2 is compact, invariant in
L2p−2(�) and attracts every bounded set of L2(�) in the topology of L2p−2(�).

3.2 Existence of a Global Attractor in S2
0 (�)

Lemma 4 For any 2 ≤ r < ∞ and any bounded subset B ⊂ L2(�), there exists a positive
constant T, which depends on r and the L2-norm of B, such that

∫

�

|ut (s)|rdX ≤ M for any u0 ∈ B, s ≥ T ,

where the positive constant M depends on r but not on B, and ut (s) = d
dt

(S(t)u0)|t=s .

Proof We prove by induction on k(k = 0, 1, 2, ...) the existence of Tk , depending on k and
B, such that

∫

�

|ut (s)|2
(

Nα,β
Nα,β−2+ε

)k

dX ≤ Mk for any u0 ∈ B, s ≥ Tk, (14)

and

∫ t+1

t

(∫

�

|ut (s)|2
(

Nα,β
Nα,β−2+ε

)k+1

dX

) Nα,β
Nα,β−2+ε

ds ≤ Mk for any u0 ∈ B, s ≥ Tk, (15)

where Mk depends on k but not on B.

(i) Initialization of the induction (k = 0): The estimate (A0) has been proved in Lemma 1,
while B0 can be derived by integrating (4) from t to t + 1 and using the embedding

S1
0 (�) ↪→ L

2Nα,β
Nα,β−2+ε (�).

(ii) The induction argument: Assume that (Ak) and (Bk) hold for k, and we prove that
they are true for k + 1. By differentiating (1) in time and denoting v = ut , we have

vt − Pα,βv + f ′(u)v = 0. (16)
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Multiplying (16) by|v|2
(

Nα,β
Nα,β−2+ε

)k+1
−2

.v and integrating over �, we obtain

C
d

dt

∫

�

|v|2
(

Nα,β
Nα,β−2+ε

)k+1

dX

+C

∫

�

(

|∇x

(

v

(
Nα,β

Nα,β−2+ε

)k+1)

|2 + |∇y

(

v

(
Nα,β

Nα,β−2+ε

)k+1)

|2 (17)

+|x|2α|y|2β |∇z

(

v

(
Nα,β

Nα,β−2+ε

)k+1)

|2
)

dX

≤ C3

∫

�

|v|2
(

Nα,β
Nα,β−2+ε

)k+1

dX,

where the constant C depends on the spatial dimension Nα,β and k. Using (Bk) and the
uniform Gronwall inequality, we infer from (17) that

∫

�

|v|2
(

Nα,β
Nα,β−2+ε

)k+1

dX ≤ Mk+1 for any t ≥ Tk, (18)

which shows that (Ak + 1) is true. For (Bk + 1), we integrate (17) from t to t + 1 and use
(18) to get

∫ t+1

t

∫

�

⎛

⎝

∣
∣
∣
∣
∣
∇x

(

v

(
Nα,β

Nα,β−2+ε

)k+1)∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∇y

(

v

(
Nα,β

Nα,β−2+ε

)k+1)∣
∣
∣
∣
∣

2

(19)

+|x|2α|y|2β
∣
∣
∣
∣
∣
∇z

(

v

(
Nα,β

Nα,β−2+ε

)k+1)∣
∣
∣
∣
∣

2
⎞

⎠ dXds ≤ Mk+1.

Using the embedding S1
0 (�) ↪→ L

2Nα,β
Nα,β−2+ε (�), we have

(∫

�

|v|
(

Nα,β
Nα,β−2+ε

)k+1 2Nα,β
Nα,β−2+ε dX

)Nα,β−2+ε

Nα,β

= ‖v
(

Nα,β
Nα,β−2+ε

)k+1

‖2
L

2Nα,β
Nα,β−2+ε

(�)

≤ C

∫

�

(

|∇x

(

v

(
Nα,β

Nα,β−2+ε

)k+1)

|2 + |∇y

(

v

(
Nα,β

Nα,β−2+ε

)k+1)

|2

+ |x|2α|y|2β |∇z

(

v

(
Nα,β

Nα,β−2+ε

)k+1)

|2
)

. (20)

Combining (19) and (20), we deduce (Bk+1) immediately. Since Nα,β

Nα,β−2+ε
> 1, we have

r ≤ 2
(

Nα,β

Nα,β−2+ε

)k

provided that k ≥ log Nα,β
Nα,β−2+ε

r
2 .

Lemma 5 For any ε > 0 and any bounded subset B ⊂ L2(�), there exist T > 0 and
nε ∈ N , such that

∫

�

|v2|2dX ≤ Cε for any u0 ∈ B,
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provided that t ≥ T and m ≥ nε , where v2 = (I − Pm)v = (I − Pm)ut and the constant C
is independent of B and ε.

Proof Multiplying (16) by v2 and integrating over �, we have

1

2

d

dt
‖v2‖2L2(�)

+ ‖v2‖2S1
0 (�)

≤
∫

�

|f ′(u)v||v2|dX.

Therefore
1

2

d

dt
‖v2‖2L2(�)

+ λm‖v2‖2L2(�)
≤

∫

�

|f ′(u)v||v2|dX, (21)

where λm is the mth eigenvalue of the operator Au := −Pα,βu in �. By (F), Lemmas 3 and
4, we have

∫

�

|f ′(u)v|2dX ≤
(∫

�

|f ′(u)|2
(

p−1
p−2

)) p−2
p−1

(∫

�

|v|2(p−1)
) 1

p−1 ≤ M0

for any u0 ∈ B provided that t ≥ T , where the constant M0 is independent of B and the
constant T depends only on B and p. Therefore, we infer from (21) that

d

dt
‖v2‖2L2(�)

+ λm‖v2‖2L2(�)
≤ C.

If t ≥ T , the last inequality shows that

‖v2(t)‖2L2(�)
≤ ‖v2(T )‖2

L2(�)
e−λm(t−T ) + C

λm

(1 − e−λm(t−T )). (22)

Lemma 6 The semigroup {S(t)}t≥0 has a bounded absorbing set in S2
0 (�), i.e., there exists

a constant ρA > 0 such that for any bounded subset B ⊂ L2(�), there is a TB > 0 such
that

‖Pα,βu(t)‖L2(�) ≤ ρA for any t ≥ TB, u0 ∈ B.

Proof Taking the L2-inner product of (1) with −Pα,βu, we obtain

‖Pα,βu‖2
L2(�)

≤
∫

�

ut .Pα,βudX

+
∫

�

f ′(u)(|∇xu|2 + |∇yu|2 + |x|2α|y|2β |∇zu|2)dX −
∫

�

g.Pα,βudX.

By the Hölder inequality and assumption (F) we have

‖Pα,βu‖2
L2(�)

≤ C
(
‖ut‖2L2(�)

+ ‖u‖2S1
0 (�)

+ ‖g‖2
L2(�)

)
.

Hence, from Lemma 1 and the fact that {S(t)}t≥0 has a bounded absorbing set in S1
0 (�) we

have
‖Pα,βu(t)‖L2(�) ≤ ρA

for t large enough. This completes the proof.

Let K(A) be the Kuratowski measure of noncompactness in L2(�) of the subset A

defined by

K(A) = inf{δ > 0 | A has a finite open cover of sets of diameter < δ}.
We have the following lemma in [16].
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Lemma 7 Assume that f (.) satisfies conditions (F). Then for any subset A ⊂ L2p−2(�),
if K(A) < ε in L2p−2(�), then we have

K(f (A)) < Cε in L2(�),

where f (A) = {f (u)|u ∈ A} and the constant C depends on the L2p−2-norm of A, the
Lebesgue measure of � and the coefficients C0, C1, C2 in (F).

Let Hm = span{e1, e2, . . . , em} in L2(�), where {ej }∞j=1 are eigenvectors of the oper-
ator Au = −Pα,βu with the homogeneous Dirichlet boundary condition in � and Pm :
L2(�) → Hm be the orthogonal projection. We now verify that {S(t)}t≥0 satisfies condition
(C) in S2

0 (�).

Lemma 8 For any ε > 0 and any bounded subsetB ⊂ L2(�), there exist T = T (ε, B) ≥ 0
and nε ∈ N, such that

∫

�

|(I − Pm)Pα,βu|2dX ≤ ε for any u0 ∈ B,

provided that t ≥ T and m ≥ nε .

Proof Denoting u2 = (I − Pm)u, and multiplying (1) by −Pα,βu2, we have
∫

�

|(I − Pm)Pα,βu|2dX

≤
∫

�

utPα,βu2dX +
∫

�

f (u)Pα,βu2dX −
∫

�

g(X)Pα,βu2dX.

By the Cauchy inequality, we have
∫

�

|(I − Pm)Pα,βu|2dX

≤ 1

2

∫

�

|(I − Pm)ut |2dX +
∫

�

|f (u)|2dX + 1

2

∫

�

|(I − Pm)g|2dX.

From Lemmas 5 and 7, we have
∫

�

|(I − Pm)Pα,βu|2dX ≤ ε for any u0 ∈ B, t ≥ T , m ≥ nε.

This completes the proof.

From Lemmas 6, 8, and Theorem 2, we obtain the following result.

Theorem 5 Assume (F) and (G) hold. Then the semigroup {S(t)}t≥0 generated by problem
(1) has a global attractor AS2

0
in S2

0 (�), that is, AS2
0
is compact, invariant in S2

0 (�) and

attracts every bounded set of L2(�) in the topology of S2
0 (�).

4 Fractal Dimension Estimates of the Global Attractor

Lemma 9 Assume that (F) and (G) hold. Then there exist a positive integer N0, a time T ∗
and a positive constant δ < 1, such that for any u0, v0 ∈ A, we have

‖(I − PN0)(S(T ∗)u0 − S(T ∗)v0)‖2L2(�)
≤ δ‖u0 − v0‖2L2(�)

,
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and there exists a constant l > 1 − δ such that

‖PN0(S(T ∗)u0 − S(T ∗)v0)‖2L2(�)
≤ l‖u0 − v0‖2L2(�)

.

Proof Let u, v be two solutions of problem (1) with initial data u0, v0, respectively. Putting
w(t) = u(t) − v(t), QN0 = I − PN0 , w1 = PN0w, w2 = QN0w. Obviously, the function
w(t) satisfies the equation

dw

dt
− Pα,βw + l(t)w = 0, (23)

where l(t) = ∫ 1
0 f ′(su(t) + (1 − s)v(t))ds. Multiplying (23) by w2, we have

1

2

d

dt
‖w2‖2L2(�)

+ ‖w2‖2S1
0 (�)

+
∫

�

l(t)|w2|2dX = 0.

Using the facts that

‖w2‖2S1
0 (�)

≥ λN0‖w2‖2L2(�)
, l(t) ≥ −C3,

we have
d

dt
‖w2‖2L2(�)

≤ 2(C3 − λN0)‖w2‖2L2(�)
.

Hence, by the Gronwall inequality, we obtain

‖w2(t)‖2L2(�)
≤ e−2(λN0−C3)t‖w2(0)‖2L2(�)

≤ e−2(λN0−C3)t‖w(0)‖2
L2(�)

.

Since λm → +∞ as m → +∞, we can choose N0 large enough such that for a fixed T ∗,
‖(I − PN0)(S(T ∗)u0 − S(T ∗)v0)‖2L2(�)

≤ δ‖u0 − v0‖2L2(�)
,

where 0 < δ := e−2(λN0−C3)T
∗

< 1.
On the other hand, multiplying (23) by w1, we get

1

2

d

dt
‖w1‖2L2(�)

+ ‖w1‖2S1
0 (�)

≤ C3‖w1‖2L2(�)
.

Hence it follows that
d

dt
‖w1‖2L2(�)

≤ 2(C3 − λ1)‖w1‖2L2(�)
.

Applying the Gronwall inequality, we have

‖w1(t)‖2L2(�)
≤ e2(C3−λ1)t‖w1(0)‖2L2(�)

≤ e2(C3−λ1)t‖w(0)‖2
L2(�)

.

By choosing T ∗ > 0 (small enough if C3 < λ1) such that l := e2(C3−λ1)T
∗

> 1−δ, we have

‖PN0(S(T ∗)u0 − S(T ∗)v0)‖2L2(�)
≤ l‖u0 − v0‖2L2(�)

.

This completes the proof.

From Lemma 9 and Theorem 3, we get the following

Theorem 6 Assume that (F) and (G) hold. Then the global attractor A has a finite fractal
dimension in L2(�), specifically,

dimf (A) ≤ N0 ln
9l

1 − δ

(

ln
2

1 + δ

)−1

,

where N0, δ, l are given in Lemma 9.
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5 Existence and Exponential Stability of Stationary Solutions

A weak stationary solution to problem (1) is an element u∗ ∈ S1
0 (�) ∩ Lp(�) such that

∫

�

(∇xu
∗ ·∇xv+∇yu

∗ ·∇yv+|x|2α|y|2β∇zu
∗ ·∇zv)dX+

∫

�

f (u∗)vdX =
∫

�

gvdX (24)

for all test functions v ∈ S1
0 (�) ∩ Lp(�).

Theorem 7 Assume that conditions (F) − (G) hold. Then problem (1) admits at least one
weak stationary solution u∗ satisfying

||u∗||2S1
0 (�)

+ 2C1‖u∗‖p

Lp(�) ≤ 2C0|�| + 1

λ1
‖g‖2

L2(�)
. (25)

Moreover, if the following condition holds

λ1 > C3, (26)

where λ1 > 0 is the first eigenvalue of the operator −Pα,β , C3 is the constant in (3), then
the weak stationary solution u∗ of (1) is unique and exponentially stable.

Proof (i) Existence. The estimate (25) can be obtained taking into account that in particular
any weak stationary solution u∗, if it exists, should verify

‖u∗‖2S1
0 (�)

+
∫

�

f (u∗)u∗dX =
∫

�

gu∗dX.

Using (2) and the Cauchy inequality, we have

||u∗||2S1
0 (�)

+ C1‖u∗‖p

Lp(�) − C0|�| ≤ λ1

2
‖u∗‖2

L2(�)
+ 1

2λ1
‖g‖2

L2(�)
.

Hence, by using the inequality ‖u∗‖2S1
0 (�)

≥ λ1‖u∗‖2
L2(�)

, we obtain the desired estimate

(25).
For the existence, let {vj }∞j=1 be a basis of S1

0 (�) ∩ Lp(�). For each m ≥ 1, let us
denote Vm = span{v1, ..., vm} and we would like to define an approximate strong stationary
solutions um of (1) by

um =
m∑

i=1

γmivi,

such that
∫

�

(∇xu
m · ∇xv + ∇yu

m · ∇yv + |x|2α|y|2β∇zu
m · ∇zv)dX +

∫

�

f (um)vdX

=
∫

�

gvdX (27)

for all v ∈ Vm. To prove the existence of um, we define operators Rm : Vm → Vm by

((Rmu, v)) =
∫

�

(∇xu · ∇xv + ∇yu · ∇yv + |x|2α|y|2β∇zu · ∇zv)dX

+
∫

�

f (u)vdX −
∫

�

gvdX ∀u, v ∈ Vm.
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For all u ∈ Vm, using (2) and the Cauchy inequality, we have

((Rmu, u)) = ‖u‖2S1
0 (�)

+
∫

�

f (u)udX −
∫

�

gudX

≥ ||u||2S1
0 (�)

+ C1‖u‖p

Lp(�) − C0|�| − λ1

2
‖u‖2

L2(�)
− 1

2λ1
‖g‖2

L2(�)

≥ 1

2
||u||2S1

0 (�)
− C0|�| − 1

2λ1
‖g‖2

L2(�)
.

Thus, if we take

β =
(

2C0|�| + 1

λ1
‖g‖2

L2(�)

)1/2

,

we obtain that ((Rmu, u)) ≥ 0 for all u ∈ Vm satisfying ||u||S1
0 (�) = β. Consequently, by

a corollary of the Brouwer fixed point theorem (see [11, Chapter 2, Lemma 1.4]), for each
m ≥ 1, there exists um ∈ Vm such that Rm(um) = 0, with ‖um‖ ≤ β. Taking v = um in
(27) we get

‖um‖2S1
0 (�)

+ C1‖um‖p

Lp(�) − C0|�| ≤ λ1

2
‖u∗‖2

L2(�)
+ 1

2λ1
‖g‖2

L2(�)
.

Hence we deduce that

||um||2S1
0 (�)

+ ‖um‖p

Lp(�) ≤ C
(
1 + ‖g‖2

L2(�)

)
. (28)

Hence we deduce that the sequence {um} is bounded in S1
0 (�) ∩ Lp(�), and consequently,

by the compact injection of S1
0 (�) into L2(�), we can extract a subsequence {um′ } ⊂ {um}

that converges weakly in S1
0 (�)∩Lp(�) and strongly inL2(�) to an element u∗ ∈ S1

0 (�)∩
Lp(�). It is now standard to take limits in (27) and obtain that u∗ is a weak stationary
solution of (1).

(ii) Uniqueness and exponential stability. Denote w(t) = u(t) − u∗, one has
∫

�

wtvdX +
∫

�

(∇xw · ∇xv + ∇yw · ∇yv + |x|2α|y|2β∇zw · ∇zv)dX

+
∫

�

(f (u) − f (u∗))vdX = 0

for all test functions v ∈ S1
0 (�) ∩ Lp(�). In particular, replacing v by w(t), we have

1

2
‖w(t)‖2

L2(�)
+ ‖w(t)‖2S1

0 (�)
+

∫

�

(f (u) − f (u∗))(u − u∗)dX = 0.

Using condition (3) we have

‖w(t)‖2
L2(�)

+ 2(λ1 − C3)‖w(t)‖2
L2(�)

≤ 0.

By the Gronwall inequality, we arrive at

‖w(t)‖2
L2(�)

≤ ‖w(0)‖2
L2(�)

e−2(λ1−C3)t .

Hence if condition (26) holds, then we get the desired conclusion.

Remark 1 Since every stationary solution, if it exists, must lie on the global attractor, from
the regularity results of the global attractor in Section 3, we deduce that the stationary solu-
tion u∗ belongs to the space S2

0 (�) ∩ L2p−2(�), that is, we get a regularity result of the
stationary solution.
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